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Quantized supercurrent decay in an annular Bose-Einstein condensate
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We study the metastability and decay of multiply charged superflow in a ring-shaped atomic Bose-Einstein
condensate. Supercurrent corresponding to a giant vortex with topological charge up to q = 10 is phase imprinted
optically and detected both interferometrically and kinematically. We observe q = 3 superflow persisting for
up to a minute and clearly resolve a cascade of quantized steps in its decay. These stochastic decay events,
associated with vortex-induced 2π phase slips, correspond to collective jumps of atoms between discrete q

values. We demonstrate the ability to detect quantized rotational states with >99% fidelity, which allows a
detailed quantitative study of time-resolved phase-slip dynamics. We find that the supercurrent decays rapidly
if the superflow speed exceeds a critical velocity in good agreement with numerical simulations, and we also
observe rare stochastic phase slips for superflow speeds below the critical velocity.
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I. INTRODUCTION

Superfluid flow of a Bose-Einstein condensate (BEC) in a
multiply connected ring geometry is the archetypal metastable
many-body state. The phase of the macroscopic BEC wave
function must wind around the ring by an integer multiple
of 2π , corresponding to the charge q of a vortex trapped
inside the ring. Macroscopic states with different q values are
topologically distinct and separated by energy barriers [see
Fig. 1(a)]. Consequently, although the true ground state of the
system in a nonrotating trap is q = 0, a q �= 0 supercurrent can
be extremely long-lived and largely immune to perturbations
such as disorder and thermal fluctuations. Stability and decay
of supercurrents have been studied for decades in helium
superfluids [1–5] and thin-wire superconductors [6–10], but
the decay process is still not fully understood [11]. A ring-
shaped superfluid was also proposed as the ideal laboratory
system for simulation of pulsar glitches [12], associated with
jumps in the rotation of the superfluid neutron star interior
[12,13].

Atomic BECs trapped in a ring geometry [14–20] are
attractive both for fundamental studies of superfluidity and for
applications in interferometry [21,22] and atomtronics [23].
Recently, q = 1 superflow persisting for 40 s was observed,
and studies of flow through a weak link created by a potential
barrier revealed a relatively sharply defined superflow critical
velocity vc [19]. The observed vc was consistent with the
Feynman estimate vF

c , strongly suggesting a vortex-induced
phase slip [see Fig. 1(b)] as the dominant supercurrent decay
mechanism.

While a q = 1 vortex can persist for several seconds even in
a simply connected BEC, any q > 1 vortex is fundamentally
unstable in such a geometry [17,24]. In a ring trap, a q = 2
vortex was observed to survive for at least 0.5 s [17]. However,
the decay of q > 1 vortices in a multiply connected geometry
has not yet been studied.

In this paper, we demonstrate and study extreme metasta-
bility of multiply charged superflow in an annular BEC. Using
optical phase imprinting [25], we prepare annular BECs in
metastable rotational states corresponding to vortex charges up
to q = 10. To quantitatively study the supercurrent decay with
sufficient statistics we focus on condensates initially prepared

in a q = 3 state. We observe q = 3 superflow persisting for up
to a minute in a multiply connected trap and explicitly show
that the supercurrent is quantized. The cascade of quantized
decay steps unambiguously confirms 2π phase slips as the
supercurrent decay mechanism. We demonstrate the ability to
read out quantized rotational states with >99% fidelity, which
opens the possibility to quantitatively study the dynamics
of phase slips for different superflow speeds. While a rapid
q → q − 1 decay occurs if the flow speed vs(q) reaches a
critical velocity, we also observe stochastic phase slips for
vs < vc. After each phase slip the system restabilizes in a lower
metastable rotational state. We find that the critical velocities
for different q states are of the same order of magnitude as
the Feynman estimate but are more quantitatively predicted by
a numerical simulation linking vc to the condensate surface
instability against a vortex penetrating the annulus [26,27].

This paper is divided into six sections. In Sec. II we outline
the theoretical considerations concerning the stability and
decay of supercurrents in annular atomic superfluids. In Sec. III
we describe our preparation and detection of metastable
supercurrents. In Sec. IV we present our observations of
quantized supercurrent decay and long-lived multiply charged
superflow. In Sec. V we discuss the phase-slip dynamics for
different superflow speeds. Finally, we summarize our results
and briefly discuss future research directions in Sec. VI.

