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Pauli-blocking effects and Cooper triples in three-component Fermi gases
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We investigate the effect of Pauli blocking on universal two- and three-body states in the medium. Their
corresponding energies are extracted from the poles of two- and three-body in-medium scattering amplitudes.
Compared to the vacuum, the binding of dimer and trimer states is reduced by the medium effects. In two-body
scattering, the well-known physics of Cooper pairs is recovered. In the three-body sector, we find a class of
positive energy poles which can be interpreted as Cooper triples.
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I. INTRODUCTION

Ultracold Fermi gases offer a unique possibility to investi-
gate many-body phenomena in a controlled environment [1–4].
In dilute systems of two-component fermions, the interactions
are characterized by the S-wave scattering length. Close to
a Feshbach resonance, the scattering length can be tuned
experimentally by varying an external magnetic field. In
particular, the crossover from the Bardeen-Cooper-Schrieffer
(BCS) limit of weakly interacting fermions to a Bose-Einstein
condensation (BEC) of bosonic dimers by tuning through a
resonance has been studied in great detail [4]. The behavior of
such a system is constrained by universal relations that involve
the so-called contact, which measures the number of pairs of
fermions with different spins that have small separations [5,6].

More recently, ultracold gases of three-component fermions
have also been investigated. The interest in such systems has
various motivations. First, the manifestation of the Efimov
effect [7] has been studied in systems consisting of three hy-
perfine states of fermionic 6Li atoms. A resonant enhancement
of the recombination rates at certain values of the scattering
lengths was observed in experiment [8,9]. These observations
were analyzed theoretically and traced back to the appearance
of an Efimov trimer close to the three-atom threshold [10–13].
Subsequently, the direct association of Efimov trimers was also
achieved [14,15].

A second line of research has focused on the phase structure
of such systems [16–19]. In these theoretical studies, two
components are typically paired while the third one remains
unpaired. This mechanism can be regarded as a generalization
of the BCS case. Moreover, the BEC-BCS crossover has also
been investigated in a three-component system. In Ref. [20],
the dynamics of such a system was analyzed on time scales
long enough to see two-body physics but short enough to be
able to neglect Efimov states or three-body collisions. For
three-component fermions in an optical lattice, the formation
of a superfluid phase at weak coupling and a “trion” phase
of three-fermion bound states at strong coupling has been
predicted [21].

In this work, we combine both lines of research and inves-
tigate three-body correlations in the medium. We investigate
the effect of Pauli blocking induced by the presence of a Fermi
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sphere on universal two- and three-body states in the medium.
Their corresponding energies are extracted from the poles of
two- and three-body scattering amplitudes in the medium. A
similar study was carried out in Ref. [22] for the case of a
fermion immersed in a Fermi sea interacting with two heavy
bosons. The Born-Oppenheimer approximation was used to
map the system to an effective two-body problem and calculate
the dependence of the universal spectrum of Efimov trimers on
the Fermi density in that case. In Ref. [23], the modification
of the Efimov spectrum for three equal-mass fermions when
one of the fermions is embedded in a Fermi sea was calculated
numerically and the modification of the universal scaling
behavior by the background density of fermionic particles was
investigated.

Here, we investigate the medium modifications for three
equal-mass fermions, all of which are embedded in a Fermi
sphere. We solve the two- and three-body scattering equations
for this system (cf. Ref. [10]) in the medium and present
a detailed study of the poles of the in-medium scattering
amplitude. In particular, we study the emergence of positive-
energy three-body poles analogous to the Cooper pairs in
the two-body system. A similar analysis was carried out in
Refs. [24] for the in-medium scattering amplitude of a boson
and a fermion. In these studies, the boson-fermion Cooper
pairs were found to persist for vanishing attraction.

We consider three distinguishable nonrelativistic particles
of equal mass with resonant interactions in a Fermi sea at
zero temperature. The system is assumed to be dilute, i.e.,
kF R � 1, where R is the range of the interaction and kF

the Fermi momentum. In this case, the two-body interactions
of the particles are determined by their scattering length a.
We assume the two-body interactions to be resonant, i.e.,
|a| � R. Effective range corrections are suppressed and can
be treated in perturbation theory. Because we are at zero
temperature, all states up to kF are occupied. For kF a � 1,
a perturbative low-density expansion can be derived [25], but
for kF a ∼ 1 an infinite class of diagrams has to be resummed
and one has to resort to Monte Carlo simulations or additional
expansions [3,26]. In this study, we include only the interaction
of the particles with the Fermi sea via Pauli blocking. These
effects dominate in an expansion in the inverse number of
dimensions [27,28] and determine the qualitative behavior of
the system. Other effects of the medium, such as the excitation
of particles out of the Fermi sea through scattering processes,
are neglected.
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Our theoretical framework is based on an effective La-
grangian for the fermion fields �i , i = 0,1,2:

L =
2∑

i=0
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i

(
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)
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where the coupling constant gk with i �= j �= k parametrizes
the interaction of fermions i and j . The term proportional to
h is a contact three-body interaction of all three fermions. It
determines the spectrum of three-body Efimov states in the
vacuum. The explicit form of this term will not be required
for our study, since the dependence on the three-body term
can be traded for a dependence on the cutoff in leading-order
calculations [29]. For practical calculations, it is convenient to
introduce auxiliary dimer fields dk and rewrite the Lagrangian
in the form
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The dimer field dk describes two interacting particles i

and j with i �= j �= k. Using the classical equations of
motion, the equivalence of Eqs. (1) and (2) can be demon-
strated. This framework has been widely used to describe
the universal properties of few-body systems close to the
universal limit [30]. It has also been used as the basis for
studies of the Efimov effect in systems three-component
fermions [10,13].

