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We derive exact general relations between various observables for N spin-1/2 fermions with zero-range
or short-range interactions, in continuous space or on a lattice, in two or three dimensions, in an arbitrary
external potential. Some of our results generalize known relations between the large-momentum behavior of the
momentum distribution, the short-distance behaviors of the pair distribution function and of the one-body density
matrix, the norm of the regular part of the wave function, the derivative of the energy with respect to the scattering
length or to time, and the interaction energy (in the case of finite-range interactions). The expression relating the
energy to a functional of the momentum distribution is also generalized. Moreover, we find expressions (in terms
of the regular part of the wave function) for the derivative of the energy with respect to the effective range re in
three dimensions (3D), and to the effective range squared in two dimensions (2D). They express the fact that the
leading corrections to the eigenenergies due to a finite-interaction range are linear in the effective range in 3D
(and in its square in 2D) with model-independent coefficients. There are subtleties in the validity condition of
this conclusion, for the 2D continuous space (where it is saved by factors that are only logarithmically large in
the zero-range limit) and for the 3D lattice models (where it applies only for some magic dispersion relations on
the lattice that sufficiently weakly break Galilean invariance and that do not have cusps at the border of the first
Brillouin zone; an example of such relations is constructed). Furthermore, the subleading short-distance behavior
of the pair distribution function and the subleading 1/k6 tail of the momentum distribution are related to ∂E/∂re

[or to ∂E/∂(r2
e ) in 2D]. The second-order derivative of energy with respect to the inverse (or the logarithm in

the two-dimensional case) of the scattering length is found to be expressible for any eigenstate in terms of the
eigen-wave-function’s regular parts; this implies that, at thermal equilibrium, this second-order derivative, taken
at fixed entropy, is negative. Applications of the general relations are presented: We compute corrections to
exactly solvable two-body and three-body problems and find agreement with available numerics; for the unitary
gas in an isotropic harmonic trap, we determine how the finite-1/a and finite-range energy corrections vary within
each energy ladder (associated with the SO(2,1) dynamical symmetry) and we deduce the frequency shift and the
collapse time of the breathing mode; for the bulk unitary gas, we compare to fixed-node Monte Carlo data, and
we estimate the deviation from the Bertsch parameter due to the finite interaction-range in typical experiments.
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I. GENERAL INTRODUCTION

The experimental breakthroughs of 1995 having led to the
first realization of a Bose-Einstein condensate in an atomic
vapor [1–3] have opened the era of experimental studies of
ultracold gases with non-negligible or even strong interactions
and in dimension lower than or equal to three [4–8]. In these
systems, the thermal de Broglie wavelength and the typical
distance between atoms are much larger than the range of
the interaction potential. This so-called zero-range regime has
interesting universal properties: Several quantities such as the
thermodynamic functions of the gas depend on the interaction
potential only through the scattering length a, a length that
can be defined in any dimension and that characterizes the
low-energy scattering amplitude of two atoms.

This universality property holds for the weakly repulsive
Bose gas in three dimensions [9] up to the order of expansion
in (na3)1/2 corresponding to Bogoliubov theory [10,11], with
n being the gas density. It also holds for the weakly repulsive
Bose gas in two dimensions [12–15], even at the next order
beyond Bogoliubov theory [16]. For a much larger than the
range of the interaction potential, the ground state of N bosons
in two dimensions is a universal N -body bound state [17–21].
In one dimension, the universality holds for any scattering
length, as exemplified by the fact that the Bose gas with zero-

range interaction is exactly solvable by the Bethe ansatz both
in the repulsive case [22] and in the attractive case [23–25].

For spin 1/2 fermions, the universality properties are
expected to be even stronger. The weakly interacting regimes
in three dimensions (3D) [26–31] and in two dimensions
(2D) [32] are universal, as well as for any scattering length in
the Bethe-ansatz-solvable one-dimensional (1D) case [33,34].
Universality is also expected to hold for an arbitrary scattering
length even in 3D, as was recently tested by experimental
studies on the BEC-BCS crossover using a Feshbach resonance
(see Ref. [8], references therein, and, e.g., Refs. [35–52]) and
in agreement with unbiased quantum Monte Carlo calculations
[53–59]; and in 2D, a similar universal crossover from BEC
to BCS is expected when the parameter ln(kF a) [where kF

is the Fermi momentum] varies from −∞ to +∞ [60–67].
Mathematically, results on universality were obtained for the
N -body problem in 2D [68]. In 3D, mathematical results were
obtained for the three-body problem (see, e.g., Refs. [69–73]).
The universality for the fermionic equal-mass N -body problem
in 3D remains mathematically unproven.1

1The proof given in Ref. [68] that, for a sufficiently large number of
equal-mass fermions, the energy is unbounded from below is actually
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Universality is also expected for mixtures in 2D [64,77,78],
and in 3D for Fermi-Fermi mixtures below a critical mass ratio
[76,77,79,80]. Above a critical mass ratio, the Efimov effect
takes place, as it also takes place for bosons [81,82]. In this
case, the three-body problem depends on a single additional
parameter: the three-body parameter. The Efimov physics is
presently under active experimental investigation [83–89]. It
is not the subject of this paper (see Ref. [90]).

In the zero-range regime, it is intuitive that the short-range
or high-momentum properties of the gas are dominated by
two-body physics. For example, the pair distribution function
g(2)(r12) of particles at distances r12 much smaller than the
de Broglie wavelength is expected to be proportional to the
modulus squared of the zero-energy two-body scattering-
state wave function φ(r12), with a proportionality factor �g

depending on the many-body state of the gas. Similarly, the
tail of the momentum distribution n(k), at wave vectors much
larger than the inverse de Broglie wavelength is expected to be
proportional to the modulus squared of the Fourier component
φ̃(k) of the zero-energy scattering-state wave function, with a
proportionality factor �n depending on the many-body state of
the gas: Whereas two colliding atoms in the gas have a center of
mass wave vector of the order of the inverse de Broglie wave-
length, their relative wave vector can access much larger val-
ues, up to the inverse of the interaction range, simply because
the interaction potential has a width in the space of relative
momenta of the order of the inverse of its range in real space.

For these intuitive reasons, and with the notable exception
of one-dimensional systems, one expects that the mean
interaction energy Eint of the gas, being sensitive to the shape
of g(2) at distances on the order of the interaction range, is not
universal but diverges in the zero-range limit; one also expects
that, apart from the 1D case, the mean kinetic energy, being
dominated by the tail of the momentum distribution, is not
universal and diverges in the zero-range limit, a well-known
fact in the context of Bogoliubov theory for Bose gases and
of BCS theory for Fermi gases. Since the total energy of the
gas is universal, and Eint is proportional to �g while Ekin

is proportional to �n, one expects that there exists a simple
relation between �g and �n.

The precise link between the pair distribution function, the
tail of the momentum distribution, and the energy of the gas
was first established for one-dimensional systems. In Ref. [22]
the value of the pair distribution function for r12 = 0 was

incorrect, since the fermionic antisymmetry was not properly taken
into account. A theorem was published without proof in Ref. [74]
implying that the spectrum of the Hamiltonian of N↑ same-spin-
state fermions of mass m↑ interacting with a distinguishable particle
of mass m↓ is unbounded below, not only for m↑ = m↓ and large
enough N↑, but also for N↑ = 3 and m↑/m↓ larger than the critical
mass ratio 5.29 . . . . No proof was found yet for this theorem; it
was only proven that no Efimov effect occurs for N↑ = 3, N↓ = 1
provided m↑/m↓ is sufficiently small [75]. It was recently shown
that a four-body Efimov effect occurs in this (3 + 1)-body problem
(for an angular momentum l = 1 and not for any other l � 10) and
makes the spectrum unbounded below; however, for a widely different
critical mass ratio m↑/m↓ � 13.384 [76], which sheds some doubts
on Ref. [74].

expressed in terms of the derivative of the gas energy with
respect to the one-dimensional scattering length, thanks to the
Hellmann-Feynman theorem. In Ref. [91] the tail of n(k) was
also related to this derivative of the energy, by using a simple
and general property of the Fourier transform of a function
having discontinuous derivatives in isolated points.

In three dimensions, results in these directions were
first obtained for weakly interacting gases. For the weakly
interacting Bose gas, Bogoliubov theory contains the expected
properties, in particular on the short-distance behavior of the
pair distribution function [92–94] and the fact that the momen-
tum distribution has a slowly decreasing tail. For the weakly
interacting spin-1/2 Fermi gas, it was shown that the BCS
anomalous average (or pairing field) 〈ψ̂↑(r1)ψ̂↓(r2)〉 behaves
at short distances as the zero-energy two-body scattering
wave function φ(r12) [95], resulting in a g(2) function indeed
proportional to |φ(r12)|2 at short distances. It was however
understood later that the corresponding proportionality factor
�g predicted by BCS theory is incorrect [96]; for example, at
zero temperature the BCS prediction drops exponentially with
1/a in the noninteracting limit a → 0−, whereas the correct
result drops as a power law in a.

More recently, in a series of two articles [97,98], explicit
expressions for the proportionality factors �g and �n were
obtained in terms of the derivative of the gas energy with re-
spect to the inverse scattering length for a spin-1/2 interacting
Fermi gas in three dimensions and for an arbitrary value of the
scattering length; that is, not restricted to the weakly interacting
limit. Later on, these results were rederived in Ref. [99–101],
and also in Ref. [102] with very elementary methods building
on the aforementioned intuition that g(2)(r12) ∝ |φ(r12)|2 at
short distances and n(k) ∝ |φ̃(k)|2 at large momenta. These re-
lations were tested by numerical four-body calculations [103].
An explicit relation between �g and the interaction energy was
derived in Ref. [101]. Another fundamental relation discovered
in Ref. [97] and recently generalized in Refs. [104,105] to
fermions in 2D expresses the total energy as a functional of
the momentum distribution and the spatial density.

II. CONTENTS

Here we derive generalizations of the relations of Refs. [22,
91,97,98,101,104,105] to two-dimensional gases and to the
case of a small but nonzero interaction range (both on a lattice
and in continuous space). We also obtain results for the first-
order derivative of the energy with respect to the effective
range, as well as for the second-order derivative with respect
to the scattering length. We shall also include rederivations
of known relations using our elementary methods. We treat
in detail the case of spin-1/2 fermions, with equal masses
in the two spin states, both in three dimensions and in two
dimensions. The discussion of spinless bosons and arbitrary
mixtures is deferred to another article, because it may involve
the Efimov effect in three dimensions [106].

This article is organized as follows: Models, notations and
some basic properties are introduced in Sec. III. Relations for
zero-range interactions are summarized in Table II and derived
for pure states in Sec. IV. We then consider lattice models
(Table III and Sec. V) and finite-range models in continuous
space (Table IV and Sec. VI). In Sec. VII we derive a
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TABLE I. Notation for the regular part A of the N -body wave function appearing in the contact conditions [first line, with Rij = (ri + rj )/2
fixed], for the scalar product between such regular parts (second line) and for corresponding matrix elements of operators Hij acting on Rij

and on the rk , k 
= i,j (third line).

Three dimensions Two dimensions

ψ(r1, . . . ,rN ) =
rij →0

(
1
rij

− 1
a

)
Aij (Rij ,(rk)k 
=i,j ) + O(rij ) (1a) ψ(r1, . . . ,rN ) =

rij →0
ln(rij /a)Aij (Rij ,(rk)k 
=i,j ) + O(rij ) (1b)

(A(1),A(2)) ≡ ∑
i<j

∫ (∏
k 
=i,j ddrk

)
ddRijA

(1)∗
ij (Rij ,(rk)k 
=i,j )A(2)

ij (Rij ,(rk)k 
=i,j ) (2)

(A(1),HA(2)) ≡ ∑
i<j

∫ (∏
k 
=i,j ddrk

)
ddRijA

(1)∗
ij (Rij ,(rk)k 
=i,j )HijA

(2)
ij (Rij ,(rk)k 
=i,j ) (3)

model-independent expression for the correction to the energy
due to a finite range or a finite effective range of the interaction,
and we relate this energy correction to the subleading short-
distance behavior of the pair distribution function and to the
coefficient of the 1/k6 subleading tail of the momentum
distribution (see Table V). The case of general statistical
mixtures of pure states or of stationary states is discussed
in Sec. VIII, and the case of thermodynamic equilibrium
states in Sec. IX. Finally, we present applications of the
general relations: For two particles and three particles in
harmonic traps we compute corrections to exactly solvable
cases (Secs. X A and X B). For the unitary gas trapped in an
isotropic harmonic potential, we determine how the equidis-
tance between levels within a given energy ladder [resulting
from the SO(2,1) dynamical symmetry] is affected by finite
1/a and finite-range corrections, which leads to a frequency
shift and a collapse of the breathing mode of the zero-
temperature gas (Sec. X C). For the bulk unitary gas, we check
that general relations are satisfied by existing fixed-node
Monte Carlo data [107–109] for correlation functions of the
unitary gas (Sec. X D). We quantify the finite-range corrections
to the unitary gas energy in typical experiments, which is
required for precise measurements of its equation of state
(Sec. X E). We conclude in Sec. XI.

III. MODELS, NOTATIONS, AND BASIC PROPERTIES

We now introduce the three models used in this work to
account for interparticle interactions and associated notations,
together with some basic properties to be used in some of the
derivations.

For a fixed number Nσ of fermions in each spin state σ =
↑,↓, one can consider that particles 1, . . . ,N↑ have a spin ↑
and particles N↑ + 1, . . . ,N↑ + N↓ = N have a spin ↓, so that
the wave function ψ(r1, . . . ,rN ) (normalized to unity) changes
sign when one exchanges the positions of two particles having
the same spin.2

A. Zero-range model

In this well-known model (see, e.g., [81,82,110–115] and
references therein) the interaction potential is replaced by

2The corresponding state vector is |�〉 =
[N !/(N↑!N↓!)]1/2Â(|↑, . . . ,↑,↓, . . . ,↓〉 ⊗ |ψ〉) where there are
N↑ spins ↑ and N↓ spins ↓, and the operator Â antisymmetrizes
with respect to all particles. The wave function ψ(r1, . . . ,rN ) is then
proportional to (〈↑, . . . ,↑,↓, . . . ,↓| ⊗ 〈r1, . . . ,rN |)|�〉, with the
proportionality factor [N !/(N↑!N↓!)]1/2.

boundary conditions on the N -body wave function: For any
pair of particles i 
= j , there exists a function Aij , hereafter
called the regular part of ψ , such that Table I, Eq. (1a) holds in
the 3D case and Table I, Eq. (1b) holds in the 2D case, where the
limit of vanishing distance rij between particles i and j is taken
for a fixed position of their center of mass Rij = (ri + rj )/2
and fixed positions of the remaining particles (rk)k 
=i,j different
from Rij . Fermionic symmetry of course imposes Aij = 0 if
particles i and j have the same spin. When none of the ri’s
coincide, there is no interaction potential and Schrödinger’s
equation reads Hψ(r1, . . . ,rN ) = Eψ(r1, . . . ,rN ) with H =
− h̄2

2m

∑N
i=1 �ri

+ Htrap, where m is the atomic mass and the
trapping potential energy is

Htrap ≡
N∑

i=1

U (ri), (1)

U being an external trapping potential. The crucial difference
between the Hamiltonian H and the noninteracting Hamilto-
nian is the boundary condition Table I, Eqs. (1a) and (1b).

B. Lattice models

These models are used for quantum Monte Carlo cal-
culations [53–56,58,116]. They can also be convenient for
analytics, as used in Refs. [15,16,102,117] and in this work.
Particles live on a lattice; that is, the coordinates are integer
multiples of the lattice spacing b. The Hamiltonian is

H = Hkin + Hint + Htrap, (2)

with, in first quantization, the kinetic energy

Hkin = − h̄2

2m

N∑
i=1

�ri
, (3)

the interaction energy

Hint = g0

∑
i<j

δri ,rj
b−d , (4)

and the trapping potential energy defined by (1); namely, in
second quantization,

Hkin =
∑

σ

∫
D

ddk

(2π )d
εkc

†
σ (k)cσ (k), (5)

Hint = g0

∑
r

bd (ψ†
↑ψ

†
↓ψ↓ψ↑)(r), (6)

Htrap =
∑
r,σ

bdU (r)(ψ†
σψσ )(r). (7)

013626-3
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Here d is the spatial dimension, εk is the dispersion
relation, and ψ̂ obeys discrete anticommutation relations
{ψ̂σ (r),ψ̂†

σ ′(r′)} = b−dδrr′δσσ ′ . The operator c†σ (k) creates a
particle in the plane wave state |k〉 defined by 〈r|k〉 =
eik·r for any k belonging to the first Brillouin zone D =
(−π

b
, π

b
]d . The corresponding anticommutation relations are

{cσ (k),c†σ ′(k′)} = (2π )dδσσ ′δ(k − k′) if k and k′ are both in
the first Brillouin zone.3 The operator � in Eq. (3) is the
lattice version of the Laplacian defined by − h̄2

2m
〈r|�r|k〉 ≡

εk〈r|k〉. The simplest choice for the dispersion relation is
εk = h̄2k2/(2m) [15,16,55,58,117]. Another choice, used in
Refs. [54,116], is the dispersion relation of the Hubbard model:
εk = h̄2

mb2

∑d
i=1[1 − cos(kib)]. More generally, what follows

applies to any εk such that εk →
b→0

h̄2k2/(2m) sufficiently

rapidly and ε−k = εk.
A key quantity is the zero-energy scattering state φ(r),

defined by the two-body Schrödinger equation (with the center
of mass at rest):(

−h̄2

m
�r + g0

δr,0

bd

)
φ(r) = 0 (8)

and by the normalization conditions

φ(r) �
r�b

1

r
− 1

a
in 3D, (9)

φ(r) �
r�b

ln(r/a) in 2D. (10)

A two-body analysis, detailed in Appendix A, yields the
relation between the scattering length and the bare coupling
constant g0, in three and two dimensions:

1

g0

3D= m

4πh̄2a
−

∫
D

d3k

(2π )3

1

2εk
, (11)

1

g0

2D= lim
q→0

[
− m

2πh̄2 ln

(
aqeγ

2

)
+

∫
D

d2k

(2π )2
P

1

2(εq − εk)

]
,

(12)

where γ = 0.577 216 . . . is Euler’s constant and P is the
principal value. This implies that (for constant b):

d (1/g0)

d (1/a)
= m

4πh̄2 in 3D, (13)

d (1/g0)

d (ln a)
= − m

2πh̄2 in 2D. (14)

Another useful property derived in Appendix A is

φ (0) = −4πh̄2

mg0
in 3D, (15)

φ (0) = 2πh̄2

mg0
in 2D, (16)

which, together with Eqs. (13) and (14), gives

|φ (0) |2 = 4πh̄2

m

d (−1/a)

dg0
in 3D, (17)

|φ (0) |2 = 2πh̄2

m

d (ln a)

dg0
in 2D. (18)

3Otherwise δ(k − k′) has to be replaced by the periodic version∑
K∈(2π/b)Zd δ(k − k′ − K).