II. SUPERCURRENTS IN ANNULAR CONDENSATES

A. Topologically protected superflow states

The physical origin of the supercurrent metastability is
qualitatively illustrated in Fig. 1(a). For N atoms held in a ring
trap, the average angular momentum per particle in general
need not be quantized, but for a superfluid gas such quanti-
zation is energetically preferred. The “parabolic washboard”
landscape depicts the energy E of a superfluid system for
different fixed values of the total angular momentum L [28].
The local minima of E correspond to topologically distinct
metastable states with L/N = qh̄. A direct �q = 1 transition
between two such minima involves a discontinuous 2π phase
slip in the condensate wave function, occurring when a singly
charged vortex crosses the annulus.
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FIG. 1. (Color online) Metastability and decay of supercurrents.
(a) Energy landscape of a ring-shaped superfluid. Local minima
correspond to metastable states with quantized angular momentum
per particle, L/N = qh̄. (b) Decay between the discrete q states
involves a vortex-mediated phase slip, illustrated here for q = 5 → 4.

More generally, a superfluid can, in principle, also shed
angular momentum in ways that break the L/N quantization,
including condensate fragmentation and collective excitations
such as solitons [29]. For low enough superflow speeds all such
processes are energetically costly and suppressed to various
degrees. The dominant superflow decay mechanism depends
on the system’s dimensions, temperature, and the strength of
interactions [8,11,29] and is often difficult to predict.

The dissipative supercurrent decay is, strictly speaking,
always stochastic, even if (for sufficiently high flow speeds) the
superflow is unstable in the thermodynamic sense. However,
we can distinguish qualitatively different decay regimes.

(1) If vs exceeds the critical velocity for some decay process,
the decay becomes likely. Ultimately, it can occur on some
microscopic time scale, which for an atomic BEC is in the
millisecond range. In this case, from an experimental point
of view the decay can appear essentially instantaneous and
deterministic. For example, we cannot talk about a persistent
current if it “persists” for much less than one rotation period
(∼300 ms in our experiments).

(2) For vs � vc the decay is strongly suppressed, and the
superflow can be almost perfectly stable, as, for example,
observed in bulk superconductors.

(3) In between these two extremes, metastable superflow
should persist for much longer than the characteristic micro-
scopic time scale of the physical system, but rare stochastic
decay events can still occur through quantum or thermal
fluctuations [7–10,30]. Such stochastic phase slips are, for
example, associated with the residual resistance in thin-wire
superconductors [11].

B. Critical velocity for vortex-induced phase slips

The critical velocity for the occurrence of vortex-induced
phase slips was famously first estimated by Feynman:

vF
c = h̄

mr
ln

(
r

ξ

)
, (1)

where m is the atom mass, r is the annulus width, and
ξ is the healing length. This estimate is based on general
energetic arguments, namely, the cost of a vortex crossing a
high-superfluid-density region of characteristic size r . It does
not take into account the dynamical effects associated with
the vortex penetrating the BEC or the details of geometry
such as the variation of the condensate density due to the
harmonic trapping along the directions transverse to the ring.
It is also important to note that in Feynman’s theory vF

c

does not correspond to a sharp boundary between stable and
unstable superflow. Rather, vF

c just sets the natural scale for the
superflow speed vs at which phase-slip-induced supercurrent
decay should become energetically favorable. Nevertheless,
in some cases Eq. (1) is found to provide a good estimate of
vc [19].