II. TWO-BODY SECTOR

A. Vacuum case

We are now in the position to investigate the effect of
Pauli blocking on universal two- and three-body states in the
medium. We start by briefly reviewing the vacuum case. More
details can be found in Ref. [30]. For convenience, we set
h̄ = m = 1 from now on. The bare dimer propagator derived
from the Lagrangian (2) is simply a constant, i/�k . The full,
interacting dimer propagator is given by dressing the bare
propagator with fermion bubbles; see Fig. 1. It represents
the exact solution of the vacuum two-body problem for the
Lagrangian (2). The diagrams constitute a geometric series,
which can easily be summed. The result can be written as

iDk(P0,P) = i

�k

[
1 − g2

k

4�k
I (P0,P)

] , (3)

where I (P0,P) is the loop function for the two-fermion bubble
in Fig. 1. In the vacuum, the loop function is

iI (P0,P) =
∫

|q|<�

d4q

(2π )4

i

P0
2 + q0 − 1

2

(P
2 + q

)2 + iε

× i
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)2 + iε

= i

4π

(
−2�

π
+

√
−P0 + P 2/4 − iε

)
, (4)

where P ≡ |P| and the UV divergence of the loop integral
has been regulated by a momentum cutoff �. The cutoff
dependence is absorbed into the coupling constant gk , such
that all observable quantities are independent of �. The
two-body scattering amplitude is obtained by multiplying the
full dimer propagator with the square of the dimer-fermion
coupling, (−igk/2)2. Matching to the amplitude for scattering
of particles i and j in the center of mass at energy E = p2,

Tk(p2) = 4π

−1/ak − ip

!= −g2
k

4
Dk(p2,0), (5)

we obtain

g2
k

�k

= 16πak

1 − 2ak�/π
. (6)

Note that gk and �k are not independent at this order
and all observables depend on the combination g2

k/�k . The
renormalized dimer propagator in the vacuum thus can be
written as

iDk(P0,P)vak = i
16π

g2
k

[1/ak −
√

−P0 + P 2/4 − iε]−1. (7)

The propagator has a bound state pole at P0 = −1/a2
k + P 2/4

if ak > 0. The energy at the pole is composed of the binding
energy −1/a2

k and the kinetic energy of the dimer P 2/4.
The total mass is 2m = 2, as expected for a dimer state. For
negative scattering length, the pole is on the unphysical sheet
and represents a virtual state.

B. Medium case

We now move on to medium case. In the presence of a
Fermi sphere, the loop integral changes to

iI (P0,P) =
∫

|q|<�

d4q

(2π )4
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2 + q
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)
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2 − q0 − 1

2

(P
2 − q
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, (8)

where the θ functions encode the Pauli blocking. They ensure
that the intermediate particles cannot scatter into occupied
states in the Fermi sea. This introduces boundary conditions
for the loop integrals at small momenta. Different cases must

= + += + + + . . .

FIG. 1. Bubble sum for the full interacting dimer propagator (thick line). The double lines correspond to the bare dimer propagator and the
single lines indicate particle propagators.
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be considered. A summary of the calculation is given in
Appendix A. Here we focus on the results.

For vanishing total momentum P the boundary conditions
become simple. In this case, the argument of both θ functions
is |q| − kF . Consequently, the integration over |q| starts at kF

and ends at �. It is evident that only the infrared behavior of the
integrals is modified by the Fermi sea. The renormalization of
UV divergences is the same as in the vacuum. The in-medium
dimer propagator then has the form

iDk(P0,P ) = i
16π

g2
k

[
1

ak

− 1

π
L(P0,P )

]−1

, (9)

with

L(P0,P = 0) = 2kF +
√

P0 + iε[ln(kF −
√

P0 + iε)

− ln(kF +
√

P0 + iε)]. (10)

The poles of the propagator are determined by solving

1
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= 2kF

π
+

√
P0 + iε

π
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√
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− ln(kF +
√

P0 + iε)] (11)

for P0. If P0 is negative, this equation can be written as

1

ak

= 2kF

π
+ 2

π

√
|P0| arctan

(√|P0|
kF

)
, (12)

where the iε has been omitted. This equation is formally
similar to Eq. (3) of Ref. [22] for the binding energy of a light
fermion immersed in a Fermi sea interacting with two heavy
bosons. In this case, the Born-Oppenheimer approximation
may be used and the three-body problem reduces to an effective
two-body problem.