In the zero-range limit (b → 0 with g0 adjusted in such a
way that a remains constant), it is expected that the spectrum
of the lattice model converges to the one of the zero-range
model, as explicitly checked for three particles in Ref. [117],
and that any eigenfunction ψ(r1, . . . ,rN ) of the lattice model
tends to the corresponding eigenfunction of the zero-range
model provided all interparticle distances remain much larger
than b. For any stationary state, let us denote by 1/ktyp the
typical length-scale on which the zero-range model’s wave
function varies; for example, for the lowest eigenstates, this is
on the order of the mean interparticle distance, or on the order
of a in the regime where a is small and positive and dimers
are formed. The zero-range limit is then reached if ktypb � 1.
This notion of typical wave vector ktyp can also be applied to
the case of a thermal equilibrium state, since most significantly
populated eigenstates then have a ktyp on the same order; it is
then expected that the thermodynamic potentials converge to
the ones of the zero-range model when b → 0, and that this
limit is reached provided ktypb � 1. For the homogeneous gas,
defining a thermal wave vector kT by h̄2k2

T /(2m) = kBT , we
have ktyp ∼ max(kF ,kT ) for a < 0 and ktyp ∼ max(kF ,kT ,1/a)
for a > 0.

For lattice models, it will prove convenient to define the
regular part A by

ψ(r1, . . . ,ri = Rij , . . . ,rj = Rij , . . . ,rN )

= φ(0)Aij (Rij ,(rk)k 
=i,j ). (19)

In the zero-range regime ktypb � 1, when the distance rij

between two particles of opposite spin is �1/ktyp while all the
other interparticle distances are much larger than b and than
rij , the many-body wave function is proportional to φ(rj − ri),
with a proportionality constant given by (19):

ψ(r1, . . . ,rN ) � φ(rj − ri)Aij (Rij ,(rk)k 
=i,j ), (20)

where Rij = (ri + rj )/2. If, moreover, rij � b, φ can be
replaced by its asymptotic form [Eqs. (9) and (10)]. Since
the contact conditions [Table I, Eqs. (1a) and (1b)] of
the zero-range model must be recovered, we see that the lattice
model’s regular part tends to the zero-range model’s regular
part in the zero-range limit.

C. Finite-range continuous-space models

Such models are used in numerical few-body correlated
Gaussian and many-body fixed-node Monte Carlo calcula-
tions (see, e.g., Refs. [5,65,103,107,118–120] and references
therein). They are also relevant to neutron matter [121]. The
Hamiltonian reads

H = H0 +
N↑∑
i=1

N∑
j=N↑+1

V (rij ), (21)

with H0 being defined by Eq. (3) where �ri
now stands

for the usual Laplacian, and V (r) is an interaction potential
between particles of opposite spin, which vanishes for r > b

or at least decays quickly enough for r � b. The two-
body zero-energy scattering state φ(r) is again defined by
the Schrödinger equation −(h̄2/m)�rφ + V (r)φ = 0 and the
boundary condition (9) or (10). The zero-range regime is
again reached for ktypb � 1 with ktyp the typical relative wave
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TABLE II. Relations for spin-1/2 fermions with zero-range interactions. The definition (1) of C, as well as the relations in lines 3, 5, 6,
and 7, concern any (nonpathological) statistical mixture of states which satisfy the contact conditions [Table I, line 1] (with real wave functions
for line 7). Line 2 holds for any pure state; here A is the regular part of the wave function appearing in the contact condition, and (A,A) is
its squared norm (defined in Table I). Lines 4 and 8 hold for any stationary state. Lines 9–11 hold at thermal equilibrium in the canonical
ensemble. Line 12 holds for any time dependence of scattering length and trapping potential and any corresponding time-dependent statistical
mixture. Many of the 3D relations were originally obtained in Refs. [97,98] (see text), while the 2D relation (5b) was obtained in Ref. [105]
for the homogeneous system and in Ref. [104] (in a different form) for the general case.

Three dimensions Two dimensions

C ≡ limk→+∞k4nσ (k) (1)
C = (4π )2 (A,A) (2a) C = (2π )2(A,A) (2b)∫

d3Rg
(2)
↑↓

(
R + r

2 ,R − r
2

) ∼
r→0

C

(4π )2
1
r2 (3a)

∫
d2Rg

(2)
↑↓

(
R + r

2 ,R − r
2

) ∼
r→0

C

(2π )2 ln2 r (3b)

dE

d(−1/a) = h̄2C

4πm
(4a) dE

d(ln a) = h̄2C

2πm
(4b)

E − Etrap = h̄2C

4πma
+ ∑

σ

∫
d3k

(2π )3
h̄2k2

2m

[
nσ (k) − C

k4

]
(5a) E − Etrap = lim�→∞

[ − h̄2C

2πm
ln

(
a�eγ

2

) + ∑
σ

∫
k<�

d2k

(2π )2
h̄2k2

2m
nσ (k)

]
(5b)∫

d3Rg(1)
σσ

(
R + r

2 ,R − r
2

) =
r→0

Nσ − C

8π
r + O(r2) (6a)

∫
d2Rg(1)

σσ

(
R + r

2 ,R − r
2

) =
r→0

Nσ + C

4π
r2 ln r + O(r2) (6b)

1
3

∑3
i=1

∑
σ

∫
d3Rg(1)

σσ

(
R + rui

2 ,R − rui
2

)
1
2

∑2
i=1

∑
σ

∫
d2Rg(1)

σσ

(
R + rui

2 ,R − rui
2

)
=

r→0
N − C

4π
r − m

3h̄2

(
E − Etrap − h̄2C

4πma

)
r2 + o(r2) (7a) =

r→0
N + C

4π
r2

[
ln

(
r

a

) − 1
] − m

2h̄2

(
E − Etrap

)
r2 + o(r2) (7b)

1
2

d2En

d(−1/a)2 = (
4πh̄2

m

)2 ∑
n′,En′ 
=En

|(A(n′ ),A(n))|2
En−En′ (8a) 1

2
d2En

d(ln a)2 = (
2πh̄2

m

)2 ∑
n′,En′ 
=En

|(A(n′ ),A(n))|2
En−En′ (8b)(

dĒ

d(−1/a)

)
S

= (
dF

d(−1/a)

)
T

= h̄2C

4πm
(9a)

(
dĒ

d(ln a)

)
S

= (
dF

d(ln a)

)
T

= h̄2C

2πm
(9b)(

d2F

d(−1/a)2

)
T

< 0 (10a)
(

d2F

d(ln a)2

)
T

< 0 (10b)(
d2Ē

d(−1/a)2

)
S

< 0 (11a)
(

d2Ē

d(ln a)2

)
S

< 0 (11b)

dE

dt
= h̄2C

4πm

d(−1/a)
dt

+ 〈 dHtrap

dt

〉
(12a) dE

dt
= h̄2C

2πm

d(ln a)
dt

+ 〈 dHtrap

dt

〉
(12b)

vector.4 Equation (20) again holds in the zero-range regime,
where A now simply stands for the zero-range model’s regular
part.

IV. RELATIONS IN THE ZERO-RANGE LIMIT

We now derive relations for the zero-range model. For some
of the derivations we will use a lattice model and then take the
zero-range limit. We recall that we derive all relations for pure
states in this section, the generalization to statistical mixtures
and the discussion of thermal equilibrium being deferred to
Secs. VIII and IX.

A. Tail of momentum distribution

In this subsection as well as in the following subsec-
tions IV B, IV D, IV E, and IV G, we consider a many-
body pure state whose wave function ψ satisfies the contact
condition [Table I, Eqs. (1a) and (1b)]. We now show that
the momentum distribution nσ (k) has a σ -independent tail
proportional to 1/k4, with a coefficient denoted by C [Table II,
Eq. (1)]. C is usually referred to as the “contact”. We shall also
show that C is related by Table II, Eqs. (2a) and (2b) to the
norm of the regular part A of the wave function (defined in

4For purely attractive interaction potentials such as the square-well
potential, above a critical particle number, the ground state is a
collapsed state and the zero-range regime can only be reached for
certain excited states (see, e.g., [122] and references therein).

Table I). In 3D these results were obtained in [98].5 Here,
the momentum distribution is defined in second quantization
by nσ (k) = 〈n̂σ (k)〉 = 〈c†σ (k)cσ (k)〉 where cσ (k) annihilates
a particle of spin σ in the plane-wave state |k〉 defined by
〈r|k〉 = eik·r; this corresponds to the normalization∫

ddk

(2π )d
nσ (k) = Nσ . (22)

In first quantization,

nσ (k) =
∑
i:σ

∫ ( ∏
l 
=i

ddrl

) ∣∣∣∣
∫

ddrie
−ik·ri ψ (r1, . . . ,rN )

∣∣∣∣
2

,

(23)

where the sum is taken over all particles of spin σ : i runs from
1 to N↑ for σ = ↑, and from N↑ + 1 to N for σ = ↓.

Three dimensions. The key point is that, in the large-k limit,
the Fourier transform with respect to ri is dominated by the
contribution of the short-distance divergence coming from the
contact condition [Table I, Eq. (1a)]:∫

d3rie
−ik·ri ψ (r1, . . . ,rN )

�
k→∞

∫
d3rie

−ik·ri

∑
j,j 
=i

1

rij

Aij (rj ,(rl)l 
=i,j ). (24)

5The existence of the 1/k4 tail had already been observed within a
self-consistent approximate theory [123].
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A similar link between the short-distance singularity of the
wave function and the tail of its Fourier transform was used
to derive exact relations in 1D in Ref. [91]. From �(1/r) =
−4πδ(r), we have

∫
d3re−ik·r 1

r
= 4π

k2 , so that∫
d3rie

−ik·ri ψ (r1, . . . ,rN )

�
k→∞

4π

k2

∑
j,j 
=i

e−ik·rj Aij (rj ,(rl)l 
=i,j ). (25)

One inserts this into (23) and expands the modulus squared.
After spatial integration over all the rl , l 
= i, the crossed terms
rapidly vanish in the large-k limit, as they are the product of
eik·(rj −rj ′ ) and of regular functions of rj and rj ′ .6 This yields
nσ (k) ∼

k→∞
C/k4, with the expression Table II, Eq. (2a) of C

in terms of the norm (A,A) defined in Table I, Eq. (2).
Two dimensions. The 2D contact condition [Table I,

Eq. (1b)] now gives∫
d2rie

−ik·ri ψ (r1, . . . ,rN )

�
k→∞

∫
d2rie

−ik·ri

∑
j,j 
=i

ln(rij )Aij (rj ,(rl)l 
=i,j ). (26)

From �(ln r) = 2πδ(r), one has
∫

d2re−ik·r ln r = −2π/k2

and ∫
d2rie

−ik·ri ψ (r1, . . . ,rN )

�
k→∞

−2π

k2

∑
j,j 
=i

e−ik·rj Aij (rj ,(rl)l 
=i,j ). (27)

As in 3D this leads to Table II, Eq. (2b).

B. Pair distribution function at short distances

The pair distribution function gives the probability density
of finding a spin-↑ particle at r↑ and a spin-↓ particle at r↓:

g
(2)
↑↓(r↑,r↓) = 〈(ψ̂†

↑ψ̂↑)(r↑)(ψ̂†
↓ψ̂↓)(r↓)〉

=
∫ (

N∏
k=1

ddrk

)
|ψ(r1, . . . ,rN )|2

×
N↑∑
i=1

N∑
j=N↑+1

δ(r↑ − ri)δ(r↓ − rj ).

6For example, for n↓(k) in the trapped three-body case, with
particles 1 and 2 in state ↑ and particle 3 in state ↓, one has i = 3
and j,j ′ = 1 or 2. Then the crossed term A31(r1,r2)A32(r2,r1) has
to all orders finite derivatives with respect to r1 and r2, except if
r1 = r2 where it vanishes as |r1 − r2|2s−2, s > 0 not integer [see, e.g.,
Eq. (H3) and below that equation]. By a power-counting argument,
its Fourier transform with respect to r1 − r2 contributes to the
momentum distribution tail as 1/k2s+5 = o(1/k4); one recovers the
“three-close-particle” contribution mentioned in a note of Ref. [98].

We set r↑,↓ = R ± r/2 and we integrate over ri and rj :

g
(2)
↑↓

(
R + r

2
,R − r

2

)

=
N↑∑
i=1

N∑
j=N↑+1

∫ ( ∏
k 
=i,j

ddrk

)∣∣∣∣ψ
(

r1, . . . ,

ri = R + r
2
, . . . ,rj = R − r

2
, . . . ,rN

)∣∣∣∣
2

(28)

Let us define the spatially integrated pair distribution function7

G
(2)
↑↓(r) ≡

∫
ddR g

(2)
↑↓

(
R + r

2
,R − r

2

)
, (29)

whose small-r singular behavior we will show to be related to
C via Table II, Eqs. (3a) and (3b).

Three dimensions. Replacing the wave function in Eq. (28)
by its asymptotic behavior given by the contact condition
[Table I, Eq. (1a)] immediately yields

G
(2)
↑↓(r) ∼

r→0

(A,A)

r2
. (30)

Expressing (A,A) in terms of C through Table II, Eq. (2a)
finally gives Table II, Eq. (3a).

In a measurement of all particle positions, the mean total
number of pairs of particles of opposite spin which are sepa-
rated by a distance smaller than s is Npair(s) = ∫

r<s
ddrG

(2)
↑↓(r),

so that from Table II, Eq. (3a),

Npair (s) ∼
s→0

C

4π
s, (31)

as obtained in Refs. [97,98].
Two dimensions. The contact condition [Table I, Eq. (1b)]

similarly leads to Table II, Eq. (3b). After integration over the
region r < s this gives

Npair (s) ∼
s→0

C

4π
s2 ln2 s. (32)

C. First order derivative of energy with respect
to scattering length

The relations Table II, Eqs. (4a) and (4b) can be derived
straightforwardly using the lattice model (see Sec. V E). Here,
we derive them by directly using the zero-range model, which
is more involved but also instructive.

Three dimensions. Let us consider a wave function ψ1

satisfying the contact condition [Table I, Eq. (1a)] for a
scattering length a1. We denote by A

(1)
ij the regular part of ψ1

appearing in the contact condition [Table I, Eq. (1a)]. Similarly,
ψ2 satisfies the contact condition for a scattering length a2 and

7For simplicity, we refrain here from expressing C as the integral of
a “contact density” C(R) related to the small-r behavior of the local
pair distribution function g

(2)
↑↓(R + r/2,R − r/2) as was done for the

3D case in Refs. [97–99]; this C(R) is then also related to the large-k
tail of the Wigner distribution [i.e., the Fourier transform with respect
to r of the one-body density matrix 〈ψ †

σ (R − r/2)ψσ (R + r/2)〉]; see
Eq. (30) of Ref. [97].
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TABLE III. Relations for spin-1/2 fermions for lattice models. Ĉ is defined in line 1 and C = 〈Ĉ〉. Lines 2, 3, and 8 are relations between
operators. Line 4 holds for any pure state [the regular part A being defined in Eq. (19) in the text]. Lines 5 and 6 hold for any stationary state.
Line 7 holds at thermal equilibrium in the canonical ensemble. Lines 9 and 10 are expected to hold in the zero-range regime ktypb � 1, where
ktyp is the typical wave vector, for any stationary state or at thermal equilibrium.

Three dimensions Two dimensions

Ĉ ≡ 4πm

h̄2
dH

d(−1/a) (1a) Ĉ ≡ 2πm

h̄2
dH

d(ln a) (1b)

Hint = h̄4

m2
Ĉ

g0
(2)

H − Htrap = limq→0

{− h̄2Ĉ

2πm
ln

(
aqeγ

2

)
H − Htrap = h̄2Ĉ

4πma
+ ∑

σ

∫
D

d3k

(2π )3 εk
[
n̂σ (k) − Ĉ

(
h̄2

2mεk

)2]
(3a) + ∑

σ

∫
D

d2k

(2π )2 εk
[
n̂σ (k) − Ĉ h̄2

2mεk
P h̄2

2m(εk−εq)

]}
(3b)

C = (4π )2 (A,A) (4a) C = (2π )2 (A,A) (4b)
dE

d(−1/a) = h̄2C

4πm
(5a) dE

d(ln a) = h̄2C

2πm
(5b)

1
2

d2En

dg2
0

= |φ(0)|4 ∑
n′,En′ 
=En

|(A(n′ ),A(n))|2
En−En′ (6)(

d2F

dg2
0

)
T

< 0,
(

d2E

dg2
0

)
S

< 0 (7)∑
R b3

(
ψ

†
↑ψ

†
↓ψ↓ψ↑

)
(R) = Ĉ

(4π )2 |φ(0)|2 (8a)
∑

R b2(ψ †
↑ψ

†
↓ψ↓ψ↑)(R) = Ĉ

(2π )2 |φ(0)|2 (8b)

In the zero-range regime ktypb � 1∑
R b3g

(2)
↑↓

(
R + r

2 ,R − r
2

) � C

(4π )2 |φ(r)|2 for r � k−1
typ (9a)

∑
R b2g

(2)
↑↓

(
R + r

2 ,R − r
2

) � C

(2π )2 |φ(r)|2 for r � k−1
typ (9b)

nσ (k) � C
(

h̄2

2mεk

)2
for k � ktyp (10)

a regular part A
(2)
ij . Then, as shown in Appendix B using the

divergence theorem, the following lemma holds:

〈ψ1,Hψ2〉 − 〈Hψ1,ψ2〉 = 4πh̄2

m

(
1

a1
− 1

a2

)
(A(1),A(2)),

(33)

where the scalar product between regular parts is defined by
Table I, Eq. (2). We then apply Eq. (33) to the case where ψ1

and ψ2 are N -body stationary states of energy E1 and E2. The
left-hand side of Eq. (33) then reduces to (E2 − E1)〈ψ1|ψ2〉.
Taking the limit a2 → a1 gives

dE

d (−1/a)
= 4πh̄2

m
(A,A) (34)

for any stationary state. Expressing (A,A) in terms of C thanks
to Table II, Eq. (2a) finally yields Table II, Eq. (4a). This result
as well as Eq. (34) is contained in Ref. [97,98].8 We recall that
here and in what follows, the wave function is normalized:
〈ψ |ψ〉 = 1.

Two dimensions. The 2D version of the lemma (33) is

〈ψ1,Hψ2〉 − 〈Hψ1,ψ2〉 = 2πh̄2

m
ln(a2/a1)(A(1),A(2)), (35)

as shown in Appendix B. As in 3D, we deduce that

dE

d (ln a)
= 2πh̄2

m
(A,A) , (36)

which gives the desired Table II, Eq. (4b) by using Table II,
Eq. (2b).