In experiments on simply connected rotating atomic gases
[31–35] it was often found that the critical velocity for a vortex
entering the condensate was higher than predicted purely by
global energetic arguments. This higher vc is associated with
dynamical instabilities of surface excitations, which provide
the necessary microscopic route for vortex nucleation. The
“surface” critical velocity at which such instability occurs
was derived by Anglin [26], properly taking into account the
variation of the condensate density near its edge:

vs
c =

√
2h̄ω

m

(
μ

h̄ω

)1/6

, (2)

where ω is the radial trapping frequency (along the direction
perpendicular to the rotation axis) and μ is the chemical
potential. The arguments of Ref. [26] are local and consider
only a surface region of the size of several ξ . Hence the theory
should be equally applicable to rotating annular condensates
as long as both the width of the annulus and its inner radius
are much larger than ξ . Indeed the theory of [26] was recently
extended to ring geometry by Dubessy et al. [27]. In this
case the expression for vs

c is the same, but one notes that due
to the nature of the superfluid flow with quantized angular
momentum the critical velocity is always first reached at the
inner surface of the annulus. In other words, while a phase
slip can formally be thought of either as a vortex crossing the
annulus to exit the ring or an antivortex entering the ring, in
reality the former process is always more likely.

In our experiments vs
c is always higher than vF

c , and the
geometric criteria for the applicability of Eq. (2) are satisfied.
We will address the comparison of our observations with the
two theories of phase slip vc in Sec. V, after introducing
our experimental methods (Sec. III) and showing that in our
experiments vortex-induced phase slips are indeed the relevant
supercurrent decay mechanism (Sec. IV).

III. PREPARATION AND DETECTION OF
SUPERCURRENT

In our experiments we use a hollow Laguerre-Gauss (LG)
mode of an infrared (805-nm) laser beam to both trap the
superfluid in a ring geometry and set it into rotation (see
Fig. 2). In an LG� laser mode each photon carries orbital
angular momentum �h̄, which can be transferred to an atom
via a two-photon Raman process [25]. To prepare different
q rotational states we create LG beams with � values up
to � = 10, using a phase-imprinting spatial light modulator
(SLM) [36].

We start by producing a quasipure BEC of 87Rb atoms [37]
and loading it into the ring trap formed at the intersection of a
vertical LG beam and a horizontal “sheet” beam of wavelength
1070 nm [see Fig. 2(a)]. To avoid inducing rotation of the BEC
during loading into the ring trap, this transfer is done very
slowly over 5 s. We load ≈2 × 105 condensed atoms into the
ring, and at no time during the experiment do we observe a
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FIG. 2. (Color online) Preparation of metastable supercurrent
in an annular condensate. (a) The optical ring trap is created by
intersecting a horizontal “sheet” laser beam with a vertical “tube”
LG� beam; the absorption image shows a BEC in an � = 10 trap.
(b) Two-photon Raman transfer of atoms into a metastable q = �

state is achieved using the LG� trapping beam (red dashed arrow)
and a copropagating Gaussian beam (blue solid arrow). An atom
undergoing an internal state transfer, |↑〉 → |↓〉, also absorbs angular
momentum �h̄ from the LG� laser beam.

discernible thermal fraction of the gas [38]. The sheet beam
provides a nearly isotropic trapping potential in the xy plane,
with trapping frequencies of 6, 7, and 400 Hz along the x̂, ŷ,
and ẑ directions, respectively. The depth of the ring trap Vr is
set by the power of the LG beam. For � = 3, the ring radius
is ≈12 μm, and the radial trapping frequency varies between
75 and 190 Hz for the Vr values used in our experiments. For
higher � the trap radius increases approximately linearly [39].

To set the superfluid into rotation via a two-photon Raman
transition, we briefly (∼200 μs) pulse on an auxiliary 805-nm
Gaussian beam, copropagating with the trapping LG beam.
As illustrated in Fig. 2(b), the atoms are transferred between
two internal atomic states, |↑〉 and |↓〉, and simultaneously
pick up angular momentum �h̄. The |↑〉 and |↓〉 are two
Zeeman levels of the F = 1 hyperfine ground state, mF = 1
and 0, respectively. The mF = −1 state is detuned from the
Raman resonance by the quadratic Zeeman shift in an external
magnetic field of 10 gauss.

We first perform a set of interferometric experiments in
order to verify the optically imprinted phase winding (see
also [40–42]). As depicted in Fig. 3, we apply a π/2 Raman
pulse which coherently transfers only half the population into
the rotating |↓〉 state. A subsequent π/2 radio-frequency (rf)
pulse, which carries no angular momentum, mixes the |↑〉 and
|↓〉 states so that in each spin state we get an interference of
rotating (q = �) and nonrotating (q = 0) atoms. This matter-
wave interference converts the phase winding into a density
modulation, with the number of density peaks around the ring
equal to �. In Fig. 3 we show the observed interference patterns
for � = 3, 5, and 10.