In the general case, the boundary conditions are more
complex (cf. Appendix A). Two cases have to be distinguished:
P < 2kF and P > 2kF . The result for the general in-medium
loop function L(P0,P ) is

(a) P < 2kF :

L(P0,P )
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4
P 2 + √

σ

)]
,

(13)
(b) P > 2kF :

L(P0,P )

= 2kF + π
√−σ + √

σ [ln(P/2 − kF + √
σ )

+ ln(P/2 + kF − √
σ ) − ln(P/2 − kF − √

σ )

− ln(P/2 + kF + √
σ )] + −k2

F + P0 + iε

P

× [ln(P/2 − kF − √
σ ) + ln(P/2 − kF + √

σ )

− ln(P/2 + kF − √
σ ) − ln(P/2 + kF + √

σ )], (14)

with
√

σ =
√

P0 − P 2/4 + iε.

We now discuss the poles of the dimer propagator in the
medium. Our aim is to recover the known two-body physics
from the viewpoint of the pole structure and then use the
same strategy to understand the three-body sector. First, we
specify our units. Since there is one free length scale l0 in the
calculations, we express all dimensionful quantities in units of
l0: the energy has the unit [1/l2

0], scattering lengths [l0], and
momenta [1/l0].

We never find more than one pole on the physical sheet
in the in-medium dimer propagator. The physical conditions
under which this pole can disappear are discussed below.
In Fig. 2, the energy of the pole, E, is plotted against
the inverse scattering length 1/ak at vanishing momentum
P = 0 for kF l0 = 0.7 (solid line) and 1 (dash-dotted line),
respectively. The dashed curve represents the dimer energy
in the vacuum case. For positive scattering length, the energy
of the vacuum pole is E = −1/a2

k . There is no vacuum pole
on the physical sheet if the scattering length is negative. For
nonvanishing Fermi momentum, a pole with positive energy
appears in the negative-scattering-length region. In the limit
1/ak → −∞, this pole asymptotically approaches the values
(kF l0)2 = 0.49 and 1 for kF l0 = 0.7 and 1, respectively. In
the positive-scattering-length region, the pole behaves like
a vacuum pole if the scattering length is sufficiently small.
However, the corresponding binding energy is reduced by
medium effects. Additionally, four selected points are marked
on the solid line: I, II, III, and IV. To gain deeper insight into
the nature of the pole in the in-medium dimer propagator, these
points will be further investigated below. The parameters kF

and a are kept fixed while the momentum P will be varied.
In the inset of Fig. 2, which corresponds to point I, the

dependence of the pole energy on the total momentum P is
shown for ak = l0 and kF = 0.7/l0 (solid line). The dashed
line shows the vacuum pole energy as before. Medium and
vacuum poles have a similar behavior as function of the total
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FIG. 2. (Color online) The energy E of the dimer pole at
P = 0 plotted against the inverse scattering length 1/ak for a Fermi
momentum kF = 0.7/l0 (solid line) and kF = 1/l0 (dash-dotted line).
In addition, four selected points are marked I, II, III, and IV on the
solid line. For comparison, the vacuum pole energy is shown by
the dashed line. In the inset, the dimer pole energy is displayed as
a function of the total momentrum P for kF = 0.7/l0 and a = l0.
Curves are as above.
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FIG. 3. (Color online) (a) The energy E depicted as function of
the total momentum P for ak = −3l0 and kF = 0.7/l0 (solid line).
The vertical dotted line gives E = k2

F . (b) Energy E plotted against
the Fermi momentum kF for ak = 2l0 (solid), 4l0 (dashed), 6l0 (dashed
dotted); P = 0.

momentum: with increasing momentum P , the pole energy
is increased and the binding is reduced. For the vacuum
pole, this is evident from Eq. (7). In the medium, it follows
from the dominant functional dependence of the in-medium
dimer propagator on σ = P0 − P 2/4 [cf. Eqs. (13) and (14)].
Moreover, medium effects are again seen to lower the pole
energies.

Next, we examine the positive energy poles more thor-
oughly. In Fig. 3(a), the energy is plotted against the total
momentum for a negative scattering length ak = −3l0, which
corresponds to point II in Fig. 2. The energy of the pole
is positive and continuously rises as the momentum P is
increased until the energy reaches the value k2

F = 0.49/l2
0 ,

where the pole disappears. This positive energy pole can be
associated with Cooper pairs [31]. With this interpretation,
their peculiar behavior can be understood. Assume that the two
particles are inside the Fermi sphere. If there is no interaction,
the energy of the particles is just their kinetic energy. In
the presence of attractive interactions, the energy of the two
particles, given by the pole energy, is lowered. Consequently,
the energy gain �E is the difference of the kinetic energy and
the pole energy. Because the maximum kinetic energy of two
particles inside the Fermi sea is k2

F /2 + k2
F /2, the maximum

energy of the pole is also k2
F . When the total momentum

of the two particles becomes too large, the pole disappears.
This property is compatible with the intepretation as Cooper
pairs, whose total momentum is commonly assumed to be zero.
Remember that the energy threshold already appeared in Fig. 2.
But in this instance a different limit was considered. The energy
of the pole approaches the threshold k2

F asymptotically in the
limit 1/ak → −∞. The energy gain �E, hence, decreases in
this limit. But the poles never disappear and Cooper pairs can
always be formed in this region.