8Our derivation is similar to the one given in the two-body case and
sketched in the many-body case in Sec. 3 of Ref. [98].

D. Expression of energy in terms of momentum distribution

Three dimensions. As shown in Ref. [97], the mean total
energy E minus the mean trapping-potential energy Etrap ≡
〈Htrap〉 has the simple expression in terms of the momentum
distribution given in Table II, Eq. (5a) for any pure state |ψ〉
satisfying the contact condition [Table I, Eq. (1a)]. We give
a simple rederivation of this result by using the lattice model
(defined in Sec. III B).

We first treat the case where |ψ〉 is an eigenstate of
the zero-range model. Let |ψb〉 be the eigenstate of the
lattice model that tends to |ψ〉 for b → 0. We first note that
Cb ≡ 〈ψb|Ĉ|ψb〉, where Ĉ is defined by Table III, Eqs. (1a)
and (1b), tends to the contact C of the state ψ [defined in
Table II, Eq. (1)] when b → 0, as shown in Appendix C.
Then, the key step is to use Table III, Eq. (3a), which, after
taking the expectation value in the state |ψb〉, yields the
desired result [Table II, Eq. (5a)] in the zero-range limit since
D → R3 and εk → h̄2k2/(2m) for b → 0.

To generalize Table II, Eq. (5a) to any pure state |ψ〉 satisfy-
ing the contact condition Table I, Eq. (1a), we use the state |ψb〉
defined in Sec. 2 of Appendix C. As shown in that Appendix,
the expectation value of Ĉ taken in this state |ψb〉 tends to the
contact C of |ψ〉 defined in Table II, Eq. (1). Moreover, the
expectation values of H − Htrap and of n̂σ (k), taken in this
state |ψb〉, should tend to the corresponding expectation
values taken in the state |ψ〉. This yields the desired relation.

Finally, we mention the equivalent form of the relation
Table II, Eq. (5a):

E − Etrap = lim
�→∞

[
h̄2C

4πm

(
1

a
− 2�

π

)

+
∑

σ

∫
k<�

d3k

(2π )3

h̄2k2

2m
nσ (k)

]
. (37)
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Two dimensions. The 2D version of Eq. (37) is Table II,
Eq. (5b). This was shown for a homogeneous system in
Ref. [105] and in the general case in Ref. [104].9 This can
easily be rewritten in the following forms, which resemble
Table II, Eq. (5a):

E − Etrap = − h̄2C

2πm
ln

(
aqeγ

2

)
+

∑
σ

∫
d2k

(2π )2

h̄2k2

2m

×
[
nσ (k) − C

k4
θ (k − q)

]
for any q > 0,

(38)

where the Heaviside function θ ensures that the integral
converges at small k or, equivalently,

E − Etrap = − h̄2C

2πm
ln

(
aqeγ

2

)
+

∑
σ

∫
d2k

(2π )2

h̄2k2

2m

×
[
nσ (k) − C

k2(k2 + q2)

]
for any q > 0.

(39)

To derive this we again use the lattice model. We note that,
if the limit q → 0 is replaced by the limit b → 0 taken for
fixed a, Eq. (12) remains true (see Appendix A); repeating
the reasoning of Sec. V B then shows that Table III, Eq. (3b)
remains true; as in 3D we finally get in the limit b → 0

E − Etrap = − h̄2C

2πm
ln

(
aqeγ

2

)
+

∑
σ

∫
d2k

(2π )2

h̄2k2

2m

×
[
nσ (k) − C

k2
P

1

k2 − q2

]
(40)

for any q > 0; this is easily rewritten as Table II, Eq. (5b).

E. One-body density matrix at short distances

The one-body density matrix is defined as g(1)
σσ (r,r′) =

〈ψ̂†
σ (r)ψ̂σ (r′)〉 where ψ̂σ (r) annihilates a particle of spin σ

at point r. Its spatially integrated version

G(1)
σσ (r) ≡

∫
ddRg(1)

σσ

(
R − r

2
,R + r

2

)
(41)

is a Fourier transform of the momentum distribution:

G(1)
σσ (r) =

∫
ddk

(2π )d
eik·rnσ (k) . (42)

The expansion of G(1)
σσ (r) up to first order in r is given by

Table II, Eq. (6a) in 3D, as first obtained in Ref. [97], and by
Table II, Eq. (6b) in 2D. The expansion can be pushed to second
order if one sums over spin and averages over d orthogonal
directions of r, see Table II, Eqs. (7a) and (7b), where the ui’s

9This relation was written in Ref. [104] in a form containing a
generalized function η(k) (i.e., a distribution). We have checked
that this form is equivalent to our Eq. (38), using Eq. (16b)
of Ref. [104], nσ (k) − (C/k4)θ (k − q) = O(1/k5) at large k, and∫

d2kη(k)f (k) = ∫
d2kf (k) for any f (k) = O(1/k3). This last

property is implied in Eq. (16a) in Ref. [104].

are an orthonormal basis.10 Such a second-order expansion
was first obtained in 1D in Ref. [91]; the following derivations
however differ from the 1D case.11

Three dimensions. To derive Table II, Eqs. (6a) and (7a) we
rewrite Eq. (42) as

G(1)
σσ (r) = Nσ +

∫
d3k

(2π )3
(eik·r − 1)

C

k4

+
∫

d3k

(2π )3
(eik·r − 1)

(
nσ (k) − C

k4

)
. (43)

The first integral equals −(C/8π )r . In the second integral, we
use

eik·r − 1 =
r→0

ik · r − (k · r)2

2
+ o(r2). (44)

The first term of this expansion gives a contribution to the
integral proportional to the total momentum of the gas, which
vanishes since the eigenfunctions are real. The second term is
O(r2), which gives Table II, Eq. (6a). Equation (7a) of Table II
follows from the fact that the contribution of the second term,
after averaging over the directions of r, is given by the integral
of k2[nσ (k) − C/k4], which (after summation over spin) is
related to the total energy by Table II, Eq. (5a).

Two dimensions. To derive Table II, Eqs. (6b) and (7b) we
rewrite Eq. (42) as G(1)

σσ (r) = Nσ + I (r) + J (r) with

I (r) =
∫

d2k

(2π )2
(eik·r − 1)

C

k4
θ (k − q) , (45)

J (r) =
∫

d2k

(2π )2
(eik·r − 1)

(
nσ (k) − C

k4
θ (k − q)

)
, (46)

where q > 0 is arbitrary and the Heaviside function θ ensures
that the integrals converge.

To evaluate I (r) we use standard manipulations to rewrite
it as I (r) = [Cr2/(2π )]

∫ +∞
qr

dx[J0(x) − 1]/x3, with J0 being
a Bessel function. Expressing this integral with MATHEMATICA

in terms of an hypergeometric function and a logarithm leads
for r → 0 to I (r) = [Cr2/(8π )][γ − 1 − ln 2 + ln(qr)] +
O(r4). To evaluate J (r) we use the same procedure as in 3D:
expanding the exponential [see Eq. (44)] yields an integral
which can be related to the total energy thanks to Eq. (38).12

10These last relations also hold if one averages over all directions of
r uniformly on the unit sphere or unit circle.
11Our result does not follow from the well-known fact that,

for a finite-range interaction potential in continuous space,
− h̄2

2m

∑
σ �G(1)

σσ (r = 0) equals the kinetic energy; indeed, the
Laplacian does not commute with the zero-range limit in that case
[cf. also the comment below Eq. (180)].
12As suggested by a referee, Table II, Eq. (7b) can be tested

for the dimer wave function ψ(r1,r2) = φdim(r12) = −κK0(κr)/π 1/2

[113], which has the energy E = −h̄2κ2/m and the momentum
distribution nσ (k) = 4πκ2/(k2 + κ2)2, where κ = 2/(aeγ ) and K0 is
a Bessel function. From Eq. (42) we find G(1)

σσ (r) = κrK1(κr). From
C/(4π ) = −mE/h̄2 = κ2 and the known expansion of K1 around
zero, we get the same low-r expansion as in Table II, Eq. (7b). To
calculate G(1)

σσ (r), we used the fact that K0(κr) is the 2D Fourier
transform of 2π/(k2 + κ2): it remains to take the derivative with
respect to κ and to realize that K ′

0 = −K1.
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F. Second-order derivative of energy with respect
to scattering length

We denote by |ψn〉 an orthonormal basis of N -body
stationary states that vary smoothly with 1/a, and by En the
corresponding eigenenergies. We will derive Table II, Eqs. (8a)
and (8b), where the sum is taken on all values of n′ such that
En′ 
= En. This implies that, for the ground-state energy E0,

d2E0

d (−1/a)2 < 0 in 3D, (47)

d2E0

d (ln a)2 < 0 in 2D. (48)

Equation (47) was intuitively expected [124]: Eq. (31) shows
that dE0/d(−1/a) is proportional to the probability of finding
two particles very close to each other, and it is natural that
this probability decreases when one goes from the BEC limit
(−1/a → −∞) to the BCS limit (−1/a → +∞); that is,
when the interactions become less attractive.13 Equation (48)
also agrees with intuition.14

For the derivation, it is convenient to use the lattice model
(defined in Sec. III B): As shown in Sec. V F one easily obtains
Eq. (60) and Table III, Eq. (6), from which the result is deduced
as follows: |φ(0)|2 is eliminated using Eqs. (17) and (18). Then,
in 3D, one uses

d2En

d(−1/a)2
= d2En

dg 2
0

(
dg0

d (−1/a)

)2

+ dEn

dg0

d2g0

d(−1/a)2
, (49)

where the second term equals 2g0[dEn/d(−1/a)]m/(4πh̄2)
and thus vanishes in the zero-range limit. In 2D, similarly,
one uses the fact that d2En/d(ln a)2 is the zero-range limit of
(d2En/dg 2

0 )[dg0/d(ln a)]2.

G. Time derivative of energy

We now consider the case where the scattering length a(t)
and the trapping potential U (r,t) are varied with time. The
time-dependent version of the zero-range model (see, e.g.,
Ref. [125]) is given by Schrödinger’s equation

ih̄
∂

∂t
ψ (r1, . . . ,rN ; t) = H (t) ψ (r1, . . . ,rN ; t) (50)

when all particle positions are distinct, with

H (t) =
N∑

i=1

[
− h̄2

2m
�ri

+ U (ri ,t)

]
, (51)

and by the contact condition Table I, Eq. (1a) in 3D or by
Table I, Eq. (1b) in 2D for the scattering length a = a(t). One

13In the lattice model in 3D, the coupling constant g0 is always
negative in the zero-range limit |a| � b, and is an increasing function
of −1/a, as seen from Eq. (11).
14Equation (32) shows that dE0/d(ln a) is proportional to the

probability of finding two particles very close to each other, and
it is natural that this probability decreases when one goes from the
BEC limit (ln a → −∞) to the BCS limit (ln a → +∞); that is, when
the interactions become less attractive [in the lattice model in 2D, the
coupling constant g0 is always negative in the zero-range limit a � b,
and is an increasing function of ln a, as can be seen from Eq. (12)].

then has the relations Table II, Eqs. (12a) and (12b), where
E(t) = 〈ψ(t)|H (t)|ψ(t)〉 is the total energy and Htrap(t) =∑N

i=1 U (ri ,t) is the trapping-potential part of the Hamiltonian.
In 3D, this relation was obtained in Ref. [98]. A very simple
derivation of these relations using the lattice model is given
in Sec. V G. Here, we give a derivation within the zero-range
model.

Three dimensions. We first note that the generalization of
the lemma (33) to the case of two Hamiltonians H1 and H2

with corresponding trapping potentials U1(r) and U2(r) reads

〈ψ1,H2ψ2〉 − 〈H1ψ1,ψ2〉

= 4πh̄2

m

(
1

a1
− 1

a2

)
(A(1),A(2))

+〈ψ1|
N∑

i=1

[U2(ri ,t) − U1(ri ,t)]|ψ2〉. (52)

Applying this relation for |ψ1〉 = |ψ(t)〉 and |ψ2〉 = |ψ(t +
δt)〉 [and correspondingly a1 = a(t), a2 = a(t + δt), and H1 =
H (t), H2 = H (t + δt)] gives

〈ψ (t) ,H (t + δt) ψ (t + δt)〉 − 〈H (t) ψ (t) ,ψ (t + δt)〉

= 4πh̄2

m

(
1

a (t)
− 1

a (t + δt)

)
(A (t) ,A (t + δt))

+〈ψ(t)|
N∑

i=1

[U (ri ,t + δt) − U (ri ,t)]|ψ(t + δt)〉. (53)

Dividing by δt , taking the limit δt → 0, and using the
expression Table II, Eq. (1a) of (A,A) in terms of C, the
right-hand side of Eq. (53) reduces to the right-hand side of
Table II, Eq. (12a). Using twice Schrödinger’s equation, one
rewrites the left-hand side of Eq. (53) as ih̄ d

dt
〈ψ(t)|ψ(t + δt)〉

and one Taylor expands this last expression to obtain Table II,
Eq. (12a).

Two dimensions. Table II, Eq. (12b) is derived similarly
from the lemma

〈ψ1,H2ψ2〉 − 〈H1ψ1,ψ2〉

= 2πh̄2

m
ln (a2/a1) (A(1),A(2))

+〈ψ1|
N∑

i=1

[U2(ri ,t) − U1(ri ,t)]|ψ2〉. (54)

V. RELATIONS FOR LATTICE MODELS

In this section, it will prove convenient to introduce an
operator Ĉ by Table III, Eqs. (1a) and (1b) and to define C by
its expectation value in the state of the system,

C = 〈Ĉ〉. (55)

In the zero-range limit, this new definition of C coincides with
the definition Table II, Eq. (1), as shown in Appendix C.

A. Interaction energy and Ĉ

The interaction part Hint of the lattice model’s Hamiltonian
is obviously equal to g0dH/dg0 [see Eqs. (2)–(4)]. Rewriting
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this as (1/g0)[dH/d(−1/g0)], and using the simple expres-
sions (13) and (14) for d(1/g0), we get the relation Table III,
Eq. (2) between Hint and Ĉ, both in 3D and in 2D.

B. Total energy minus trapping potential energy in terms of
momentum distribution and Ĉ

Here we derive Table III, Eqs. (3a) and (3b). We start from
the expression Table III, Eq. (2) of the interaction energy
and eliminate 1/g0 thanks to Eqs. (11) and (12). The desired
expression of H − Htrap = Hint + Hkin then simply follows
from the expression (5) of the kinetic energy.

C. Interaction energy and regular part

In the forthcoming subsections V D–V F, we will use the
following lemma: For any wave functions ψ and ψ ′,

〈ψ ′|Hint|ψ〉 = g0|φ (0) |2(A′,A), (56)

where A and A′ are the regular parts related to ψ and ψ ′
through Eq. (19), and the scalar product between regular parts
is naturally defined as the discrete version of Table I, Eq. (2):(

A′,A
) ≡

∑
i<j

∑
(rk)k 
=i,j

∑
Rij

b(N−1)dA′∗
ij (Rij ,(rk)k 
=i,j )

×Aij (Rij ,(rk)k 
=i,j ). (57)

The lemma simply follows from

〈ψ ′|Hint|ψ〉 = g0

∑
i<j

∑
(rk)k 
=i,j

b(N−2)d
∑

rj

bd

×(ψ ′∗ψ)(r1, . . . ,ri = rj , . . . ,rj , . . . ,rN ).

(58)

D. Relation between Ĉ and (A,A)

Lemma (56) with ψ ′ = ψ writes

〈ψ |Hint|ψ〉 = g0|φ (0) |2 (A,A) . (59)

Expressing 〈ψ |Hint|ψ〉 in terms of C = 〈ψ |Ĉ|ψ〉 thanks to
Table III, Eq. (2) and using expressions (17) and (18) of |φ(0)|2,
we get Table III, Eqs. (4a) and (4b).

E. First-order derivative of eigenenergy with respect to
coupling constant

For any stationary state, the Hellmann-Feynman theorem,
together with the definition [Table III, Eqs. (1a) and (1b)] of Ĉ

and the relations Table III, Eqs. (4a) and (4b) between C and
(A,A), immediately yields Table III, Eqs. (5a) and (5b).

F. Second-order derivative of eigenenergy with respect to
coupling constant

We denote by |ψn〉 an orthonormal basis of N -body
stationary states which vary smoothly with g0, and by En

the corresponding eigenenergies. We apply second-order
perturbation theory to determine how an eigenenergy varies
for an infinitesimal change of g0. This gives

1

2

d2En

dg 2
0

=
∑

n′,En′ 
=En

|〈ψn′ |Hint/g0|ψn〉|2
En − En′

, (60)

where the sum is taken over all values of n′ such that En′ 
= En.
Lemma (56) then yields Table III, Eq. (6).

G. Time derivative of energy

The relations Table II, Eqs. (12a) and (12b) remain exact
for the lattice model. Indeed, dE/dt equals 〈dH/dt〉 from
the Hellmann-Feynman theorem. In 3D, we can rewrite this
quantity as 〈dHtrap/dt〉 + d(−1/a)/dt〈dH/d(−1/a)〉, and
the desired result follows from the definition Table III, Eq. (1a)
of Ĉ. The derivation of the 2D relation Table II, Eq. (12b) is
analogous.

H. On-site pair distribution operator

Let us define a spatially integrated pair distribution operator

Ĝ
(2)
↑↓(r) ≡

∑
R

bd (ψ†
↑ψ↑)

(
R + r

2

)
(ψ†

↓ψ↓)

(
R − r

2

)
. (61)

Using the relation Table III, Eq. (2) between Ĉ and Hint,
expressing Hint in terms of Ĝ

(2)
↑↓(0) thanks to the second-

quantized form (6), and expressing g0 in terms of φ(0) thanks
to Eqs. (15) and (16), we immediately get

Ĝ
(2)
↑↓ (0) = Ĉ

(4π )2 |φ (0) |2 in 3D, (62)

Ĝ
(2)
↑↓ (0) = Ĉ

(2π )2
|φ (0) |2 in 2D. (63)

Here, |φ(0)|2 may of course be eliminated using (15) and (16).
These relations are analogous to the one obtained previously
within a different field-theoretical model [see Eq. (12) in
Ref. [99] ].