For our main studies (Secs. IV and V) we transfer all the
atoms into the rotating |↓〉 state. If we then ramp down Vr

and transform the ring trap into a simply connected sheet trap,
the phase-imprinted q = � vortex decays into singly charged
vortices [see Fig. 4(a)]. Note, however, that in this case L/N

FIG. 3. (Color online) Interferometric detection of the imprinted
phase winding. A combination of Raman and rf π/2 pulses results
in matter-wave interference between stationary and moving atoms,
with the number of density peaks equal to �. Absorption images of
the |↑〉 state, taken 3 ms after releasing the atoms from the trap, show
matter-wave interference for � = 3,5, and 10.

is no longer quantized, its exact value depending on the spatial
arrangement of individual vortices [43]. In the sheet trap the
q = 3 vortex breaks up into three vortices within 1 s; one
vortex leaves the condensate within 10 s, and the last one
typically survives for about 15 s.

To quantify L/N for the annular condensate, we release
the atoms without letting the vortex break up in a reconnected
trap. As seen in Fig. 4(b), the centrifugal barrier due to rotation
of the superfluid results in a central hole in the atomic density
distribution observable even after long time-of-flight (TOF)
expansion [17]. We quantify the rotation of the cloud by fitting
the radius R of the high-density ring surrounding this central
density hole [44].

IV. METASTABILITY AND QUANTIZED DECAY

A. Supercurrent quantization

The first main result of this paper is the direct experimental
demonstration of the quantized nature of the supercurrent
decay, shown in Fig. 5 for a system initially prepared in the
q = 3 state. In Fig. 5(a) we plot the evolution of the radius
R with time after the superfluid was set into rotation. The
quantization of R is strikingly obvious, and we can assign a q

state to each individual image with >99% fidelity.
We consider the quantization of the supercurrent decay the

primary experimental evidence for the vortex-induced phase

FIG. 4. (Color online) Detection of superflow. (a) If the ring trap
is transformed into a simply connected sheet trap, the q = 3 vortex
breaks up into three individual vortices. (b) Absorption images of
nonrotating (left) and rotating (right) BECs after 29 ms of TOF
expansion from the ring trap. We use the radius R to quantify the
rotation of the cloud.
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FIG. 5. (Color online) Quantized superflow decay. A superfluid
prepared in the q = 3 state is held in a ring trap with Vr ≈ 4 μ.
(a) Top panel: radius R as a function of hold time t . The R values fall
into 4 distinct bands corresponding to (top to bottom) q = 3 (blue),
2 (green), 1 (red), and 0 (black). Bottom panel: atom number N vs t for
the same data set. (b) TOF absorption images of the q = 3,2,1, and 0
states. (c) High-contrast histogram of the measured R values confirms
that we can assign a q value to each individual image with near-unity
fidelity. The shaded backgrounds indicate our q-value assignments.

slips as the decay mechanism. Condensate fragmentation
or collective excitations such as solitons would break the
quantization of R [29], while individual particles which break
away from the superflow would gradually fill up the hole in
the center of the expanded cloud; we never see any evidence
of this occurring.

The broad q = 2 and q = 1 plateaus in Fig. 5(a) show that
the intermediate 0 < q < � states are metastable even after the
supercurrent decay is initiated by the first phase slip. In the
analogy with a particle moving in a washboard potential
[Fig. 1(a)], this corresponds to a strongly damped motion:
when the system escapes from a local energy minimum, it gets
trapped in a new local minimum rather than rapidly decaying
to q = 0.

B. Long-lived q > 1 superflow

The data shown in Fig. 5 were obtained using a ring trap
of depth Vr ≈ 4 μ. In order to test the limits of supercurrent
metastability in our setup, we also perform experiments in a
very shallow trap, with Vr just above the chemical potential
μ [45]. Since the roughness of our trapping potential scales

FIG. 6. (Color online) Long-lived q = 3 superflow. R is plotted
as a function of hold time in a shallow ring trap, showing persistent
superflow for longer than a minute. The dashed lines are guides to
the eye, indicating the bands of R values corresponding to different q

states. The inset shows the decaying BEC atom number for the same
data set; the solid line is a double-exponential fit to the data.

with Vr , reducing the trap depth to ≈μ results in the smoothest
trap we can achieve. This makes the condensate density
almost perfectly uniform around the ring and minimizes the
probability of weak links where the local μ diminishes and the
phase slips are more likely [19].