We now turn to the dependence of the poles on the
Fermi momentum in the positive-scattering-length region.
In Fig. 3(b), the pole energy is plotted against the Fermi
momentum. The total momentum P is set to zero and the
scattering lengths are ak = 2l0, 4l0, and 6l0. As expected, the
energy is negative at kF = 0 and the pole corresponds to a
bound state. With increasing Fermi momentum, the medium
effects become stronger and the binding is reduced. For small
kF the energy rises only slowly but at larger Fermi momentum
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FIG. 4. (Color online) The energy of the poles plotted as a
function of the total momentum P for a = 2l0 [panel (a)] and a = 3l0
[panel (b)] and kF = 0.7l0 (solid line). The dashed line shows the
vacuum poles and the dash-dotted line gives the kinetic energy P 2/4.
The horizontal dotted line in (b) gives k2

F and the vertical dotted line
gives 2kF .

the energy changes rapidly, crosses zero, and becomes positive.
Hence, we observe a continuous crossover from bound
states to positive energy poles as the Fermi momentum is
increased.

So far, we could associate the left and right regions in Fig. 2
to Cooper pairs (cf. II) and bound states (cf. I), respectively.
In between lies the crossover region. We will investigate this
region further at the two remaining points, III and IV. Here the
nature of the poles changes as a function of momentum.

In Fig. 4(a) the energy of the pole is plotted against the
total momentum (solid line) with a = 2l0 corresponding to
point III in Fig. 2. By comparision, the dashed line shows the
vacuum pole and the dash-dotted line the kinetic energy P 2/4.
For vanishing momentum the energy of the pole is extremely
reduced compared to the vacuum but still negative. However, in
the region around P = l0 the energy becomes bigger than the
kinetic energy. Hence, this pole cannot correspond to a bound
state in this region. For larger momenta the energy again drops
below the kinetic energy and the poles behave similiarly to
vacuum poles.

We now turn to point IV in the crossover region. In Fig. 4(b)
an entirely different behavior can be observed. Again, the
vacuum pole (dashed line) and the kinetic energy (dash-dotted
line) are shown. Striking are the three qualitatively different
regions in this graph. For momenta P < 2kF the pole seems to
correspond to a Cooper pair: At P = 0 the energy of the poles
is positive, and in this whole region the energy is larger than
the kinetic energy, and the pole disappears when the energy
approaches k2

F . In a region around P ≈ 2kF there is no pole
at all. For slightly larger momenta, the pole reappears. At first
the energy is very close to the kinetic energy, but for larger
momentum it approaches the vacuum energy, as expected.
These poles now behave like a bound state.

In summary, we have related the positive-energy poles at
P = 0 to Cooper pairs and the negative-energy poles to bound
states. A finite momentum P leads to an increase in the pole
energy. In the vacuum, the additional energy is simply the
kinetic energy P 2/4. In the medium, the pole energy also
increases but the dependence on P is more complicated. In
particular, the poles can vanish and change their character.
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As the Fermi momentum kF is increased, e.g., the binding
energy is reduced by medium effects. We identified the two
extremes I and II in Fig. 2 with the BCS and BEC domains,
respectively. In between there is a crossover region. In this
region the poles change their character as a function of the
momentum P and they cannot be uniquely related to one of
the two cases. Equipped with this qualitative understanding of
in-medium two-body physics, we move on to the three-body
amplitude.

III. THREE-BODY SECTOR

A. Vacuum case

We start by briefly reviewing the physics issues of the
vacuum case and then move on to the medium. In the three-
body system with resonant interactions, there is a universal
spectrum of three-body bound states with an accumulation
point at zero energy, called Efimov states [7]. The spectrum is
given by Efimov’s universal equation

E
(n)
B + 1

a2
= (e−2π/s0 )n−n∗ exp[�(ξ )/s0]κ2

∗ , (15)

where the angle ξ is defined by

tan ξ = −a

√
E

(n)
B , (16)

s0 ≈ 1.00624 is a transcendental number, and κ∗ is the binding
wave number of the state labeled n∗. The function �(ξ ) was
first calculated in Ref. [32] and satisfies �(− 1

2π ) = 0. In the
unitary limit of infinite scattering length, the spectrum thus
becomes geometric. The qualitative features of this spectrum
are determined by the scattering length a, but the exact energies
depend on the three-body interaction in Eq. (2) which fixes
the value of κ∗ [33]. The spectrum exhibits a discrete scaling
symmetry which is evident in Eq. (15): if the scattering length
a and the energies EB are rescaled by the discrete scaling
factor λ = exp(π/s0) and λ−2, respectively, but κ∗ remains
fixed the spectrum is mapped onto itself. If the scattering
length dependence of one state is known, all others thus
can be obtained from the scaling transformation. A detailed
discussion of these issues can be found in Ref. [30]. Here, we
focus on the modification of this spectrum in the medium
and on possible positive energy poles in the three-body
amplitude similarly to the two-body case discussed above.
As discussed above, we set the three-body interaction to zero
in our calculation. Thus, κ∗ is proportional to the momentum
cutoff �. The exact proportionality factor is not required for
our purpose. A detailed study of the Efimov spectrum and the
universal scaling relations in the presence of one Fermi sphere
was carried out in Ref. [23]. We go beyond this study by
considering three Fermi spheres and explicitly focusing on the
emergence positive energy poles in the three-body amplitude.
Preliminary results of our study were already presented in
Ref. [34].