I. Pair distribution function at short distances

The last result can be generalized to finite but small r [see
Table III, Eqs. (9a) and (9b)] where the zero-range regime
ktypb � 1 was introduced at the end of Sec. III B. Here, we
justify this for the case where the expectation values g

(2)
↑↓(R +

r
2 ,R − r

2 ) = 〈(ψ†
↑ψ↑)(R + r

2 )(ψ†
↓ψ↓)(R − r

2 )〉 and C = 〈Ĉ〉
are taken in an arbitrary stationary state ψ in the zero-range
regime; this implies that the same result holds for a thermal
equilibrium state in the zero-range regime (see Sec. IX). We
first note that the expression (28) of g

(2)
↑↓ in terms of the

wave function is valid for the lattice model with the obvious
replacement of the integrals by sums, so that

G
(2)
↑↓(r) ≡ 〈Ĝ(2)

↑↓(r)〉

=
∑

R

bd

N↑∑
i=1

N∑
j=N↑+1

∑
(rk)k 
=i,j

b(N−2)d

∣∣∣∣ψ
(

r1, . . . ,

ri = R + r
2
, . . . ,rj = R − r

2
, . . . ,rN

)∣∣∣∣
2

. (64)

For r � 1/ktyp, we can replace ψ by the short-distance
expression (20), assuming that the multiple sum is dominated
by the configurations where all the distances |rk − R| and rkk′

are much larger than b and r:

G
(2)
↑↓(r) � (A,A) |φ(r)|2. (65)
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TABLE IV. Relations for spin-1/2 fermions with a finite-range interaction potential V (r) in continuous space, for any stationary state. C is
defined in line 1. All relations remain valid at thermal equilibrium in the canonical ensemble; the derivatives of the energy in line 1 then have
to be taken at constant entropy. Equations (1a), (2a), and (4a) are contained in Ref. [101] (for ktypb � 1). The functions φ′(r) and φ′

R(r) are
given by Eqs. (73) and (78) and φ̃′(k), φ̃′

R(k) are their Fourier transforms.

Three dimensions Two dimensions

C ≡ 4πm

h̄2
dE

d(−1/a) (1a) C ≡ 2πm

h̄2
dE

d(ln a) (1b)

Eint = C

(4π )2

∫
d3rV (r)|φ(r)|2 (2a) Eint = C

(2π )2

∫
d2rV (r)|φ(r)|2 (2b)

E − Etrap = h̄2C

4πma
+ ∑

σ

∫
d3k

(2π )3
h̄2k2

2m

[
nσ (k) − C

(4π )2 |φ̃′(k)|2] (3a) E − Etrap = limR→∞
{

h̄2C

2πm
ln

(
R

a

)
+∑

σ

∫
d2k

(2π )2
h̄2k2

2m

[
nσ (k) − C

(2π )2 |φ̃′
R(k)|2]} (3b)

In the zero-range regime ktypb � 1∫
d3Rg

(2)
↑↓

(
R + r

2 ,R − r
2

) � C

(4π )2 |φ(r)|2 for r � k−1
typ (4a)

∫
d2Rg

(2)
↑↓

(
R + r

2 ,R − r
2

) � C

(2π )2 |φ(r)|2 for r � k−1
typ (4b)

nσ (k) � C

(4π )2 |φ̃(k)|2 for k � ktyp (5a) nσ (k) � C

(2π )2 |φ̃(k)|2 for k � ktyp (5b)

Expressing (A,A) in terms of C thanks to Table III, Eqs. (4a)
and (4b) gives the desired Table III, Eqs. (9a) and (9b).

J. Momentum distribution at large momenta

Assuming again that we are in the zero-range regime
ktypb � 1, we will justify Table III, Eq. (10) both in 3D and in
2D. We start from

nσ (k) =
∑
i:σ

∑
(rl )l 
=i

bd(N−1)

∣∣∣∣∣
∑

ri

bde−ik·ri ψ (r1, . . . ,rN )

∣∣∣∣∣
2

.

(66)

We are interested in the limit k � ktyp. Since ψ(r1, . . . ,rN )
is a function of ri which varies on the scale of 1/ktyp, except
when ri is close to another particle rj where it varies on the
scale of b, we can replace ψ by its short-distance form (20):∑

ri

bde−ik·ri ψ (r1, . . . ,rN )

� φ̃ (k)
∑
j,j 
=i

e−ik·rj Aij (rj ,(rl)l 
=i,j ), (67)

where φ̃(k) = 〈k|φ〉 = ∑
r bde−ik·rφ(r). Here, we excluded

the configurations where more than two particles are at dis-
tances �b, which are expected to have a negligible contribution
to Eq. (66). Inserting Eq. (67) into Eq. (66), expanding the
modulus squared, and neglecting the cross-product terms in
the limit k � ktyp, we obtain

nσ (k) � |φ̃(k)|2(A,A). (68)

Finally, φ̃(k) is easily computed for the lattice model: for
k 
= 0, the two-body Schrödinger equation (A1) directly gives
φ̃(k) = −g0φ(0)/(2εk), and φ(0) is given by Eqs. (15) and
(16), which yields Table III, Eq. (10).

VI. RELATIONS FOR A FINITE-RANGE INTERACTION
IN CONTINUOUS SPACE

In this Sec. VI, we restrict ourselves for simplicity to the
case of a stationary state. It is then convenient to define C by
Table IV, Eqs. (1a) and (1b).

A. Interaction energy

As for the lattice model, we find that the interaction energy
is proportional to C, see Table IV, Eqs. (2a) and (2b). It was
shown in Ref. [101] that the 3D relation is asymptotically valid
in the zero-range limit. Here, we show that it remains exact for
any finite value of the range and we generalize it to 2D.

For the derivation, we set

V (r) = g0W (r), (69)

where g0 is a dimensionless coupling constant which
allows us to tune a. The Hellmann-Feynman theorem
then gives Eint = g0dE/dg0. The result then follows by
writing dE/dg0 = [dE/d(−1/a)][d(−1/a)/dg0] in 3D and
dE/dg0 = [dE/d(ln a)][d(ln a)/dg0] in 2D, and by using the
definition Table IV, Eqs. (1a) and (1b) of C as well as the
following lemmas:

g0
d (−1/a)

dg0
= m

4πh̄2

∫
d3rV (r)|φ(r)|2 in 3D, (70)

g0
d (ln a)

dg0
= m

2πh̄2

∫
d2rV (r)|φ(r)|2 in 2D. (71)

To derive these lemmas, we consider two values of the
scattering length ai, i = 1,2, and the corresponding scattering
states φi and coupling constants g0,i . The corresponding two-
particle relative-motion Hamiltonians are Hi = −(h̄2/m)�r +
g0,iW (r). Since Hiφi = 0, we have

lim
R→∞

∫
r<R

ddr (φ1H2φ2 − φ2H1φ1) = 0. (72)

The contribution of the kinetic energies can be computed
from the divergence theorem and the large-distance form of
φ.15 The contribution of the potential energies is proportional
to g0,2 − g0,1. Taking the limit a2 → a1 gives the results (70)
and (71). Lemma (70) was also used in Ref. [101] and the above
derivation is essentially identical to the one of Ref. [101]. For

15To facilitate the derivation, we assume that V (r) = 0 for r > b,
but the result is expected to hold for any V (r) which vanishes quickly
enough at infinity.
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FÉLIX WERNER AND YVAN CASTIN PHYSICAL REVIEW A 86, 013626 (2012)

this 3D lemma, there also exists an alternative derivation based
on the two-body problem in a large box.16

B. Relation between energy and momentum distribution

Three dimensions. For a finite-range interaction potential,
the natural counterpart of the zero-range-model expression
of the energy as a functional of the momentum distribution
[Table II, Eq. (5a)] is given by Table IV, Eq. (3a), where φ̃′(k)
is the zero-energy scattering state in momentum space with
the incident wave contribution ∝δ(k) subtracted out: φ̃′(k) =
φ̃(k) + a−1(2π )3δ(k) = ∫

d3re−ik·rφ′(r) with

φ′(r) = φ(r) + 1

a
. (73)

This is simply obtained by adding the kinetic energy to
Table IV, Eq. (2a) and by using the lemma∫

d3rV (r)|φ(r)|2 = 4πh̄2

ma
−

∫
d3k

(2π )3

h̄2k2

m
|φ̃′ (k) |2.

(74)

To derive this lemma, we start from Schrödinger’s equation
−(h̄2/m)�φ + V (r)φ = 0, which implies∫

d3rV (r)|φ(r)|2 = h̄2

m

∫
d3rφ�φ. (75)

Applying the divergence theorem over the sphere of radius R,
using the asymptotic expression (9) of φ and taking the limit
R → ∞ then yields∫

d3rφ�φ = 4π

a
−

∫
d3r (∇φ)2 . (76)

We then replace ∇φ by ∇φ′. Applying the Parseval-Plancherel
relation to ∂iφ

′ and using the fact that φ′(r) vanishes at infinity,
we get ∫

d3r(∇φ′)2 =
∫

d3k

(2π )3
k2|φ̃′ (k) |2. (77)

The desired result (74) follows.
Two dimensions. An additional regularization procedure

for small momenta is required in 2D, as was the case for the
zero-range model [Table II, Eq. (5b)] and for the lattice model
[Table III, Eq. (3b)]. One obtains Table IV, Eq. (3b), where
φ̃′

R(k) = ∫
d2re−ik·rφ′

R(r) with

φ′
R(r) = [φ(r) − ln(R/a)] θ (R − r) . (78)

16We consider two particles of opposite spin in a cubic box of
side L with periodic boundary conditions, and we work in the limit
where L is much larger than |a| and b. In this limit, there exists a
“weakly interacting” stationary state ψ whose energy is given by the
“mean-field” shift E = g/L3 with g = 4πh̄2a/m. The Hellmann-
Feynman theorem gives g0dE/dg0 = Eint[ψ]. But the wave function
ψ(r1,r2) � �(r12)/L3 where � is the zero-energy scattering state
normalized by � → 1 at infinity. Thus Eint = ∫

d3rV (r)|�(r)|2/L3.
The desired Eq. (70) then follows, since � = −aφ.

This follows from Table IV, Eq. (2b) and from the lemma∫
d2rV (r)|φ(r)|2

= lim
R→∞

{
2πh̄2

m
ln

(
R

a

)
−

∫
d2k

(2π )2

h̄2k2

m
|φ̃′

R (k) |2
}

.

(79)

The derivation of this lemma again starts with the 2D version
of (75). The divergence theorem then gives15∫

d2rφ�φ = lim
R→∞

{
2π ln

(
R

a

)
−

∫
r<R

d2r(∇φ)2

}
. (80)

We can then replace
∫
r<R

d2r(∇φ)2 by
∫

d2r(∇φ′
R)2, since

φ′
R(r) is continuous at r = R 15 so that ∇φ′

R does not contain
any delta distribution. The Parseval-Plancherel relation can be
applied to ∂iφ

′
R , since this function is square-integrable. Then,

using the fact that φ′
R(r) vanishes at infinity, we get∫

d2r(∇φ′
R)2 =

∫
d2k

(2π )2
k2|φ̃′

R(k)|2, (81)

and the lemma (79) follows.

C. Pair distribution function at short distances

In the zero-range regime ktypb � 1, the short-distance
behavior of the pair distribution function is given by the same
expressions [Table III, Eqs. (9a) and (9b)] as for the lattice
model. Indeed, Eq. (65) is derived in the same way as for
the lattice model; one can then use the zero-range model’s
expressions [Table II, Eqs. (2a) and (2b)] of (A,A) in terms of
C, since the finite-range model’s quantities C and A tend to
the zero-range model’s ones in the zero-range limit. In 3D, the
result [Table III, Eq. (9a)] is contained in Ref. [101].

D. Momentum distribution at large momenta

In the zero-range regime ktypb � 1 the momentum distri-
bution at large momenta k � ktyp is given by

nσ (k) � C

(4π )2 |φ̃ (k) |2 in 3D, (82)

nσ (k) � C

(2π )2
|φ̃ (k) |2 in 2D. (83)

Indeed, Eq. (68) is derived as for the lattice model, and
(A,A) can be expressed in terms of C as in the previous
subsection VI C.

VII. DERIVATIVE OF ENERGY WITH RESPECT TO
EFFECTIVE RANGE

Assuming that the zero-range model is solved, we first show
that the first correction to the energy due to a finite range of the
interaction potential V (r) can be explicitly obtained and only
depends on the s-wave effective range of the interaction. We
then enrich the discussion using the many-body diagrammatic
point of view, where the central object is the full two-body
T matrix, to recall in particular that the situation is more
subtle for lattice models [116]. Finally, we relate ∂E/∂re to
a subleading term of the short-distance behavior of the pair
distribution function in Sec. VII D and to the coefficient of the
1/k6 subleading tail of nσ (k) in Sec. VII E.
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TABLE V. For spin-1/2 fermions, derivative of the energy with respect to the effective range re, or to its square in 2D, taken at re = 0
for a fixed value of scattering length. The functions A (assumed to be real) are the ones of the zero-range regime. The compact notations for
the scalar products and the matrix elements are defined in Table I. n̄σ (k) is the average of nσ (k) over the direction of k. Ḡ

(2)
↑↓(r) is the pair

distribution function integrated over the center of mass of the pair and averaged over the direction of r.

Three dimensions Two dimensions(
∂E

∂re

)
a

= 2π (A,(E − H)A) (1a)
(

∂E

∂(r2
e )

)
a

= π (A,(E − H)A) (1b)

Hij ≡ − h̄2

4m
�Rij

− h̄2

2m

∑
k 
=i,j �rk

+ 2U (Rij ) + ∑
k 
=i,j U (rk) (2)

Ḡ
(2)
↑↓(r) =

r→0

C

(4π )2

(
1
r

− 1
a

)2 − m

2πh̄2
∂E

∂re
+ O(r) (3a) Ḡ

(2)
↑↓(r) =

r→0

C

(2π )2 ln2(r/a) − m

2πh̄2
∂E

∂(r2
e )

r2 ln2 r + O(r2 ln r) (3b)

n̄σ (k) − C

k4 ∼
k→∞

1
k6

[
16πm

h̄2
∂E

∂re
− 8π 2(A,�RA)

]
(4a) n̄σ (k) − C

k4 ∼
k→∞

1
k6

[
8πm

h̄2
∂E

∂(r2
e )

− 4π 2(A,�RA)
]

(4b)

A. Derivation of explicit formulas

Three dimensions. In 3D, the leading order finite-range
correction to the zero-range model’s spectrum depends on the
interaction potential V (r) only via its effective range re, and is
given by the expression Table V, Eq. (1a), where the derivative
is taken in re = 0 for a fixed value of the scattering length, the
function A is assumed to be real without loss of generality. As
a first way to obtain this result we use a modified version of
the zero-range model, where the boundary condition [Table I,
Eq. (1a)] is replaced by

ψ(r1, . . . ,rN )

=
rij →0

(
1

rij

− 1

a
+ m

2h̄2 Ere

)
Aij (Rij ,(rk)k 
=i,j ) + O(rij ),

(84)

where

E = E − 2U (Rij ) −
( ∑

k 
=i,j

U (rk)

)
+ 1

Aij (Rij ,(rk)k 
=i,j )

×
[

h̄2

4m
�Rij

+ h̄2

2m

∑
k 
=i,j

�rk

]
Aij (Rij ,(rk)k 
=i,j ). (85)

Equations (84) and (85) generalize the ones already used for
three bosons in free space in Refs. [126,127] (the predictions
of Refs. [126] and [127] have been confirmed using different
approaches; see Ref. [128] and references therein, and [129,
130], respectively; moreover, a derivation of these equations
was given in Ref. [126]). Such a model was also used in the
two-body case (see, e.g., [131–133]), and the modified scalar
product that makes it Hermitian was constructed in Ref. [134].

For the derivation of Table V, Eq. (1a), we consider a
stationary state ψ1 of the zero-range model, satisfying the
boundary condition Table I, Eq. (1a) with a scattering length
a and a regular part A(1), and the corresponding finite-range
stationary state ψ2 satisfying Eqs. (84) and (85) with the same
scattering length a and a regular part A(2). As in Appendix B
we get Eq. (B3), as well as Eq. (B6) with 1/a1 − 1/a2 replaced
by mEre/(2h̄2). This yields Table V, Eq. (1a).

A deeper physical understanding and a more self-contained
derivation may be achieved by going back to the actual finite-
range model V (r; b) for the interaction potential, such that the
scattering length remains fixed when the range b tends to zero.

The Hellmann-Feynman theorem gives

dE

db
=

N↑∑
i=1

N∑
j=N↑+1

∫
d3r1 . . . d3rN |ψ (r1, . . . ,rN ) |2∂bV (rij ; b).

(86)

We need to evaluate |ψ |2 for a typical configuration with
two atoms i and j within the potential range b; in the
limit b → 0 one may then assume that the other atoms are
separated by much more than b and are at distances from Rij =
(ri + rj )/2 much larger than b. This motivates the factorized
ansatz

ψ (r1, . . . ,rN ) � χ (rij )Aij (Rij ,(rk)k 
=i,j ). (87)

We take a rotationally invariant χ , because we assume the
absence of scattering resonance in the partial waves other than
s wave:17 The p-wave scattering amplitude, which vanishes
quadratically with the relative wave number k, is then O(b3k2),
resulting in an energy contribution O(b3) negligible at the
present order.

Inserting the ansatz (87) into Schrödinger’s equation
Hψ = Eψ , and neglecting the trapping potential within the
interaction range rij � b, as justified in the Appendix D,
gives18

Eχ
(
rij

) �
[
−h̄2

m
�rij

+ V (rij ; b)

]
χ (rij ), (88)

where E is given by (85). For E > 0, we set E = h̄2k2/m with
k > 0, and χ is a finite-energy scattering state; to match the
normalization of the zero-energy scattering state φ used in this

17More precisely, one first takes a general, nonrotationally invariant
function χ (r), that one then expands in partial waves of angular
momentum l; that is, in spherical harmonics. Performing the
reasoning to come for each l, one finds at the end that the l = 0
channel finite-range correction dominates for small b, in the absence
of l-wave resonance for l 
= 0. Furthermore, for three bosons, the
ansatz (87) was justified in [81] and used in [126].
18Since E depends on Rij and the (rk)k 
=i,j , χ actually depends on

these variables and not only on rij . This dependence however rapidly
vanishes in the limit b → 0, if one restricts to the distances rij � b,
for the normalization (89): ∂Eχ/χ = O(mb2/h̄2).
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FÉLIX WERNER AND YVAN CASTIN PHYSICAL REVIEW A 86, 013626 (2012)

article [see Eq. (9)], we take out of the interaction potential

χ (r) =
r→∞

1

fk

sin (kr)

kr
+ eikr

r
, (89)

where fk is the scattering amplitude. The optical theorem,
implying that

fk = − 1

ik + u (k)
, (90)

where u(k) ∈ R, ensures that χ is real.19

Inserting the ansatz (87) into the Hellmann-Feynman
expression (86) gives

dE

db
�

∑
i<j

∫
d3Rij

∫ ( ∏
k 
=i,j

d3rk

)
A2

ij (Rij ,(rk)k 
=i,j )

×
∫

d3rij χ2(rij )∂bV (rij ; b). (91)

To evaluate the integral of χ2∂bV , we use the following lemma
(whose derivation is given in the next paragraph):

4πh̄2

m
[u2(k) − u1(k)]

=
∫
R3

d3rχ1(r)χ2(r)[V (r; b1) − V (r; b2)], (92)

where χ1 and χ2 are the same energy E scattering states for
two different values b1 and b2 of the potential range. Then
dividing this expression by b1 − b2, taking the limit b1 → b2,
and afterwards the limit b2 → 0 for which the low-k expansion
holds:

u (k) = 1

a
− 1

2
rek

2 + O(b3k4), (93)

re being the effective range of the interaction potential of range
b, we obtain Table V, Eq. (1a).20

As a side result of this physical approach, the modified
contact conditions (84) may be rederived. One performs an
analytical continuation of the out-of-potential wave function
(89) to the interval r � b [105] and one takes the zero-r
limit of that continuation.21 In simple words, this amounts
to expanding Eq. (89) in powers of r:

χ (r) = 1

r
− 1

a
+ 1

2
k2re + O(r). (94)

Inserting this expansion in Eq. (87) and using k2 = mE/h̄2

gives Eq. (84).