In Fig. 6 we show the evolution of R for a superfluid
prepared in the q = 3 state and rotating in a shallow ring trap.
The nonzero superflow (R > 0) now persists for more than
a minute and decays only when the condensate itself decays
significantly (see inset of Fig. 6).

The radius R shows a weak dependence on the atom number
N , making the supercurrent quantization less striking than in
Fig. 5, where the fractional variation of N over the relevant
time scale is much smaller. However, we can still see that the R

values fall into distinguishable bands corresponding to q = 3,
2, and 1 states. This allows us to conclude that the q = 3 state is
perfectly stable for ∼40 s and can persist for up to a minute. We
have checked that the slow bending of the q bands with time is
just a consequence of the weak dependence of R on the decay-
ing N (for fixed q) by preparing the initial q = 3 state with de-
liberately reduced initial atom numbers. In similar experiments
in higher � traps the lifetime of our BEC is shorter, but even
for � = 10 we still observe superflow persisting for over 20 s.

V. DECAY DYNAMICS

For the rest of this paper we turn to a quantitative study of
the dynamics of the supercurrent decay for different superflow
speeds. We first assess the critical velocity for superflow in
our trap, comparing it with different theoretical calculations,
and then argue that stochastic phase slips are also observed for
flow below this critical velocity.

A. Critical velocity

Generally, as the number of atoms in a rotating BEC
slowly decays with time, superfluidity becomes less robust.
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FIG. 7. (Color online) Comparison with numerical simulations.
The top panel shows the same data as in Fig. 5. The bottom
panel shows our numerical simulations for flow speeds and critical
velocities at the narrowest point in the ring (see text). The solid lines
show flow speeds vs(q) for q = 3 (blue), 2 (green), and 1 (red). The
dashed curves (black) show the calculated critical velocities, vs

c and
vF

c . Vertical dotted lines indicate the predicted critical atom numbers
N s

c (q), defined by the intersections of the vs(q) curves and the vs
c

curve.

Specifically, vs/vc grows and phase slips become more likely.
For comparison of our experiments with theoretical models
it is convenient to eliminate the time variable and plot the
observed R (or equivalently q) values versus N , as shown
in Fig. 7. Here the top panel shows the same data as in
Fig. 5, with the same color code used to indicate different
q states. For every rotational state we see that below some
N the probability of observing that state sharply drops. We
can thus empirically associate that “critical” atom number
Nc(q) with the condition vs(q) = vc. The bottom panel shows
the results of the numerical simulations we use to compare
our measurements with the two different theoretical models
outlined in Sec. II.

For our simulations we first use images of in-trap density
distributions to assess the spatial variations in our trapping
potential [46]. Next, at each point along the ring we calculate
vs(q) and the two critical velocities, vF

c of Eq. (1) and vs
c of

Eq. (2). The flow speed vs(q) is calculated under the constraints
that the total circulation around the ring must be qh̄/m and
the particle flux is constant along the ring. Finally, we plot the

results of our calculations for the narrowest point in the ring,
where the local density and μ are lowest, and vs/vc is highest
in both theoretical models. Note that at the point where the
atom density is lowest the flow speeds up in order to conserve
the particle flux. For each q state the two predicted Nc values,
NF

c (q) and N s
c (q), are given by the intersections of the vs(q)

curve with the two vc curves; for the vs
c calculations these

predictions are indicated by the vertical dotted lines.
For the relevant range of N values we get vs

c/v
F
c ∼ 3, and

the vs
c calculation provides a much closer agreement with the

data. For all three q states the sharp drop in survival probability
occurs within ∼15% of the predicted N s

c (q) (see vertical dotted
lines). This observation differs from that of Ref. [19], where
vc much closer to vF

c was observed for superflow initially
prepared in the q = � = 1 state. This discrepancy warrants
further investigation but is not necessarily very surprising,
given that the various differences in the trapping potentials in
the two experiments are not in any way accounted for by the
order-of-magnitude estimate of Eq. (1).