B. Medium case

The three-particle scattering amplitude in the medium can
be calculated by solving an integral equation. In order to
simplify the boundary conditions given by the Pauli blocking,
we will constrain the total momentum of the three particles to

−p − k

j

=

+

j

−k

kp

−p

i

r
r

−q

−p − q

q

j

−k

kp

−p

i

r
r

−q

−p − q

q

+

i
p

−p −k

k

−p

p
i

j

−k

k

FIG. 5. Feynman diagrams for the fermion-dimer scattering
amplitude for zero total momentum. Momenta p, q, k and fermion
indices i,j,r,r ′ are assigned as in Eq. (17).

be zero. We note that the Fermi sea provides a special reference
frame and a nonzero momentum cannot be obtained from a
simple Galilei transformation. However, we have seen in the
two-body case that a nonzero momentum essentially increases
the pole energy. Outside of the crossover region, the qualitative
behavior remains unchanged (cf. inset of Fig. 2). We expect
the same to be true in the three-body case. The Feynman dia-
grams for the three-body scattering amplitude are depicted in
Fig. 5. Since we are interested in the three-body singularities
of the amplitude, it is sufficient to consider the fermion-dimer
scattering amplitude where the external dimer propagators are
amputated. Because the three particles are distinguishable, we
have one inhomogeneous and two homogeneous contributions
to the amplitude as the intermediate dimer can be formed in
two ways [10]. The integral equation for the amplitude Aij can
be written as

iAij (p,k,E,Ei,Ej )

= −gigj

4

i�(|p + k| − kF )

E − Ei − Ej − (p+k)2

2 + iε
(1 − δij )

+
2∑

r=0

(
−gigr

4

) ∫
|q|<�

d4q

(2π )4

iθ (q − kF )

q0 − 1
2q2 + iε

× iθ (|p + q| − kF )

E − Ei − q0 − 1
2 (p + q)2 + iε

× iDr (E − q0,q) (1 − δir ) iArj (q,k,E,q0,Ej ), (17)

where the momenta and particle indices are assigned as in
Fig. 5 and E is the total energy. After setting the energies of the
incoming and outgoing particles, Ei and Ej , on shell, the bare
coupling constants are removed by defining a renormalized
amplitude,

AR
ij (p,k,E) = √|Zi ||Zj |Aij (p,k,E), (18)

where Zi is the residue of the dimer pole i in the vacuum,

Zi = 32π

g2
i ai

. (19)

This renormalized amplitude has the same poles in the three-
body sector as the three-particle scattering amplitude. We now
expand the fermion-dimer amplitude in partial waves as

AR
ij (p,k,E) =

∞∑
l=0

(2l + 1)
(
AR

ij

)
l
[p,k,E]Pl(cos θk), (20)

where cos θk = p · k/(pk) and Pl is a Legendre polynomial.
The different partial waves decouple and the integral equation
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for the lth partial wave amplitudes is

i
(
AR

ij

)
l
[p,k,E]

= 1

2

−8πi√|ai ||aj |
∫ 1

−1
d cos θkPl(cos θk) tij (p,k,θk,E)

+ i

2∑
r=0

4π

√|ar |√|ai |
∫ �

kF

dq

(2π )2
q2

∫ 1

−1
d cos θq Pl(cos θq)

× tir (p,q,θq,E) Dr (q,E)
(
AR

rj

)
l
[q,k,E], (21)

where

tij (p,k,θk,E) := θ (|p + k| − kF )(1 − δij )

E − p2 − k2 − pk cos θk + iε
(22)

and

Dr (q,E) :=
[

1

ar

− 1

π
L

(
E − 1

2
q2,q

)]−1

(23)

is the dimer propagator without prefactors. In the vacuum only
the S-wave amplitude has bound state poles. This remains true
in the medium and we, thus, focus on the poles of the S-wave
in-medium amplitude (AR

ij )0[p,k,E]. The technical details of
the implementation of the boundary conditions from the Pauli
blocking are discussed in Appendix A. In the next section, we
present our results for the pole structure of (AR

ij )0[p,k,E].

C. Results

In this section we discuss the poles of the the S-wave
amplitude (AR

ij )0, in general, for three different scattering
lengths. In Eq. (21) the three-body force dependence was
traded for the cutoff dependence, so the cutoff determines the
three-body energy in the vacuum for given scattering lengths.
A spectrum of two states as a function of the Fermi momentum
is shown in Fig. 6. Similarly to the two-body case, the binding
energy of each state decreases with rising Fermi momentum
due to medium effects. The difference of the energy loss
with increasing Fermi momentum for shallow and deep states
is remarkable. The less bound state disappears through the
threshold while the more deeply bound state loses only about
5% of its binding energy as kF l0 is increased from 0 to 1. This

0 0.2 0.4 0.6 0.8 1
l0kF

0.1

1
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B
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f 1

/l 02 ]