19u(k) is related to the s-wave collisional phase shift δ0(k) by u(k) =
−k/ tan δ0(k).
20In general, when N↑ � 2 and N↓ � 2, the functions Aij have

1/rkl divergences when rkl → 0. This is apparent in the dimer-dimer
scattering problem [135]. As a consequence, in the integral of
[Table V, Eq. (1a)], one has to exclude the manifold where at least
two particles are at the same location. The same exclusion has to be
performed in 2D.
21The wave function is not an analytic function of r for a compact

support interaction potential, since a nonzero compact support
function is not analytic.

The lemma (92) is obtained by multiplying Schrödinger’s
equations for χ1 (respectively for χ2) by χ2 (respectively
by χ1), taking the difference of the two resulting equations,
integrating this difference over the sphere r < R, and using
the divergence theorem to convert the volume integral of
χ2�rχ1 − χ1�rχ2 into a surface integral, where the asymp-
totic forms (89) for r = R → +∞ may be used. When E < 0,
we set E = −h̄2κ2/m with κ > 0 and we perform analytic
continuation of the E > 0 case by replacing k with iκ . From
Eq. (89) it appears that χ (r) now diverges exponentially at
large distances, as eκr/r , if 1/f (iκ) 
= 0. If the interaction
potential is a compact support potential, or simply tends to
zero more rapidly than exp(−2κr), the lemma and the final
conclusion [Table V, Eq. (1a)] still hold; the functions u1(iκ)
and u2(iκ) remain real, since the series expansion of u(k) has
only even powers of k.

Two dimensions. The above physical reasoning may be di-
rectly generalized to 2D,22 giving Table V, Eq. (1b), where the
derivative is taken for a fixed scattering length in re = 0. The
main difference with the 3D case [Table V, Eq. (1a)] is that
the energy E now varies quadratically with the effective range
re, as already observed numerically for three-boson-bound
states in Ref. [138]. In the derivation, the first significant
difference with the 3D case occurs in the normalization of
the two-body scattering state: (89) is replaced with

χ (r) =
r→∞

π

2i

[
1

fk

J0 (kr) + H
(1)
0 (kr)

]
, (95)

where H
(1)
0 = J0 + iN0 is a Hankel function, and J0 and N0

are Bessel functions of the first and second kinds. The optical
theorem implies |fk|2 + Refk = 0 so that

fk = −1

1 + iu (k)
with u (k) ∈ R, (96)

and χ is real. The low-k expansion for a potential of range b

takes the form [139,140]

u (k) = 2

π

[
ln (eγ ka/2) + 1

2
(kre)2 + · · ·

]
, (97)

where γ = 0.577 216 . . . is Euler’s constant, the logarithmic
term being obtained in the zero-range Bethe-Peierls model and
the k2 term corresponding to finite effective-range corrections
(with the sign convention of Ref. [139] such that r2

e > 0 for a
hard-disk potential). The subsequent calculations are similar to
the 3D case, also for the negative-energy case where analytic
continuation gives rises to the special functions I0(κr) and
K0(κr). For example, at positive energy, the lemma (92) takes

22We consider here a truly 2D gas. In experiments, quasi-2D gases
are produced by freezing the z motion in a harmonic oscillator
ground state of size az = [h̄/(mωz)]1/2: At zero temperature, a
2D character appears for h̄2k2

F /(2m) � h̄ωz. From the quasi-2D
scattering amplitude given in Ref. [136] (see also Ref. [137]) we
find the effective-range squared, r2

e = −(ln 2)a2
z . Anticipating on

subsection VII B we also find ρe = R1 = 0. It would be interesting
to see if the finite-range energy corrections dominate over the
corrections due to the 3D nature of the gas, both effects being
controlled by the same small parameter (kF re)2.
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in 2D the form

π2h̄2

m
[u1 (k) − u2 (k)]

=
∫
R2

d2rχ1(r)χ2(r) [V (r; b1) − V (r; b2)] . (98)

The fact that one can neglect the trapping potential within the
interaction range is again justified in Appendix D. Finally, we
note that the expansion of the asymptotic form (95) for r → 0
and for k → 0,

χ (r) = ln(r/a) − 1
2 (kre)2 + O(r2 ln r), (99)

allows us to determine the 2D version of the modified zero-
range model (84),

ψ (r1, . . . ,rN )

=
rij →0

(
ln(rij /a) − m

2h̄2 Er2
e

)
Aij (Rij ,(rk)k 
=i,j ) + O(rij ),

(100)

where E is defined as in 3D by Eq. (85). To complete this 2D
derivation, one has to check that the p-wave interaction brings
a negligible contribution to the energy. The p-wave scattering
amplitude at low relative wave number k vanishes as k2R2

1
where R2

1 is the p-wave scattering surface [141]. One could
believe that re ≈ R1 ≈ b, one would then conclude that the
p-wave contribution to the energy, scaling as R2

1, cannot be
neglected as compared to the s-wave finite-range correction,
scaling as r2

e . Fortunately, as shown in subsection VII B, this
expectation is too naive, and Table V, Eq. (1b) is saved by a
logarithm, re being larger than R1 by a factor ln(a/b) � 1 in
the zero-range limit.23

B. What we learn from diagrammatic formalism

In the many-body diagrammatic formalism [142,143], the
equation of state of the homogeneous gas (in the thermo-
dynamic limit) is accessed from the single-particle Green’s
function, which can be expanded in powers of the interaction
potential, each term of the expansion being represented by
a Feynman diagram. The internal momenta of the diagrams
can however be as large as h̄/b, where b is the interaction
range. A standard approach to improve the convergence of
the perturbative series for strong interaction potentials is
to perform the so-called ladder resummation. The resulting
Feynman diagrams then involve the two-body T matrix of the
interaction, rather than the bare interaction potential V . For the
spin-1/2 Fermi gas, where there is a priori no Efimov effect,
one then expects that the internal momenta of the Feynman
diagrams are on the order of h̄ktyp only, where the typical
wave number ktyp was defined in subsection III B. As put
forward in Ref. [116], the interaction parameters controlling
the first deviation of the gas energy from its zero-range limit
are then the ones appearing in the first deviations of the

23As in 3D one may also be worried by the dependence of χ with Rij

and the (rk)k 
=i,j via its dependence with the energy E . We reach the
estimate ∂Eχ (b)/χ (b) ≈ mr2

e /[h̄2 ln(a/b)] that vanishes more rapidly
than r2

e in the zero-range limit.

two-body T -matrix element 〈k1,k2|T (E + i0+)|k3,k4〉 from
its zero-range limit, where all the ki are on the order of ktyp

and E is on the order of h̄2k2
typ/m. The single-particle Green’s

function is indeed a sum of integrals of products of T -matrix
elements and of ideal-gas Green’s functions.

We explore this idea in this subsection. For an interaction
potential V (r), we confirm the results of subsection VII A. In
addition to the effective range re characterizing the on-shell T -
matrix elements (that is the scattering amplitude), the diagram-
matic point of view introduces a length ρe characterizing the
s-wave low-energy off-shell T -matrix elements, and a length
R1 characterizing the p-wave on-shell scattering; we will show
that the contributions of ρe and R1 are negligible as compared
to the one of the effective range re. Moreover, in the case of
lattice models, a length Re characterizing the breaking of the
Galilean invariance appears [116]. Its contribution is in general
of the same order as the one of re. Both contributions can be
zeroed for appropriately tuned matterwave dispersion relations
on the lattice. Finally, in the case of a continuous space model
with a δ interaction potential plus a spherical cutoff in momen-
tum space, and in the case of a lattice model with a spherical
momentum cutoff, we show that the breaking of Galilean
invariance does not disappear in the infinite-cutoff limit.

1. For continuous space interaction V (r)

When each pair of particles i and j interact in continuous
space via the potential V (rij ), one can use Galilean invariance
to restrict the T matrix to the center-of-mass frame, where
k′ ≡ k1 = −k2 and k ≡ k3 = −k4. Further using rotational
invariance, one can restrict this internal T matrix to fixed
total angular momentum l, with matrix elements characterized
by the function tl(k′,k; E) whose low-energy behavior was
extensively studied [141,144]. This function is said to be on
shell if and only if k = k′ = (mE)1/2/h̄, in which case it is
simply noted as tl(E), otherwise it is said to be off shell.

Three dimensions. We assume that the interaction potential,
of compact support of range b, is everywhere nonpositive (or
infinite). We recall that we are here in the resonant regime, with
a s-wave scattering length a such that |a| � b. The potential
is assumed to have the minimal depth leading to the desired
value of a, so as to exclude deeply bound dimers. In particular,
at resonance (1/a = 0), there is no two-body bound state.
To invalidate the usual variational argument [115,145–147]
(which shows, for a nonpositive interaction potential, that
the spin-1/2 fermions have deep N -body bound states in the
large-N limit), we allow that V (r) has a hard core of range
bhard < b. We directly restrict to the s-wave case (l = 0), since
the nonresonant p-wave interaction brings a negligible O(b3)
contribution, as already discussed in Sec. VII A.

The first deviation of the on-shell s-wave T matrix from
its zero-range limit is characterized by the effective range re,
already introduced in Eq. (93). The effective range is given by
the well-known Smorodinski formula [140]

1

2
re =

∫ +∞

0
dr

[
(1 − r/a)2 − u2

0(r)
]
, (101)

in terms of the zero-energy scattering state φ(r), with u0(r) =
rφ(r) and where φ is normalized as in Eq. (9). Note that u0(r) is
zero for r � bhard. As re deviates from its resonant (|a| → ∞)
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value by terms O(b2/a), the discussion of its 1/a = 0 value is
sufficient here. The function u0 then solves

0 = −h̄2

m
u′′

0(r) + V (r)u0(r), (102)

with the boundary conditions u0(bhard) = 0 and u0(r) = 1 for
r > b. Due to the absence of two-body bound states, u0 is the
ground two-body state and it has a constant sign, u0(r) � 0 for
all r . Since V � 0, Eq. (102) implies that u′′

0 � 0; the function
u0 is concave. Combined with the boundary conditions, this
leads to 0 � u0(r) � 1 for all r . Then, from Eq. (101),

2bhard � re � 2b. (103)

For the considered model, this proves that ktypre → 0 in the
zero-range limit b → 0, which is a key property for the present
work. Note that the absence of two-body bound states at
resonance is the crucial hypothesis ensuring that re � 0; it was
not explicitly stated in the solution of problem 1 in Sec. 131
of Ref. [148]. Without this hypothesis, re at resonance can be
arbitrarily large and negative even for V (r) � 0 for all r (see
an explicit example in Ref. [122]).

In the s-wave channel, the first deviations of the off-shell T

matrix from its zero-range value introduces, in addition to re,
another length that we call ρe, such that [144]24

t0(k,k′;E)
t0(E) −1 ∼

k,k′,E→0

(
2mE

h̄2 − k2 − k′2
)

1

2
ρ2

e ,

(104)
1

2
ρ2

e =
∫ +∞

0
drr[(1 − r/a) − u0(r)].

For our minimal-depth model at resonance, we conclude that
0 � ρ2

e � b2, so it appears in the finite-range correction to the
energy at a higher order than re and it cannot contribute to
Table V, Eq. (1a).

Two dimensions. The specific feature of the 2D case is
that the minimal-depth attractive potential ensuring the desired
scattering length a only weakly dephases the matterwave over
its range, when ln(a/b) � 1. This is apparent, for example, if

V (r) is a square-well potential of range b, V (r) = − h̄2k2
0

m
θ (b −

r): One has −k0bJ ′
0(k0b)/J0(k0b) = 1/ ln(a/b), where J0

is a Bessel function, which shows that, for the minimal-
depth solution, the matterwave phase shift k0b vanishes as
[2/ ln(a/b)]1/2 in the zero-range limit. This property allows to
treat the potential perturbatively.

There are three relevant parameters describing the low-
energy behavior of the T matrix beyond the zero-range limit.
The first one is the effective range re for the s-wave on-shell
T matrix, see Eq. (97). It is given by the bidimensional
Smorodinski formula [139,140]:

1

2
r2
e =

∫ +∞

0
drr[ln2(r/a) − φ2(r)] (105)

where the zero-energy scattering state φ(r) is normalized as in
Eq. (10). The second parameter is the length ρe associated with

24We have checked that the hypothesis of a nonresonant interaction
in Ref. [144] is actually not necessary to obtain (C16) and (C18) of
that reference, that lead to Eq. (104).

the s-wave off-shell T matrix: The 2D equivalent of Eq. (104)
is [141]

t0(k,k′;E)
t0(E) −1 ∼

k,k′,E→0

(
2mE

h̄2 − k2 − k′2
)

1

2
ρ2

e ,

(106)
1

2
ρ2

e =
∫ +∞

0
drr [φ(r) − ln(r/a)] .

The third parameter is the length R1 characterizing the low-
energy p-wave scattering. For the l-wave scattering state of
energy E = h̄2k2/m, k > 0, we generalize Eq. (95) as

χ (l)(r) =
r→∞

π

2i
kl

[
1

f
(l)
k

Jl (kr) + H
(1)
l (kr)

]
. (107)

The l-wave scattering amplitude then vanishes as

f
(l)
k ∼

k→0
i
π

2
k2lR2l

l , (108)

and the leading behavior of the off-shell l-wave T matrix is
characterized by the same length Rl as the on-shell one [141].

The situation thus looks critical in 2D: Three lengths
squared characterize the low-energy T matrix, one may naively
expect that they are of the same order ≈b2 and that they all three
contribute to the finite-range correction to the gas energy at the
same level, whereas Table V, Eq. (1b) singles out the effective
range re. By a perturbative treatment of the minimal-depth
finite-range potential V (r) of fixed scattering length a, we
however obtain in the zero-range limit the following hierarchy
(see Appendix E):

r2
e ∼

b→0
2ρ2

e ln(a/b), (109)

ρ2
e =

b→0

1

2

∫
R2 d2rr2V (r)∫
R2 d2rV (r)

[
1 + O

(
1

ln(a/b)

)]
, (110)

R2
1 ∼

b→0

ρ2
e

2 ln(a/b).
(111)

This validates Table V, Eq. (1b) when ln(a/b) � 1.

2. Lattice models

We restrict here for simplicity to the 3D case. To obtain
a nonzero T -matrix element 〈k1,k2|T (E + i0+)|k3,k4〉, due
to the conservation of the total quasimomentum, we have to
restrict to k1 + k2 = k3 + k4 ≡ K (modulo a vector of the
reciprocal lattice). As the interactions in the lattice model are
purely on site, the matrix element only depends on the total
quasimomentum K and the energy E and is noted as t(K,E)
in what follows. We recall that the bare coupling constant g0 is
adjusted to have a fixed scattering length a on the lattice [see
Eq. (11)], which leads to

g0 = 4πh̄2a/m

1 − K3a/b
, (112)

where the numerical constant K3 depends on the lattice
dispersion relation εk. One then gets [116]

1

t(K,E)
= m

4πh̄2a

−
∫

D

d3q

(2π )3

(
1

2εq
+ 1

E + i0+ − ε 1
2 K + q − ε 1

2 K − q

)
,

(113)
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where a is the s-wave scattering length and the dispersion
relation εq is extended by periodicity from the first Brillouin
zone D to the whole space. The low-K and low-energy limit
of that expression was worked out in Ref. [116], it involves
the effective range re and an extra length Re quantifying the
breaking of Galilean invariance:

1

t (K,E)
= m

4πh̄2

(
1

a
+ ik − 1

2
rek

2 − 1

2
ReK

2

)
+ · · · (114)

where the relative wave number k such that E − h̄2K2

4m
= h̄2k2

m

is either real nonnegative or purely imaginary with a positive
imaginary part. The two lengths are given by

re =
∫
R3\D

d3q

π2q4
+

∫
D

d3q

π2

[
1

q4
−

(
h̄2

2mεq

)2]
, (115)

Re = −
∫

◦
D

d3q

4π2

(
h̄2

2mεq

)2 [
1 − m

h̄2

∂2εq

∂q2
x

]

−
∫ π

b

− π
b

∫ π
b

− π
b

dqydqz

8π2

h̄2

mε2
( π

b
,qy ,qz)

∂ε( π
b
,qy ,qz)

∂qx

, (116)

where the dispersion relation εk was supposed to be twice

differentiable on the interior
◦
D of the first Brillouin zone

and to be invariant under permutation of the coordinate axes.
As compared to Ref. [116] we have added the second term
(a surface term) in Eq. (116) to include the case where the
dispersion relation has cusps at the border of the first Brillouin
zone.25 As mentioned in the introduction of the present section,
we then expect that, in the lattice model, the first deviation
of any many-body eigenenergy E from the zero-range limit
is a linear function of the two parameters re and Re with
model-independent coefficients:

E(b) =
b→0

E(0) + ∂E

∂re

re + ∂E

∂Re

Re + o(b). (117)

This feature was overlooked in the early version [90] of
this work. It invalidates the discussion of ∂Tc/∂re given in
Ref. [90].

We illustrate this discussion with a few relevant exam-
ples. For a parabolic dispersion relation εk = h̄2k2/(2m),
the constant K3 = 2.442 749 607 806 335 . . . [15,149] and
the effective range [114,122] were already calculated, first
numerically then analytically; in the quantity Re, the first term
vanishes but there is still breaking of Galilean invariance due
to the nonzero surface term that can be deduced from Eq. (F6):

re = b
12

√
2

π3
arcsin

1√
3

� 0.337b and Re = − 1

12
re.

(118)

25This term is obtained by distinguishing three integration zones
before taking the limit Kx → 0, so as to fold back the vectors q ± 1

2 K
inside the first Brillouin zone: the left zone − π

b
< qx < − π

b
+ 1

2 Kx

where εq− 1
2 K is written as εq+ 2π

b
ex− 1

2 K, the right zone π

b
− 1

2 Kx <

qx < π

b
where εq+ 1

2 K is written as εq− 2π
b

ex+ 1
2 K, and the central zone.