We note that for determining the true roughness of our
trapping potential it is essential to take into account the
finite resolution of our imaging system, which we model
by a Gaussian point-spread function of width σ . We find
the above agreement with the vs

c calculation by assuming
σ = 2.8 μm, while we independently determine our resolution
to be 2.5 ± 0.5 μm.

We also note that strictly speaking for the applicability of
Eq. (2) we require the condition α = 2(μ̄/h̄ω)2/3 
 1, where
μ̄ is now the local chemical potential at the narrowest point
in the ring and for total atom number N = N s

c . For the data
in Fig. 7, this condition is only marginally satisfied; α varies
between ≈4 for q = 3 and ≈2 for q = 1. Nevertheless, the
agreement with the data is still very good.

To further test the prediction of Eq. (2), we perform
another experiment in which we again exploit the fact that the
roughness of our ring potential grows with Vr . After preparing
the BEC in the q = 3 state we now raise Vr until q = 3 is no
longer persistent but always decays to the metastable q = 2 in
�300 ms, i.e., already at the initial N ≈ 200 × 103. In other
words we now measure the critical Vr for a fixed N and q = 3
(see also Ref. [19]). We find that the critical Vr (≈6μ) agrees
to within 5% with the vs

c calculations similar to those of Fig. 7;
at the critical point α ≈ 4 and vs

c ≈ 3.5 vF
c .

B. Counting statistics of stochastic phase slips

In Fig. 7 we also see evidence that some stochastic phase
slips occur for vs < vc. Purely experimentally, this is directly
seen in the horizontal overlaps of the different q plateaus.
Similar overlaps are seen in the time domain in Fig. 5(a),
showing that the observed q is not a deterministic function of
either t or N . Less than 25% of the observed overlap can be
attributed to technical fluctuations in our experiments, namely,
shot-to-shot variations in real atom number (∼3%) and atom-
number detection (∼6%) [47].

We therefore conclude that there exists a significant pa-
rameter space where the superflow is subcritical but stochastic
phase slips still occur on a time scale of seconds. In Fig. 8 we
show the evolution of the q distribution in time for the same
data set as in Fig. 5. This in essence provides full time-resolved
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FIG. 8. (Color online) Counting statistics of phase slips. (a) For
the data shown in Fig. 5 we plot the distribution of the observed q

values as a function of rotation time t . Each data point is an average
over a 0.8-s time bin. The inset shows the smooth evolution of 〈q〉
with t . (b) Histograms of q values for four representative rotation
times.

counting statistics of phase slips and should be an excellent
input for further theoretical modeling and understanding of
the decay dynamics. Note that this accelerating decay process
is not Markovian since the phase-slip probability grows as
vs/vc increases through the gradual N decay. Also note that
〈q〉 decays smoothly with time (see inset of Fig. 8), so our
demonstrated ability to experimentally resolve different q

states with high fidelity will be essential for further studies
of phase-slip dynamics.

VI. CONCLUSIONS AND OUTLOOK

In conclusion, we have demonstrated and studied long-lived
multiply charged superflow in an annular atomic BEC. We
resolve with high fidelity quantized steps in the decay of
the supercurrent, which correspond to vortex-induced 2π

phase slips. The supercurrent decays rapidly if the flow speed
reaches a critical velocity that is in agreement with numerical
simulations. However, stochastic phase slips also occur, at
a much lower rate, for lower flow speeds. An important
question for future work is whether these rare phase-slip events
occur via quantum or thermal fluctuations. Our optical setup
is also suitable for spectroscopy of the excitation spectrum
of an annular BEC [48] and for studies of supercurrents in
spinor condensates [49]. Moreover, our Raman method for
preparing large-q rotational states can be extended to create
an azimuthal gauge field [50,51] and to study superfluidity in
continuously driven multicomponent condensates. It should
also be possible to reach the regime of a narrow quasi-one-
dimensional annulus, where the supercurrent decay could be
fundamentally different.
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