FIG. 6. (Color online) Binding energy EB of two states depicted
in dependence of kF : ak = l0 for k = 0, 1, 2, and � = 250/l0.
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FIG. 7. (Color online) (a) Energy of three-body poles plotted
against kF for a0 = −1.0l0 (dashed), a0 = −1.25l0 (dash-dotted),
and a0 = −1.5l0 (solid); � = 150/l0 and the remaining scattering
lengths are a1 = −2l0 and a2 = −2.5l0. (b) The pole energy is shown
as a function of 1/a0 for � = 150/l0 (dash-dotted), � = 160/l0
(solid), and � = 170/l0 (dashed); kF = 0.7/l0 and the remaining
scattering lengths are a1 = −l0 and a2 = −0.99l0. The horizontal
line gives E = 1.5 k2

F .

behavior of the three-body spectra is generic and was always
observed in our calculations.

In Fig. 7(a) the energy of a generic three-body pole is
plotted against the Fermi momentum for three negative
scattering lengths. As in the previous case, the binding energy
reduces with increasing Fermi momentum. Indeed, the energy
goes to zero and continuously rises to positive values. Hence,
we have found poles with positive energy. Since the total
momentum is zero, they cannot correspond to bound states.
Note the resemblance between this figure and Fig. 3, which
shows dimer poles.

To get a better understanding of these positive energy poles,
we have varied one of the three negative scattering lengths
while keeping the other two constant; see Fig. 7(b). The energy
rises with decreasing 1/a but vanishes when the value of the
energy becomes 1.5 k2

F . For different configurations of the
Fermi momenta, scattering lengths, and the cutoff, we have
always found this threshold. The accuracy of the location
of this threshold reaches to the third (fourth) decimal place
for cutoffs of the order 100 (10) l0. In order to explain this
observation, we draw an analogy with the positive energy poles
in the two-body case. There, the energy gain �E is the kinetic
energy minus the energy of the pole. Hence, the energy of
the pole cannot be larger than the maximum kinetic energy. In
Fig. 8 configurations of two and three particles inside the Fermi
sphere are shown for total momentum P = 0. As discussed
in the previous section, the maximum two-body pole energy

kFkF

FIG. 8. (Color online) Configurations in the Fermi sphere for two
(left) and three particles (right) with total momentum P = 0.
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FIG. 9. (Color online) �E is plotted against the inverse scattering
length 1/a0 of three-body (solid line) and two-body (dashed line)
poles; � = 160/l0, kF = 0.7/l0 and the constant scattering lengths
are a1 = −l0 and a2 = −0.99l0. The horizontal dotted line shows �E

for the constant scattering length a2 = −0.99l0.

is k2
F . In the case of three particles the magnitude of each

momentum can be kF , whereas the total momentum remains
zero. So the maximum kinetic energy of three particles inside
the Fermi sphere is 3 × k2

F /2 = 1.5k2
F . We hypothesize that the

three-particle poles belong to a state similiar to a Cooper pair,
but built out of three particles, which we call a “Cooper triple.”
In contrast to Cooper pairs, these Cooper triples are fermions.
If the three pair scattering lengths are equal, the Cooper triples
are SU(3) singlets. However, for different scattering lengths,
the SU(3) symmetry is broken.

Cooper triples also appear if one scattering length is
positive. Since the energy of the triples is continuous in
1/ai (i = 0,1,2), the region of three negative scattering
lengths merges into the region of one positive and two
negative scattering lengths at the point 1/ai = 0 (the other
two scattering lengths are considered constant). Therefore, the
pole energy has to remain positive in the limit 1/ai → 0− to
obtain Cooper triples for one positive scattering length. For this
scenario, the Fermi momentum must be sufficiently large. The
actual value depends on the two constant scattering lengths.
Hence, Cooper triples also occur in this region. An analogous
argument holds if two or three scattering lengths are positive.
In all three cases, we have observed Cooper triples in our
calculations. However, it remains to be verified that the Fermi
spheres assumed in our calculation persist in this region.

Next, we examine which state is energetically favorable.
If Cooper pairs are built in a three-component Fermi gas, the
pairs are typically formed between two components while the
residual component remains unpaired. Therefore, we compare
the energy gain of a Cooper triple, 1.5 k2

F minus pole energy,
with the energy gain of a Cooper pair, k2

F minus the pole energy.
The energy gain �E of a Cooper pair and a Cooper triple are
compared as a function of one variable scattering length in
Fig. 9. The remaining parameters stay the same as in Fig. 7(b).
Since �E of the Cooper pair depends on the scattering length,
it can be energetically favorable to build a different Cooper pair
connected to one of the constant scattering lengths. To account
for this, we have also plotted the energy gain of the larger

constant scattering length. We find that the energy gain of the
three-particle poles is much larger (note the logarithmic axis).
The three-particle �E rapidly falls off and drops below the
energy gain of both Cooper pairs only near the threshold for the
triple. This suggests that Cooper triples could play an important
role in three-component Fermi gases in the continuum.

In principle, it should always be possible to find these
positive energy poles for three negative scattering lengths. In
contrast to the two-body case, the poles do not newly emerge
in the medium. Primarily, the poles were bound states in the
vacuum which became modified by the medium; see Fig. 7(a).
Thus, the Fermi momentum must be large enough to obtain
positive energy poles. This is most easily achieved for Cooper
triples emerging from the rather shallow three-body bound
states in vacuum.