The surface term can also be obtained by interpreting ∂2
qx

in the sense
of distributions, after having shifted the integration domain D by
π

b
ex for mathematical convenience. The second-order derivative in

the first term of Eq. (116) is of course taken in the sense of functions.

A popular model for quantum Monte Carlo simulations is
the Hubbard model, which leads to the dispersion rela-
tion εHub

k = [h̄2/(mb2)][3 − cos(kxb) − cos(kyb) − cos(kzb)]
(as already mentioned in subsection III B). This leads to
K3 � 3.175 911 6. Again, both re and Re differ from zero:

re � −0.305 718b and Re � −0.264 659b. (119)

In an attempt to reduce the dependence of the Monte Carlo
results on the grid spacing b, a zero-effective-range dispersion
relation was constructed [122,150],

εk = h̄2k2

2m
[1 − C(kb/π )2], (120)

with C � 0.257 022 and used in real simulations [150]. The
corresponding K3 � 2.899 952. Unfortunately, this leads to a
sizable Re:

Re � −0.168b. (121)

As envisioned in Ref. [116] one may look for dispersion
relations with re = Re = 0. We have found an example of
such a magic dispersion relation:

εk = εHub
k [1 + αX + βX2] with X = εHub

k

6h̄2/(mb2)
. (122)

Two sets of parameters are possible. The first choice is

α � 1.470 885 and β � −2.450 725, (123)

which leads to K3 � 3.137 788. The second choice is

α � −1.728 219 and β � 12.838 540, (124)

which leads to K3 � 1.949 671. Other examples of magic
dispersion relation can be found [151].

3. Single-particle momentum-cutoff model

A continuous-space model used in particular in Ref. [57]
takes a Dirac δ interaction potential g0δ(ri − rj ) between
particles i and j and regularizes the theory by introducing
a cutoff � on all the single-particle wave vectors. Due to the
conservation of momentum one needs to evaluate the T matrix
only between states with the same total momentum h̄K. Due
to the contact interaction the resulting matrix element depends
only on K and on E and is noted as t(K,E). Expressing g0 in
terms of the s-wave scattering length as in Ref. [57], one gets

1

t (K,E)
= m

4πh̄2a
−

∫
R3

d3q

(2π )3

[
θ (� − q)

2εq

+ θ
(
�− ∣∣ 1

2 K + q
∣∣)θ(

�− ∣∣ 1
2 K − q

∣∣)
E + i0+ − ε 1

2 K+q − ε 1
2 K−q

]
, (125)

where εq = h̄2q2/(2m) for all q. Introducing the relative wave
number k such that E − h̄2K2/(4m) = h̄2k2/m, k ∈ R+, or
k ∈ iR+, we obtain the low-wave-numbers expansion

1

t (K,E)
= m

4πh̄2

(
1

a
+ ik − K

2π
− 1

2
rek

2 − 1

2
ReK

2

)
+ · · · .

(126)
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FIG. 1. (Color online) Illustration of Juillet effect for lattice model: In the cubic box [0,L]3 with periodic boundary conditions, ground-state
energy of two opposite spin fermions as a function of the grid spacing b, for an infinite scattering length (1/a = 0), for a total momentum equal
to 0 in (a) and equal to (2πh̄/L)ez in (b). Three dispersion relations εk are considered, the quartic one of Eq. (120) with zero effective range
re = 0 (in blue, lower set), and the magic one (122) with re = Re = 0 with the parameters of Eq. (123) (in black, upper set) and of Eq. (124) (in
red, middle set). The fact that the energy varies linearly in b for the re = 0 quartic dispersion relation at zero total momentum is the Juillet effect
explained in Sec.VII C, and the corresponding dashed line is the analytical result (134). At nonzero total momentum the quartic dispersion
relation leads to an energy variation linear in b as expected, for example, from the fact that it has a nonzero Re (the dotted line is a linear fit
for b/L � 0.01). The magic dispersion relations lead to a O(b2) variation of the energy both at zero and nonzero total momentum (the dotted
lines are purely quadratic fits performed for b/L � 0.02).

The effective range is given by re = 4/(π�) and the length
Re = re/12.26 The unfortunate feature of this model is the
occurrence of a term linear in K , that does not disappear even
if � → +∞: The model thus does not reproduce the universal
zero-range model in the large-cutoff limit, as soon as pairs of
particles have a nonzero total momentum. Note that, here, one
cannot exchange the order of the integration over q and the
� → ∞ limit. As a concrete illustration of the breaking of
the Galilean invariance, for a > 0 and in the limit � → +∞,
it is found (e.g., by calculating the pole of the T matrix) that
the total energy of a free-space dimer of total momentum
h̄K is

Emodel
dim (K) = h̄2K2

4m
− h̄2

m

(
1

a
− K

2π

)2

(127)

and that this dimer state exists only for K < 2π/a.27

4. Single-particle momentum-cutoff lattice model

A spherical momentum cutoff was also introduced for a
lattice model in Refs. [53,56,155,156]. Our understanding is
that this amounts to taking the following dispersion relation
inside the first Brillouin zone: εk = h̄2k2/(2m) for k < π/b,
εk = +∞ otherwise. The T matrix is then given by Eq. (113),
where for K 
= 0 one extends εk by periodicity out of the
first Brillouin zone. By distinguishing three zones within
the integration domain for q, similarly to the note,25 and

26The integration can be performed in spherical coordinates of polar
axis the direction of K.
27This problem does not show up in recent studies of the fermionic

polaron problem [152,153] since the momentum cutoff is intro-
duced only for the majority atoms and not for the impurity (see
Ref. [154]).

restricting for simplicity to E = h̄2K2/(4m), we find the
same undesired term −K/(2π ) as in Eq. (126), implying
that the model does not reproduce the unitary gas even
for b → 0.

C. Juillet effect for lattice models

With the lattice dispersion relation εk of Eq. (120), adjusted
to have a zero effective range re = 0, Juillet numerically
observed, for two particles in the cubic box [0,L]3 with
periodic boundary conditions and zero total momentum, that
the first energy correction to the zero-range limit b → 0
is linear in b [151], which seems to contradict Table V,
Eq. (1a). This is illustrated in Fig. 1. This cannot be explained
by a nonzero Re [defined in Eq. (116)] because the two
opposite-spin fermions have here a zero total momentum.

This Juillet effect, as we shall see, is due to the fact that
the integral of 1/εk over k in the first Brillouin zone and the
corresponding discrete sum for the finite-size quantization box
differ for b/L → 0 not only by a constant term but also by a
term linear in b, when the dispersion relation has a cusp at
the surface of the first Brillouin zone, such as Eq. (120). The
Juillet effect thus disappears in the thermodynamic limit. This
explains why it does not show up in the diagrammatic point
of view of Sec. VII B, which was considered in the thermody-
namic limit, so that only momentum integrals appeared. This
also shows that the Juillet effect does not invalidate Table V,
Eq. (1a) since it was derived for an interaction that is smooth
in momentum space.

In Ref. [149] it was shown that the lattice model spectrally
reproduces the zero-range model when the grid spacing b → 0.
We now simply extend the reasoning of Ref. [149] for two
particles to first order in b included. For an eigenenergy E

which does not belong to the noninteracting spectrum, the
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exact implicit equation is

1

g0
+ 1

L3

∑
k∈D

1

2εk − E
= 0, (128)

where the notation with a discrete sum over k implicitly
restricts k to (2π/L)Z3. By adding and subtracting terms and
using expressions (11) and (115) for the bare coupling constant
g0 and the effective range re, one obtains the useful form

1

g
− m2Ere

8πh̄4 + 1

L3

[
− 1

E
+

∑
k∈D∗

F (εk) +
∑

k∈R3∗

E

(h̄2k2/m)2

]

= R1 + ER2 − ER3 (129)

with g = 4πh̄2a/m and F (ε) = (2ε − E)−1 − (2ε)−1 −
E/(2ε)2. We have defined

R1 ≡
∫

D

d3k

(2π )3

1

2εk
− 1

L3

∑
k∈D∗

1

2εk
, (130)

proportional to the function C(b) introduced in Ref. [149].
The quantities R2 and R3 have the same structure: R2 is
obtained by replacing in R1 the function 1/(2εk) by 1/(2εk)2 −
1/(h̄2k2/m)2, in the integral and in the sum; R3 is obtained by
replacing in R1 the function 1/(2εk) by 1/(h̄2k2/m)2 and the set
D by R3 \ D, both for the integration and for the summation.

We now take b → 0 in Eq. (129), keeping terms up to O(b)
included. Since F (ε) = O(1/ε3) at large ε, we can replace
F (εk) by its b → 0 limit F (h̄2k2/(2m)), and the summation
set D∗ by its b → 0 limit:28

∑
k∈D∗

F (εk) =
b→0

∑
k∈R3∗

F

(
h̄2k2

2m

)
+ O(b2). (131)

In the quantities Ri , we perform the change of variables k =
2πq/b, and we write the dispersion relation as

εk = (2πh̄)2

mb2
ηkb/(2π), (132)

where the dimensionless ηq does not depend on the lattice
spacing b. We then find that bR1, R2/b, and R3/b are differ-
ences between a converging integral and a three-dimensional
Riemann sum with a vanishing cell volume (b/L)3. As these
differences vanish as O(b), we conclude that R2 = O(b2) and
R3 = O(b2) can be neglected in Eq. (129). This however leads
only to R1 = O(1), so that more mathematical work needs to
be done, as detailed in Appendix F, to obtain

h̄2

m
LR1 =

b→0

C
4π2

+ πRsurf
e

2L
+ O (b/L)2 . (133)

The numerical constant C � 8.913 63 was calculated and
called C(0) in Ref. [149]. Rsurf

e remarkably is the surface
contribution to the quantity Re in Eq. (116), it scales as b.
It is nonzero only when the dispersion relation has a cusp at

28One has εk = [h̄2k2/(2m)][1 + O(k2b2)]. For the finite number
low-energy terms, we directly use this fact. For the other terms,
such that εk � |E| and �(2πh̄)2/(mL2), we use F (εk) − F ( h̄2k2

2m
) �

(εk − h̄2k2

2m
)F ′( h̄2k2

2m
) = O(b2/k4) which is integrable at large k in 3D

and leads to a total error O(b2).

the surface of the first Brillouin zone. In this case, R1 varies
to first order in b, which comes in addition to the expected
linear contribution of the Ere term in Eq. (129): This leads to
the Juillet effect. More quantitatively, the first deviation of the
eigenenergy from its zero-range limit E0, shown as a dashed
line in Fig. 1(a), is29

E − E0 ∼
b→0

m2E0re

8πh̄4 + mπRsurf
e

2h̄2L2

1
L3

∑
k∈R3

1

( h̄2k2
m

−E0)2

. (134)

D. Link between ∂ E/∂ re and subleading short-distance
behavior of pair distribution function

As shown by Table II, Eqs. (3a) and (3b), the short-distance
behavior of the pair distribution function (averaged over the
center-of-mass position of the pair) diverges as 1/r2 in 3D
and as ln2 r in 2D, with a coefficient proportional to C; that
is, related to the derivative of the energy with respect to the
scattering length a. Here, we show that a subleading term in
this short-distance behavior is related to the derivative of the
energy with respect to the effective range re. To this end, we
explicitly write the next-order term in the contact conditions
Table I, Eqs. (1a) and (1b).

Three dimensions. Including the next-order term in Table I,
Eq. (1a) gives

ψ (r1, . . . ,rN )

=
rij →0

(
1

rij

− 1

a

)
Aij (Rij ,(rk)k 
=i,j ) + rij Bij (Rij ,(rk)k 
=i,j )

+
3∑

α=1

rij,αL
(α)
ij (Rij ,(rk)k 
=i,j ) + O

(
r2
ij

)
, (135)

where we have distinguished between a singular part linear
with the interparticle distance rij and a regular part linear in
the relative coordinates of i and j (rij,α is the component along
axis α of the vector rij ). Injecting this form into Schrödinger’s
equation, keeping the resulting ∝1/rij terms and using the
notation of Table V, Eq. (2) gives

Bij (Rij ,(rk)k 
=i,j ) = − m

2h̄2 (E − Hij )Aij (Rij ,(rk)k 
=i,j ).

(136)

Table V, Eq. (1a) thus becomes

∂E

∂re

= −4πh̄2

m
(A,B). (137)

We square Eq. (135) and, as in Sec. IV B, we integrate over
Rij , the rk , and we sum over i < j . We further average G

(2)
↑↓(r)

over the direction of r to eliminate the contribution of the
regular term Lij , defining Ḡ

(2)
↑↓(r) = [G(2)

↑↓(r) + G
(2)
↑↓(−r)]/2.

We obtain Table V, Eq. (3a).

29The contribution proportional to re in Eq. (134) can also be obtained
from Table V, Eq. (1a) and from the fact that

∑
k
=0 eik·r/k2 ∼

L3/(4πr) for r → 0.
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Two dimensions. Including next-order terms in Table I,
Eq. (1b) gives30

ψ(r1, . . . ,rN ) =
rij →0

ln(rij /a)Aij (Rij ,(rk)k 
=i,j )

+ r2
ij ln rij Bij (Rij ,(rk)k 
=i,j )

+
2∑

α=1

rij,αL
(α)
ij (Rij ,(rk)k 
=i,j ) + O

(
r2
ij

)
.

(138)

Proceeding as in 3D we obtain

Bij (Rij ,(rk)k 
=i,j ) = − m

4h̄2 (E − Hij )Aij (Rij ,(rk)k 
=i,j ).

(139)

Table V, Eq. (1b) thus becomes

∂E

∂
(
r2
e

) = −4πh̄2

m
(A,B). (140)

These equations finally leads to Table V, Eq. (3b).

E. Link between ∂ E/∂ re and 1/k6 subleading tail
of momentum distribution

A general idea given in Ref. [91] is that singular terms
in the dependence of ψ on the interparticle distance rij (at
short distances) reflect into power-law tails in the momentum
distribution nσ (k) given by Eq. (23). In Sec. IV A, we restricted
to the leading order. Here, we include the subleading term and
we follow the same reasoning as in Sec. IV A to obtain31,32

n̄σ (k) =
k→∞

C

k4
+ D

k6
+ · · · , (141)

where n̄σ (k) = 1
d

∑d
i=1 nσ (kui) and D is the linear combina-

tion of ∂E/∂re and (A,�RA) given in Table V, Eqs. (4a) and
(4b). Physically, the extra term (A,�RA) results from the fact
that the wave vector k1 of a particle in an ↑↓ colliding pair is
a linear combination of the relative wave vector krel and of the
center-of-mass wave vector K of the pair, so that, even if the
probability distribution of krel was exactly scaling as 1/k4

rel, a
nonzero K would generate a subleading 1/k6

1 contribution in
the single-particle momentum distribution.

30From Schrödinger’s equation, �rij
ψ diverges at most as ψ itself;

that is, as ln rij , for rij → 0. The particular solution f (r) = 1
4 r2(ln r −

1) of �rf (r) = ln r fixes the form of the subleading term in ψ .
31In 3D we used the identity

∫
d3reik·r/r = 4π/k2 and its derivatives

with respect to kα; for example, taking the Laplacian with respect to
k gives

∫
d3reik·rr = −8π/k4. Equivalently, one can use the relation∫

d3reik·r u(r)
r

= 4π

k2 u(0) − 4π

k4 u(2)(0) + O(1/k6) and its derivatives
with respect to kα; this relations holds for any u(r) which has a series
expansion in r = 0 and rapidly decreases at ∞. In 2D for k > 0 we
used the identity

∫
d2reik·r ln r = −2π/k2 and its derivatives with

respect to kα . The regular terms involving L
(α)
ij have (as expected) a

negligible contribution to the tail of nσ (k).
32The configurations with three close particles contribute to the tail

of nσ (k) as 1/k5+2s , see a note of Ref. [98], with s defined in Sec. X B,
which is negligible for s > 1/2.

This is apparent for the simple case of a free-space dimer:
When the dimer is at rest, ψ(r1,r2) = φdim(r12), A12(R12) is
uniform and the extra term vanishes. When it has a momentum
K, ψ(r1,r2) = eiK·R12φdim(r12), which shifts the single-particle
momentum distribution, nmov

↑ (k) = nrest
↑ (k − K/2). Applying

this shift to the momentum tail C/k4 gives, after continuous
average over the direction of k, a subleading δDmov/k6

contribution, with δDmov = CK2/2 in 3D and δDmov = CK2

in 2D. Remarkably, the ratio of the extra term to C is
proportional to the pair–center-of-mass kinetic energy.

In the N -body case, one can generalize this property by
defining the mean center-of-mass kinetic energy of a ↑↓
pair at vanishing pair diameter, which is allowed in quantum
mechanics since the center-of-mass operators and the relative-
particle operators commute.33 By a direct generalization of
the pair distribution function of Sec. IV B, one has for
the opposite-spin pair density operator 〈r↑,r↓|ρ̂(2)

↑↓|r′
↑,r′

↓〉 =
〈ψ̂†

↑(r′
↑)ψ̂†

↓(r′
↓)ψ̂↓(r↓)ψ̂↑(r↑)〉. Whereas the usual pair–center-

of-mass density operator is obtained by taking the trace over
the relative coordinates r = r↑ − r↓, we rather define it here
by taking the limit of vanishing relative coordinates,

〈R|ρ̂(2)
CoM|R′〉 = N lim

r→0

〈
R + r

2 ,R − r
2

∣∣ρ̂(2)
↑↓

∣∣R′ + r
2 ,R′ − r

2

〉
φ2(r)

,

(142)

where the factor N is such that ρ̂
(2)
CoM has a unit trace and

φ(r) is the zero-energy scattering state of Eqs. (9) and (10).
Proceeding as in Sec. IV B we obtain

〈R|ρ̂(2)
CoM|R′〉 = N

∑
i<j

∫ ( ∏
k 
=i,j

ddrk

)
A∗

ij (R′,(rk)k 
=i,j )

×Aij (R,(rk)k 
=i,j ). (143)

By taking the expectation value of −(h̄2/4m)�R within ρ̂
(2)
CoM,

we finally obtain for the mean pair–center-of-mass kinetic
energy at vanishing diameter:

E
r↑↓→0
kin pair−CoM = − h̄2

4m

(A,�RA)

(A,A)
, (144)

where the denominator is ∝C [see Table II, Eqs. (2a) and (2b)].

VIII. GENERALIZATION TO ARBITRARY
STATISTICAL MIXTURES

In this section, we generalize some of the relations derived
in the previous sections for pure states to the case of
arbitrary statistical mixtures. Let us first discuss zero-range
interactions. We consider a statistical mixture of pure states
ψn with occupation probabilities pn, which is arbitrary, but
nonpathological in the following sense [97]: Each ψn satisfies
the contact condition [Table I, Eqs. (1a) and (1b)]; moreover,
pn decays sufficiently quickly at large n so that we have C =∑

n pnCn, where Cn (resp. C) is defined by Table II, Eq. (1)
with nσ (k) = 〈c†σ (k)cσ (k)〉 and 〈·〉 = 〈ψn| · |ψn〉 (respectively,

33Similarly, a “contact current” was recently introduced in Ref. [157],
whose spatial integral is proportional to (A,∇RA).
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〈·〉 = ∑
n pn〈ψn| · |ψn〉). Then, the relations in lines 3, 5, 6,

and 7 of Table II, which were derived in Sec. IV for any pure
state satisfying the contact conditions, obviously generalize to
such a statistical mixture. The relations for the time derivative
of E (Table II line 12) hold for any time-evolving pure state
satisfying the contact conditions for a time-dependent a(t),
and thus also for any statistical mixture of such time-evolving
pure states.

For lattice models, one can obviously take an average of
the definition of Ĉ [Table III, Eqs. (1a) and (1b)] to define
C = 〈Ĉ〉 for in any statistical mixture; taking averages of the
relations between operators [Table III, lines 2, 3, and 8] then
gives relations valid for any statistical mixture.

IX. THERMODYNAMIC EQUILIBRIUM IN
CANONICAL ENSEMBLE

We now turn to the case of thermal equilibrium in the
canonical ensemble. We use the notation

λ ≡
{

−1/a in 3D
1
2 ln a in 2D.

(145)

A. First-order derivative of E

The thermal average in the canonical ensemble dE/dλ can
be rewritten in the following more familiar way, as detailed in
Appendix G: (

dE

dλ

)
=

(
dF

dλ

)
T

=
(

dĒ

dλ

)
S

, (146)

where (· · · ) is the canonical thermal average, F is the free
energy, and S is the entropy. Taking the thermal average of
Table II, Eqs. (4a) and (4b) (which was shown above for any
stationary state) thus gives Table II, Eqs. (9a) and (9b).

B. Second-order derivative of E

Taking a thermal average of the line 8 in Table II we get,
after a simple manipulation,

1

2

(
d2E

dλ2

)
=

(
4πh̄2

m

)2
1

2Z

∑
n,n′;En 
=En′

e−βEn − e−βEn′

En − En′

× |(A(n′),A(n))|2, (147)

where Z = ∑
n exp(−βEn). This implies(

d2E

dλ2

)
< 0. (148)

Moreover, one can check that(
d2F

dλ2

)
T

−
(

d2E

dλ2

)
= −β

[(
dE

dλ

) 2

−
(

dE

dλ

) 2]
< 0,

(149)

which implies Table II, Eqs. (10a) and (10b). In usual cold-
atom experiments, however, there is no thermal reservoir
imposing a fixed temperature to the gas; one rather can
achieve adiabatic transformations by a slow variation of the

scattering length of the gas [158–160] where the entropy is
fixed [161–163]. One also more directly accesses the mean
energy Ē of the gas rather than its free energy, even if
the entropy is also measurable [38,39]. The second-order
derivative of Ē with respect to λ for a fixed entropy is thus the
relevant quantity to consider. As shown in Appendix G one
has in the canonical ensemble(

d2Ē

dλ2

)
S

=
(

d2E

dλ2

)
+

[
Cov

(
E,dE

dλ

)]2 − Var(E)Var
(

dE
dλ

)
kBT Var(E)

,

(150)

where Var(X) and Cov(X,Y ) stand for the variance of the
quantity X and the covariance of the quantities X and Y

in the canonical ensemble, respectively. From the Cauchy-
Schwarz inequality [Cov(X,Y )]2 � Var(X)Var(Y ), and from
the inequality (148), we thus obtain Table II, Eqs. (11a)
and (11b).

For lattice models, the inequalities Table III, Eq. (7) are
derived in the same way, by taking λ now equal to g0 and
starting from the expression Table III, Eq. (6) of d2En/dg2

0.
For the case of a finite-range interaction potential V (r) in
continuous space, the relations Table IV, lines 1–3 which were
derived for an arbitrary stationary state are generalized to the
thermal equilibrium case in the same way. Finally, the relations
which asymptotically hold in the zero-range regime [Table III
lines 9 and 10] for lattice models and Table IV lines 4 and 5 for
finite-range interaction-potential models, which were justified
for any eigenstate in the zero-range regime ktypb � 1 where
the typical relative wave vector ktyp is defined in terms of
the considered eigenstate as described in Sec. III, remain true
at thermal equilibrium with ktyp now defined as the typical
density- and temperature-dependent wave vector described in
Sec. III, since all the eigenstates which are thermally populated
with a non-negligible weight are expected to have a typical
wave vector smaller or on the order of the thermal-equilibrium
typical wave vector.

C. Quantum-mechanical adiabaticity

To be complete, we also consider the process where λ

is varied so slowly that there is adiabaticity in the many-
body quantum-mechanical sense: The adiabatic theorem of
quantum mechanics [164] implies that, in the limit where λ is
changed infinitely slowly, the occupation probabilities of each
eigenspace of the many-body Hamiltonian do not change with
time, even in presence of level crossings [165]. We note that
this may require macroscopically long evolution times for a
large system. For an initial equilibrium state in the canonical
ensemble, the mean energy then varies with λ as

E
quant
adiab (λ) =

∑
n

e−β0En(λ0)

Z0
En (λ) , (151)

where the subscript 0 refers to the initial state. Taking the
second-order derivative of Eq. (151) with respect to λ in λ = λ0

gives

d2E
quant
adiab

dλ2
=

(
d2E

dλ2

)
< 0. (152)
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Note that the sign of the second-order derivative of E
quant
adiab

remains negative at all λ provided one assumes that there is no
level crossing in the many-body spectrum when λ is varied:
En(λ) − En′ (λ) has the same sign as En(λ0) − En′ (λ0) for all
indices n,n′, which allows us to conclude on the sign with the
same manipulation as that which led to Eq. (147).

Thermodynamic vs quantum adiabaticity. The result of
the isentropic transformation [Eq. (150)] and the one of the
adiabatic transformation in the quantum sense (152) differ by
the second term on the right-hand side of Eq. (150). A priori
this term is extensive and thus not negligible compared to the
first term. We have explicitly checked this expectation for
the Bogoliubov model Hamiltonian of a weakly interacting
Bose gas, which is however not really relevant since this
Bogoliubov model corresponds to the peculiar case of an
integrable dynamics.

For a quantum ergodic system we now show that the
second term in the right-hand side of Eq. (150) is negligible in
the thermodynamic limit, as a consequence of the eigenstate
thermalization hypothesis [166–169]. This hypothesis was
tested numerically for several interacting quantum systems
[170–172]. It states that, for a large system, the expectation
value 〈ψn|Ô|ψn〉 of a few-body observable Ô in a single
eigenstate |ψn〉 of energy En can be identified with the
microcanonical average Omc(En) of Ô at that energy. Here,
the relevant operator Ô is the two-body observable (the
so-called contact operator) such that d

dλ
En = 〈ψn|Ô|ψn〉. In

the canonical ensemble, the energy fluctuations scale as V1/2

where V is the system volume. We can thus expand the
microcanonical average around the mean energy Ē:

Omc(E) = Omc(Ē) + (E − Ē)O ′
mc(Ē) + O(1). (153)

To leading order, we then find that Cov(E,dE
dλ

) ∼ O ′
mc(Ē)VarE

and Var( dE
dλ

) ∼ [O ′
mc(Ē)]2VarE, so that the second term in the

right-hand side of Eq. (150) is O(V1/2) which is negligible
as compared to the first term on that right-hand side. For
the considered quantity, this shows the equivalence of the
thermodynamic adiabaticity and of the quantum adiabaticity
for a large system.

A microcanonical detour. We now argue that the quantum
adiabatic expression (151) for the mean energy as a function
of the slowly varying parameter λ can be obtained by a purely
thermodynamic reasoning. This implies that the exponentially
long evolution times a priori required to reach the quantum
adiabatic regime for a large system are actually not necessary
to obtain Eq. (151). The first step is to realize that the initial
canonical ensemble (for λ = λ0) can be viewed as a statistical
mixture of microcanonical ensembles [173]. These micro-
canonical ensembles correspond to nonoverlapping energy
intervals of width �, each interval contains many eigenstates,
but � is much smaller than the width of the probability
distribution of the system energy in the canonical ensemble.
For further convenience, we take � � kBT . One can label
each energy interval by its central energy value, or more
conveniently by its entropy S. If the eigenenergies En(λ)
are numbered in ascending order, the initial microcanonical
ensemble of entropy S contains the eigenenergies with
n1(S) � n < n2(S) and S = kB ln[n2(S) − n1(S)]. When λ

is slowly varied, the entropy is conserved for our isolated

system, and the microcanonical ensemble simply follows the
evolution of the initial n2(S) − n1(S) eigenstates, which cannot
cross for an ergodic system and remain bunched in energy
space. Furthermore, according to the eigenstate thermalization
hypothesis, the energy width En2 − En1 remains close to its
initial value �: Each eigenenergy varies with a macroscop-
ically large slope dEn/dλ but all the eigenenergies in the
microcanonical ensemble have essentially the same slope.34

The mean microcanonical energy for this isentropic evolution
is thus

Emc(S,λ) = 1

n2(S) − n1(S)

n2(S)−1∑
n=n1(S)

En(λ). (154)

Finally, we take the appropriate statistical mixture of the
microcanonical ensembles (so as to reconstruct the initial
λ = λ0 canonical ensemble): The microcanonical ensemble
of entropy S has an initial central energy Emc(S,λ0); it is
weighted in the statistical mixture by the usual expression
P (S) = eS/kB e−βEmc(S,λ0). Since � � kBT , one can identify
e−βEmc(S,λ0) with e−βEn(λ0), for n1(S) � n < n2(S). The corre-
sponding statistical average of Eq. (154) with the weight P (S)
gives Eq. (151).

X. APPLICATIONS

In this section, we apply some of the above relations in three
dimensions, first to the two-body and three-body problems and
then to the many-body problem. Except for the two-body case,
we restrict to the infinite-scattering length case a = ∞ in three
dimensions.

A. Two-body problem in harmonic trap:
finite-range corrections

Two particles interact with the compact-support potential
V (r12; b) of range b and scattering length a in an isotropic
harmonic potential U (ri) = 1

2mω2r2
i . One separates out the

center of mass in an eigenstate of energy Ec.m.. The relative
motion is taken with zero angular momentum; its wave
function ψ(r) is an eigenstate of energy Erel = E − Ec.m. for a
particle of mass μ = m/2 in the potential V (r; b) + μω2r2/2.
We take in this subsection h̄ω as the unit of energy and
[h̄/(μω)]1/2 as the unit of length. For r � b the solution
may be expressed in terms of the Whittaker function W

or, equivalently, of the Kummer function U (see Sec. 13 in
Ref. [174]):

ψ(r)

C3

3D=
WErel

2 , 1
4
(r2)

r3/2
= e− r2

2 U

(
3

4
− Erel

2
,
3

2
,r2

)
, (155)

ψ(r)

C2

2D=
WErel

2 ,0(r2)

r
= e− r2

2 U

(
1 − Erel

2
,1,r2

)
, (156)

where the factors C2 and C3 ensure that ψ is normalized
to unity. The zero-range limit, where V (r; b) is replaced by
the Bethe-Peierls contact conditions at the origin, is exactly

34One has d

dλ
(En2 − En1 ) = Omc(En2 ) − Omc(En1 ) �

(En2 − En1 )O ′
mc(Emc) = O(�), where Omc is the microcanonical

expectation value of the contact operator.
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solvable; it gives eigenenergies E0
rel. We give here the finite-

range corrections to the energy in terms of re.
Three dimensions. Imposing the contact condition ψ(r) =

A[r−1 − a−1] + O(r) to Eq. (155) gives an implicit equation
for the spectrum in the zero-range limit, obtained in Ref. [175]
with a different technique:

f
(
E0

rel

) = −1

a
with f (E) ≡ −2�

(
3
4 − E

2

)
�

(
1
4 − E

2

) . (157)

We calculated the finite-range corrections up to order two in b

included; they remarkably involve only the effective range:

Erel = E0
rel + E0

relre

f ′ +
(

E0
relre

f ′

)2 (
1

E0
rel

− f ′′

2f ′

)
+ O

(
b3

)
,

(158)

where the first- and second-order derivatives f ′ and f ′′ of
f (E) are taken in E = E0

rel. To obtain this expansion, we have
used the result of Appendix D that one can neglect, at this
order, the effect of the trapping potential for r � b, so that
the wave function is proportional to the free-space scattering
state at energy Erel = h̄2k2/(2μ), ψ(r) = Aχ (r). Such an
approximation was already proposed in Refs. [133,176,177],
without analytical control on the resulting spectral error.35 We
have checked that the term of Eq. (158) linear in re coincides
with the prediction of Table V, Eq. (1a), due to the fact that,
from relation 7.611(4) in Ref. [178], the normalization factor in

the zero-range limit obeys (C0
3 )22π2f ′(E0

rel)/�2( 3
4 − E0

rel
2 ) = 1.

The term in Eq. (158) linear in re was already written
explicitly in Ref. [115]. This corresponds to the first-order
perturbative use of the modified version of the zero-range
model, as put forward in Ref. [126]. It can also be obtained
by solving to first order in re the self-consistent equation
considered in Ref. [131] obtained by replacing a0 by aE

[see Eq. (5) of Ref. [131] ] into Eq. (6) of Ref. [131]. This
self-consistent equation was also introduced in Refs. [176]
and [177] [see Eqs. (11), (12), and (30) of that reference] with
more elaborate forms for aE . With our notations and units this
self-consistent equation is simply

f (E) = −u(k =
√

2E), (159)

where u(k) is related to the s-wave scattering amplitude
by Eq. (90). The self-consistent equation of Ref. [131]
corresponds to the choice u(k) = 1/a − k2re/2 in Eq. (159).
We have checked that solving that equation to second order
in re then exactly gives the term of Eq. (158) that is quadratic
in re. Our result of Appendix D shows that going to order
three in re with the self-consistent equation should not give

35We employed two equivalent techniques. The first is to match in
r = b the logarithmic derivatives of Eqs. (155) and (89) and to expand
their inverses up to order b4 included. Due to Eq. (93) this involves
only re. The second is to use relation (D6): The matching of Aχ

with Eq. (155) in r = b gives A/C3 = [π 1/2/�(3/4 − Erel/2)][1 +
O(b2)], and the normalization of ψ to unity, from relation 7.611(4)
in Ref. [178] together with the Smorodinski relation (101), gives
dErel/dre up to order one in b included, which one integrates to get
the result.

the correct result, since one can then no longer neglect the
effect of harmonic trapping within the interaction range. This
clarifies the status of that self-consistent equation.

To ascertain this statement, we have calculated the ground-
state relative energy up to third order included in b, restrict-
ing ourselves for simplicity to an infinite-scattering length,
1/a = 0.36 We find

Erel = 1

2
+ re

2π1/2
+ 2 − ln 2

4π
r2
e +

[
(1 − ln 2) (2 − ln 2)

4π3/2

− π2 + 12 ln2 2

192π3/2

]
r3
e − λ2 + �2

π1/2
+ O(b4). (160)

Here λ2 is the coefficient of k4 in the low-k expansion of u(k),
u(k) = 1/a − k2re/2 + λ2k

4 + O(k6), it can be evaluated by a
generalized Smorodinski relation [179]. On the contrary, �2 is
a new coefficient containing the effect of the trapping potential
within the interaction range. It can be expressed in terms of
the zero-energy free-space scattering state φ(r), normalized as
in Eq. (9):

�2 =
∫ +∞

0
drr2[1 − u2

0(r)
]
, (161)

with u0(r) = rφ(r). Although our derivation is for a compact
support potential, we expect that our result is applicable as
long as λ2 and �2 are finite. For both quantities, this requires
(for 1/a = 0) that the interaction potential drops faster than
1/r5 [179]. Interestingly, if one expands the self-consistent
Eq. (159) up to order b3 included, one exactly recovers
Eq. (160), except for the term �2. This was expected from
the fact that the derivation of Eq. (159) in Ref. [177] indeed
neglects the trapping potential within the interaction range.

This discussion is illustrated for the particular case of the
square-well potential (182) in Fig. 2, with the exact spectrum
obtained by matching the logarithmic derivative of a Whittaker
M function for r = b− with the logarithmic derivative of
a Whittaker W function for r = b+ as in Eqs. (6.16, 6.17,
6.18) of Ref. [115].37 In this case, one finds re = b [114] and,
remarkably, �2 = −2λ2 so that the difference between the

36The result is based on Appendix D. The simplest calculation is
as follows: One first neglects the trapping potential for r � b, one
matches the inverse of the logarithmic derivative of the scattering
state (89) for r = b− with the inverse of the logarithmic derivative of
Eq. (155) for r = b+, and one expands the resulting equation up to
order b5 included, using relations 13.1.2 and 13.1.3 in Ref. [174] for
r = b+. Then one includes the r < b trapping effect by applying the
usual first-order perturbation theory to the operator 1

2 μω2r2θ (b − r);
at this order the wave function for r < b may be identified with the
zero-energy scattering state φ(r). An alternative, more complicated
technique is to use ψ (1) of Appendix D. One finds that, up to
order b4 included, ψ(b)/[−bψ ′(b)] = u(1)/[−u′(1)] + f (1)/u(1) −
f ′(1)/u′(1), where we used the fact that u(1)/[−u′(1)] = 1 to zeroth
order in b and f (x) solves (D8). Then from relations (D10) and (D11)
and from the expression of v(x) in terms of u(y), given above Eq. (D9),
one finds ψ(b)/[−bψ ′(b)] = u(1)/[−u′(1)] + β(1)/u2(1) + O(b5).
Matching this to the r > b solution gives (160).
37In Ref. [180] a similar calculation was performed, except that the

harmonic trap was neglected within the interaction range.
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FIG. 2. For two opposite spin fermions interacting in 3D via a
potential of short range b in an isotropic harmonic trap, the self-
consistent equation (159), derived, for example, in Ref. [177], gives
the eigenenergies with an error of order b3, due to the fact that it
neglects the effect of the harmonic trap within the interaction range
(see Appendix D). This is illustrated with the ground-state relative
energy for a square-well potential of infinite scattering length: The
deviation (solid line) between the approximate energy Eself

rel [solving
Eq. (159)] and the exact one Erel (calculated as in Ref. [115]) vanishes
as b3, with a coefficient given by Eq. (162) (dotted line). μ is the
reduced mass, ω is the angular oscillation frequency in the trap, and
aho = [h̄/(μω)]1/2.

ground-state energy of Eq. (159) and the exact ground-state
energy obeys

Eself
rel − Erel = �2

π1/2
+ O(b4) =

(
1

6
− 1

π2

)
b3

π1/2
+ O(b4).