IV. CONCLUSION AND OUTLOOK

In this paper, we have examined the influence of Pauli
blocking on universal two- and three-body states. First, the
poles of the two-body scattering amplitude in the medium were
regarded. We were able to recover the physics of Cooper pairs
and BEC-BCS crossover from the pole structure of the ampli-
tude. In particular, we found that the binding energy of bound
states decreases with rising Fermi momentum due to medium
effects. In the negative scattering length region, positive energy
poles emerge which can be identified with Cooper pairs. In
the crossover region, the poles show a different behavior and
their nature changes with the total momentum. They cannot
be uniquely identified as bound states or Cooper pairs.

We have used the same strategy to investigate the pole
structure of the three-body scattering amplitude. We found
that the medium effects reduce the binding of three-body states
compared to the vacuum. This is in agreement with the findings
of Ref. [23], where the modification of the Efimov spectrum for
three equal-mass fermions with one of the fermions embedded
in a Fermi sea was calculated. Moreover, we found three-body
poles with positive energy. As in the two-body sector, we
observed a continuous crossover from negative energy poles
to positive energy poles as the Fermi momentum is varied.
The maximum energy of the poles was found to be 1.5k2

F .
In analogy to the connection between positive energy poles
in the two-body sector and Cooper pairs, we have interpreted
this as evidence for the formation of Cooper triples composed
out of three particles. These Cooper triples are fermions
and, thus, cannot Bose condense. The energy gain of such
a triple was found to be larger than the energy gain of the
corresponding Cooper pair over a large region of scattering
lengths. Consequently, it appears to be energetically favorable
to form a triple instead of a pair and an unpaired third atom
in this region. We note that Cooper triples can not form
for two-component fermions due to the Pauli principle. The
absence of Cooper-type bound states in few-electron systems
was demonstrated in [35].

In the case of equal pair scattering lengths, the Cooper
triples are SU(3) singlets. For different scattering lengths,
however, the SU(3) symmetry is broken (cf. Fig. 7). If the
three scattering lengths are large, the SU(3) breaking is small
since the leading corrections to the SU(3) limit are proportional
to the inverse scattering lengths [36].
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How these three-body correlations affect a many-body
system is an open question. It would be interesting to extend
previous studies of the phase structure of three-component
Fermi gases [16–18] to include the triples and investigate their
influence. A qualitative picture of the many-body structure
in the SU(3) symmetric limit was given by Floerchinger
and collaborators [37]. They argue that at small density, if
the scattering length is varied from large negative to large
positive values, the BCS and BEC phases are separated by
a trion phase of three-body bound states. At small densities,
our Cooper triples must reduce to the trions of Ref. [37].
A related study for three-component fermions in an optical
lattice was carried out in Ref. [21]. Within a Hubbard model
with SU(3) symmetry, a trion phase of three-fermion bound
states has been predicted at strong coupling and a parallel to
the baryonic phase of QCD was drawn.

There may also be a connection to Ref. [24], where
boson-fermion (BF) interactions were regarded in a similiar
analysis. BF pairs at positive energies were found and the
ground state was assumed to be a Fermi gas of BF-Cooper
pairs, since the pairs are still fermions. The interaction of three
distinguishable fermions in our case could also be regarded
as the interaction of a Cooper pair (boson) and a fermion
of the remaining type, if the scattering lengths are negative
(BCS region) and at least two scattering lengths differ. In this
case, we can hypothesize that the ground state of the system
is a Fermi gas of Cooper triples, which are composites of a
Cooper pair and a unpaired fermion.

Since we have only included the Pauli blocking effects
from the medium, further theoretical study is required. This
could, for example, be achieved by performing Monte Carlo
simulations of such systems similar to the two-flavor case
[3]. Such a calculation would allow for more quantitative
predictions of the effect. Analogously to Ref. [24], the
triples might also lead to a new type of superfluidity in
three-component Fermi systems which could be observed in
ultracold atomic gases. For this purpose, it would be useful
to calculate the interactions of the triples. If their interactions
are attractive, they could again form Cooper pairs and Bose
condense. Much insight would be gained if one could calculate
the energy of such a condensate and compare it with a BCS
condensate. This would allow us to determine under which
conditions such a new type of superfluidity might occur. An
experimental test of this scenario could be carried out with 6Li
atoms where mixtures of three different hyperfine states with
tunable interactions are already available [8,9,14,15].
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APPENDIX A: MEDIUM INTEGRALS

This section gives some details of the calculation of the
loop integral for the full in-medium dimer-propagator. The

loop integral I (P0,P) is defined as follows:

iI (P0,P) =
∫

|q|<�

d4q

(2π )4

i�
(∣∣P

2 + q
∣∣ − kF

)
P0
2 + q0 − 1

2

(P
2 + q

)2 + iε

× i�
(∣∣P

2 − q
∣∣ − kF

)
P0
2 − q0 − 1

2

(P
2 − q

)2 + iε
. (A1)

After a contour integration the integral simplifies to

iI (P0,P)

= i

∫
|q|<�

d3q

(2π )3

�
(∣∣P

2 +q
∣∣−kF

)
�

(∣∣P
2 −q

∣∣−kF

)
P0−P 2

4 −q2+iε
. (A2)

As already mentioned, the θ functions are boundary conditions
to the integral. We choose P to be aligned in the z direction and
switch to spherical coordinates. The φ integration still gives
2π . But the lower q boundary depends on θ , the angle between
P and q. The two θ functions are equivalent to the following
conditions:

f −(q) := q2 − Pqx + 1
4P 2 − k2

F > 0, (A3)

f +(q) := q2 + Pqx + 1
4P 2 − k2

F > 0, (A4)

where x = cos θ = Pq/(Pq). The functions f ±(q) are simple
parabolas, whose roots are

f + : −Px

2
±

√
P 2

4
(x2 − 1) + k2

F , (A5)

f − : +Px

2
±

√
P 2

4
(x2 − 1) + k2

F . (A6)

These roots do only exist for all x ∈ [−1,1] if P
2 � kF .

Therefore, we have to distinguish the two cases P > 2kF and
P < 2kF .

(a) P < 2kF : The θ functions move the lower boundary
a(x), which is

a(x) =
⎧⎨⎩

Px
2 +

√
P 2

4 (x2 − 1) + k2
F for x > 0

−Px
2 +

√
P 2

4 (x2 − 1) + k2
F for x < 0

. (A7)

The upper boundary remains unchanged. After a rescaling,
P
2 = skF , q = tkF , �̃ = �/kF and b = (P0 − P 2

4 + iε)/k2
F ,

the integral can be written as

iI (P0,P) = ikF

(2π )2

{∫ 1

0

∫ �̃

sx+
√

s2(x2−1)+1

t2

b − t2
dtdx (A8)

+
∫ 0

−1

∫ �̃

−sx+
√

s2(x2−1)+1

t2

b − t2
dtdx

}
. (A9)

One can easily see that the second integral merges to the
first if the substitution x → −x is performed.
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(b) P > 2kF : In this case the q integration range is⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
0, Px

2 − √
c(x)

]
and

[
Px
2 + √

c(x),�
]

for
√

1 − 1
s2 < x � 1

[0,�] for −
√

1 − 1
s2 < x <

√
1 − 1

s2[
0, − Px

2 − √
c(x)

]
and

[−Px
2 + √

c(x),�
]

for − 1 � x < −
√

1 − 1
s2

with
√

c(x) :=
√

k2
F − P 2

4 (1 − x2). Therefore, the integral becomes

iI (P0,P ) = ikF

(2π )2

{∫ −
√

1− 1
s2

−1

( ∫ −sx−√
c′(x)

0

t2

b − t2
dt +

∫ �̃

−sx+√
c′(x)

t2

b − t2
dt

)
dx +

∫ √
1− 1

s2

−
√

1− 1
s2

∫ �̃

0

t2

b − t2
dtdx

+
∫ 1√

1− 1
s2

(∫ sx−√
c′(x)

0

t2

b − t2
dt +

∫ �̃

sx+√
c′(x)

t2

b − t2
dt

)
dx

}
, (A10)

with c′(x) = 1 − s2(1 − x2). The integrals in the first and third line are equal, similiarly to the preceding case.

APPENDIX B: INTEGRAL KERNEL

In this section, we discuss the calculation of the integral∫ 1

−1
d cos θq Pl(cos θq) tik(p,q,θq,E) (B1)

with

tij (p,q,θq,E) := θ (|p + q| − kF )(1 − δij )

E − p2 − q2 − pq cos θq + iε
, (B2)

which is required to derive the integral equation for the three-body amplitudes in the medium. This type of integral appears in
the inhomgeneous as well as in the homgeneous part. The θ function is a boundary condition on the cos θq integration:

θ (|p + q| − kF ) ⇒ p2 + 2pq cos θq + q2 > k2
F . (B3)

Two cases have to be distinguished. First, if |p − q| is larger than kF , the θ function is always fulfilled. Consequently, the
integration region is [−1,1]. If |p − q| < kF , the lower boundary will be changed. Note that the q integration begins at kF . The
lower boundary θg is

cos θg = k2
F − p2 − q2

2pq
. (B4)

The angle integration for the S wave can now be written∫ 1

a

dx
P0(x)

E − p2 − q2 − pqx + iε
= 1

pq

∫ 1

a

dx
1

c − x
= − 1

pq
[ln(c − x)]1

a , (B5)

with c = 1
pq

(E − p2 − q2 + iε). The result is

|p − q| > kF : a = −1

− 1

pq
[ln(c − x)]1

a = 1

pq

[
ln

(
E − p2 − q2 + pq + iε

pq

)
− ln

(
E − p2 − q2 − pq + iε

pq

) ]
, (B6)

|p − q| < kF : a = cos θg

− 1

pq
[ln(c − x)]1

a = 1

pq

[
ln

(
E − 1

2p2 − 1
2q2 − 1

2k2
F + iε

pq

)
− ln

(
E − p2 − q2 − pq + iε

pq

)]
. (B7)
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