(162)

Note that the case of two fermions with a square-well
interaction in a harmonic trap was numerically studied in
Ref. [181], for the s-wave and also for the p-wave case, with
the exact spectrum compared to the self-consistent equation
(159) or to its p-wave equivalent. No conclusion was given on
the scaling with b of the difference between the exact and the
approximate spectrum.

Two dimensions. Imposing the contact condition ψ(r) =
A ln(r/a) + O(r) to Eq. (156) gives an implicit equation for
the spectrum in the zero-range limit [122,175]:

ψ

(
1 − E0

rel

2

)
− 2ψ(1) = −2 ln a, (163)

where ψ is the digamma function. We have obtained the finite-
range correction

Erel = E0
rel + 4r2

e E0
rel

ψ ′( 1−E0
rel

2

) + O(b4 ln4 b) (164)

by neglecting the trapping potential for r � b, as justified
by Appendix D, and by matching in r = b the scattering
state Aχ (r) to Eq. (156). The bound on the error results in
particular from the statement that the ellipses (· · · ) in Eq. (97)
are O[(kb)4 ln(a/b)], that one can, for example, check for the
square-well potential. As expected, the value of ∂Erel/∂(r2

e )
in re = 0 obtained from Eq. (164) coincides with Table V,
Eq. (1b), knowing that the normalization factor in the zero-

range limit, according to relation 7.611(5) in Ref. [178], obeys

(
C0

2

)2
π

ψ ′( 1−E0
rel

2

)
�2

( 1−E0
rel

2

) = 1.

B. Three-body problem: corrections to exactly solvable cases
and comparison with numerics

In this subsection, we use the known analytical expressions
for the three-body wave functions to compute the corrections
to the spectrum to first order in the inverse scattering length
1/a and in the effective range re. We shall consider not only
spin-1/2 fermions, but also spinless bosons restricting to the
universal stationary states [182,183] which do not depend on
the three-body parameter.

The problem of three identical spinless bosons [182,183]
or spin-1/2 fermions (say N↑ = 2 and N↓ = 1) [182,184] is
exactly solvable in the unitary limit in an isotropic harmonic
trap U (r) = 1

2mω2r2. Here, we restrict to zero total angular
momentum (see, however, the last line of Appendix H) with
a center of mass in its ground state, so that the normalization
constants of the wave functions are also known analytically
[115]. Moreover, we restrict to universal eigenstates.38 The
spectrum is then

E = Ec.m. + (s + 1 + 2q)h̄ω, (165)

where Ec.m. is the energy of the center-of-mass motion, s

belongs to the infinite set of real positive solutions of

−s cos

(
s
π

2

)
+ η

4√
3

sin

(
s
π

6

)
= 0, (166)

with η = +2 for bosons and −1 for fermions, and q is a
nonnegative integer quantum number describing the degree of
excitation of an exactly decoupled bosonic breathing mode
[125,185]. We restrict ourselves to states with q = 0. The case
of a nonzero q is treated in Sec. X C.

a. Derivative of energy with respect to 1/a. Injecting the
expression of the regular part A of the normalized wave
function [115] into Table II, Eqs. (2a) and (4a) or its bosonic
version (Table V, line 1 in Ref. [106]), we obtain

∂E

∂ (−1/a)

∣∣∣∣
a=∞

=
√

h̄3ω
m

�
(
s + 1

2

) √
2s sin

(
s π

2

)
/� (s + 1)

− cos
(
s π

2

) + s π
2 sin

(
s π

2

) + η 2π

3
√

3
cos

(
s π

6

)
.

(167)

For the lowest fermionic state, this gives (∂E/∂(1/a))a=∞ �
−1.1980

√
h̄3ω/m, in agreement with the value −1.19 (2)

which we extracted from the numerical solution of a finite-
range model presented in Fig. 4(a) of Ref. [120], where
the error bar comes from our simple way of extracting the
derivative from the numerical data of Ref. [120].

38For Efimovian eigenstates, computing the derivative of the energy
with respect to the effective range would require to use a regularization
procedure similar to the one employed in free space in Refs. [126,
128]. However, the derivative with respect to 1/a can be computed
[115].
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b. Derivative of energy with respect to effective range.
Using relation [Table V, Eq. (1a)], which holds not only for
fermions but also for bosonic universal states, we obtain(

∂E

∂re

)
a=∞

=
√

h̄mω3

8 �
(
s − 1

2

)
s
(
s2 − 1

2

)
sin

(
s π

2

)
/� (s + 1)

− cos
(
s π

2

) + s π
2 sin

(
s π

2

) + η 2π

3
√

3
cos

(
s π

6

)
.

(168)

For bosons, this result was derived previously using the method
of Ref. [126] and found to agree with the numerical solution
of a finite-range separable potential model for the lowest state
[115]. For fermions, Eq. (168) agrees with the numerical data
from Fig. 3 of Ref. [120] to ∼0.3% for the two lowest states
and 5% for the third-lowest state;39 Eq. (168) also agrees to
within 3% with the numerical data from p. 21 of Ref. [115] for
the lowest state of a finite-range separable potential model. All
these deviations are compatible with the estimated numerical
accuracy.

C. N-body problem in isotropic trap: Non-zero 1/a and re

corrections

We now generalize Sec. X B to the case of an arbitrary
number N of spin-1/2 fermions (with an arbitrary spin
configuration) at the unitary limit in an isotropic harmonic
trap. Although one cannot calculate ∂E/∂(1/a) and ∂E/∂re,
some useful information can be obtained from the following
remarkable property: For any initial stationary state, and after
an arbitrary change of the isotropic trap curvature, the system
experiences an undamped breathing at frequency 2ω, with ω

being the single atom oscillation frequency in the final trapping
potential [125]. From this one can conclude that, in the case
of a time-independent trap, the system exhibits an SO(2,1)
dynamical symmetry [185]: The spectrum is a collection of
semi-infinite ladders indexed by the natural integer q. Another
crucial consequence is that the eigenstate wave functions
are separable in N -body hyperspherical coordinates, with a
know expression for the dependence with the hyperradius
[185]. This implies that the functions Aij are also separable
in (N − 1)-body hyperspherical coordinates and that their
hyperradial dependence is also known. As the eigenstates
within a ladder have exactly the same hyperangular part, one
can relate the energy derivatives (with respect to 1/a or re) for
step q of a ladder to the derivative for the ground step of the
same ladder, as detailed in Appendix H:[

∂E

∂ (1/a)

]
q

=
[

∂E

∂ (1/a)

]
0

� (s + 1)

� (s + q + 1)

q∑
k=0

[
�

(
k + 1

2

)
� (k + 1) �

(
1
2

)
]2

× �
(
s + q − k + 1

2

)
� (q + 1)

�
(
s + 1

2

)
� (q − k + 1)

, (169)

39Here, we used the value of the effective range re = 1.435r0 [186]
for the Gaussian interaction potential V (r) = −V0e

−r2/r2
0 with V0

equal to the value where the first two-body bound state appears.

with the eigenenergy of step q written as Eq. (165), s being now
unknown for the general N -body problem. We have checked
that this explicit result is consistent with the recursion relations
derived in Ref. [187]. A similar type of result holds for the
derivative with respect to re:[

∂E

∂re

]
q

=
[
∂E

∂re

]
0

� (s + 1)

� (s + q + 1)

q∑
k=0

[
�

(
k + 3

2

)
� (k + 1) �

(
3
2

)
]2

× �
(
s + q − k − 1

2

)
� (q + 1)

�
(
s − 1

2

)
� (q − k + 1)

. (170)

For nonzero 1/a or re, the level spacing is not constant
within a ladder, the system will not respond to a trap change
by a monochromatic breathing mode. In a small system, a
Fourier transform of the system response can give access to
the Bohr frequencies (Eq − Eq−1)/h̄, which would allow an
experimental test of Eqs. (169) and (170). In the large-N limit,
for a system prepared in its ground state, we now show that
the main effects of nonzero 1/a or re on the breathing mode
are a frequency change and a collapse.

Let us take the macroscopic limit of Eqs. (169) and (170)
for a fixed q: Using Stirling’s formula for s → +∞ we obtain

[∂E/∂ (1/a)]q
[∂E/∂ (1/a)]0

= 1 − q

4s
+ q (9q + 7)

64s2
+ · · · , (171)

[∂E/∂re]q
[∂E/∂re]0

= 1 + 3q

4s
− 3q (5q + 11)

64s2
+ · · · . (172)

The first deviations from unity are thus linear in q, and
correspond to a shift of the breathing-mode frequency ωbreath to
the new value 2ω + δωbreath, which can be obtained to leading
order in 1/a and re from

∂ωbreath

∂ (1/a)
= − ω

4E0

∂E0

∂ (1/a)
and

∂ωbreath

∂re

= 3ω

4E0

∂E0

∂re

.

(173)

For a nonpolarized gas (with the same number N/2 of particles
in each spin state) the local-density approximation gives 4s ∼
(3N )4/3ξ 1/2 [119,184] and it allows us to obtain the derivative
of the energy with respect to 1/a [102] or to re in terms of ξ ,
ζ , and ζe, defined in Eqs. (179) and (186), so that

δωbreath = 256ω

525πξ 5/4

[
ξ 1/2ζ

kF a
+ 2ζekF re

]
, (174)

where we have introduced the Fermi momentum kF of the
unpolarized trapped ideal gas with the same atom number N as
the unitary gas, with h̄2k2

F /(2m) = (3N )1/3h̄ω. For re = 0, we
recover the superfluid hydrodynamic prediction of Refs. [188–
190]. We have checked that the change of the mode frequency
due to finite-range effects can also be obtained from hydrody-
namics;40 this change in typical experiments is of the order of
0.1% for lithium and 0.5% for potassium (see Sec. X E).

40The hydrodynamic frequencies � are given by the eigenvalue
problem −m�2δρ = div[ρ0∇(μ′

hom[ρ0]δρ)] where δρ(r) is the in-
finitesimal deviation from the stationary density profile ρ0(r), μhom[ρ]
is the ground state chemical potential of the homogeneous gas of
density ρ and the apex ′ indicates derivation. For the equation of state
μhom[ρ] = Aρ2/3 + Bργ , where B is arbitrarily small, we treat the
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Furthermore, due to the presence of q2 terms in Eqs. (171)
and (172), the Bohr frequencies (Eq − Eq−1)/h̄ depend on
the excitation degree q of the mode: If many steps of the
ground-state ladder are coherently populated, this can lead to a
collapse of the breathing mode, which constitutes a mechanism
for zero-temperature damping [191,192]. To coherently excite
the breathing mode, we start with a ground-state gas, with
wave function ψold, and we abruptly change at t = 0 the trap
frequency from ωold to ω = λ2ωold. For the unitary gas, ψold

is deduced from the t = 0+ ground state ψ0 by a dilation with
scaling factor λ,

|ψold〉 = e−iD̂ ln λ|ψ0〉, (175)

where D̂ is the generator of the dilations [122,185]. Using
the representation of D̂ in terms of the bosonic operator b̂

[185], that annihilates an elementary excitation of the breathing
mode (b̂|q〉 = q1/2|q − 1〉), and restricting to |ε| � 1, where
ε = ln λ, one has

D̂ � −is1/2(b̂† − b̂), (176)

so that the trap change prepares the breathing mode in a
Glauber coherent state with mean occupation number q̄ = ε2s

and standard deviation �q = q̄1/2. Similarly, the fluctuations
of the squared radius of the gas

∑
i r

2
i /N , which can be

measured, are given by − h̄s1/2

mω
(b̂ + b̂†) for small ε. In the large

system limit, one can have q̄ � 1 so that 1 � �q � q̄. At
times much shorter than the revival time 2πh̄/|∂2

qEq |, one
then replaces the discrete sum over q by an integral to obtain∣∣∣∣ 〈b̂〉 (t)

〈b̂〉(0)

∣∣∣∣ = e−t2/(2t2
c ) with tc = h̄

�q
∣∣∂2

qEq

∣∣
q=q̄

. (177)

For an unpolarized gas, using Eqs. (171) and (172) and the
local-density approximation, we obtain the inverse collapse
time due to nonzero 1/a or re:

(ωtc)−1 = 64|ε|
35πξ (3N )2/3

∣∣∣∣ 3ζ

5kF a
+ 2ζekF re

3ξ 1/2

∣∣∣∣ . (178)

For lithium experiments, tc is more than thousands of mode
oscillation periods. To conclude with an exotic note, we recall
that the q2 terms in Eqs. (171) and (172) lead to the formation
of a Schrödinger-cat–like state for the breathing mode at half
the revival time [193].

D. Unitary Fermi gas: comparison with fixed-node Monte Carlo

For the homogeneous nonpolarized unitary gas (i.e., the
spin-1/2 Fermi gas in 3D with a = ∞ and N↑ = N↓) at zero

term in B to first order in perturbation theory around the breath-
ing mode to obtain � = 2ω + ω 96

π
(γ − 2

3 ) B

μ
( μ

A
)3γ /2

∫ 1
0 duu2(1 −

2u2)(1 − u2)(3γ+1)/2 where μ = ωN 1/3(2mA/π 4/3)1/2 is the unper-
turbed chemical potential of the trapped gas. To zeroth order in
B, scaling invariance gives δρ(0)(r) = d

dλ
[ρ0(r/λ)/λ3]λ=1. To use

perturbation theory, we made the differential operator Hermitian with
the change of function δf (r) = (μ′

hom[ρ0(r)])1/2δρ(r). Hermiticity
of the perturbation is guaranteed (i.e., surface terms coming from
the divergence theorem vanish) for γ larger than 1/3. For finite-re

corrections, γ = 1.

temperature, we can compare our analytical expressions for the
short-distance behavior of the one-body density matrix g(1)

σσ and
the pair distribution function g

(2)
↑↓ to the fixed-node Monte Carlo

results in Refs. [107–109]. In this case, g(1)
σσ (R − r/2,R + r/2)

and g
(2)
↑↓(R − r/2,R + r/2) depend only on r and not on σ , R,

and the direction of r. Expanding the energy to first order in
1/(kF a) around the unitary limit yields

E = Eideal

(
ξ − ζ

kF a
+ · · ·

)
, (179)

where Eideal is the ground-state energy of the ideal gas, ξ

and ζ are universal dimensionless numbers, and the Fermi
wave vector is related to the density through kF = (3π2n)1/3.
Expressing C in terms of ζ thanks to Table II, Eqs. (2a) and (4a)
and Eq. (179), and inserting this into Table II, Eq. (7a), we get

g(1)
σσ (r) � n

2

[
1 − 3ζ

10
kF r − ξ

10
(kF r)2 + · · ·

]
. (180)

For a finite interaction range b, this expression is valid for
b � r � k−1

F .41 Table IV, Eq. (4a) yields

g
(2)
↑↓(r) �

kF r�1

ζ

40π3
k4
F |φ(r)|2. (181)

The interaction potential used in the Monte Carlo
simulations [107–109] is a square-well:

V (r) = −
(

π

2

)2
h̄2

mb2
θ (b − r) . (182)

The corresponding zero-energy scattering state is

φ(r) = sin
(

πr
2b

)
r

for r < b, φ(r) = 1

r
for r > b, (183)

and the range b was taken such that nb3 = 10−6 (i.e.,
kF b = 0.030 936 7 . . . ). Thus we can assume that we are in
the zero-range limit kF b � 1, so that Eqs. (180) and (181)
are applicable.

Figure 3 shows that the expression (181) for g
(2)
↑↓ fits well

the Monte Carlo data of Ref. [109] if one adjusts the value of
ζ to 0.95. This value is close to the value ζ � 1.0 extracted
from (179) and the E(1/a) data of Ref. [107].

Using ζ = 0.95 we can compare the expression (180)
for g(1)

σσ with Monte Carlo data of [108] without adjustable
parameters. Figure 4 shows that the first-order derivatives
agree, while the second-order derivatives are compatible
within the statistical noise. This provides an interesting check
of the numerical results, even though any wave function
satisfying the contact condition [Table I, Eq. (1a)] leads to
g(1)

σσ and g
(2)
↑↓ functions satisfying Table II, Eqs. (3a) and (6a)

with values of C compatible with each other.

41For a finite-range potential one has g(1)
σσ (r) = n/2 −

r2mEkin/(3h̄2V) + · · · where V is the volume; the kinetic
energy diverges in the zero-range limit as Ekin ∼ −Eint, thus
Ekin ∼ −C/(4π )2

∫
d3rV (r)|φ(r)|2 from Table IV, Eq. (2a), so that

Ekin ∼ Cπh̄2/(32mb) for the square-well interaction. This behavior
of g(1)(r) only holds at very short distance r � b and is below the
resolution of the Monte Carlo data.
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0 0.2 0.4
kF r

4×10-4

8×10-4

g(2
) (r

)  
r2  / 

k F4

r=b

FIG. 3. Pair distribution function g
(2)
↑↓(r) =

〈ψ̂ †
↑(r)ψ̂ †

↓(0)ψ̂↓(0)ψ̂↑(r)〉 of the homogeneous nonpolarized
unitary gas at zero temperature. Circles are for fixed-node Monte
Carlo results from Ref. [109]. Solid line is for the analytic expression
(181), where the value ζ = 0.95 was taken to fit the Monte Carlo
results. The arrow indicates the range b of the square-well interaction
potential. Dashed line shows analytic expression (184), with
ζe = 0.12 [150].

A more interesting check is provided by our expression
[Table V, Eq. (3a)] for the subleading term in the short-range
behavior of g

(2)
↑↓(r), which here reduces to

g
(2)
↑↓(r) = ζ

40π3

k4
F

r2
− ζe

20π3
k6
F + O(r), (184)

where ζe is defined in Eq. (186). Remarkably, this expression
is consistent with the fixed-node Monte Carlo results of
Ref. [109] if one uses the value of ζe of Ref. [150] (see Fig. 3).

E. Finite-range correction in simulations and experiments

We recall that, as we have seen in Sec. VII, the finite-range
corrections to eigenenergies are, to leading order, of the form
(∂E/∂re)re for continuous-space models or Eq. (117) for
lattice models, where the coefficients ∂E/∂re, and ∂E/∂Re

0 1 2 3 4
kF r

0

1

g(1
)

σσ
(r

) /
 (n

/2
)

FIG. 4. (Color online) One-body density matrix g(1)
σσ (r) =

〈ψ̂ †
σ (r)ψ̂σ (0)〉 of the homogeneous nonpolarized unitary gas at zero

temperature: comparison between the fixed-node Monte Carlo results
from Ref. [108] (black solid line) and the analytic expression (180) for
the small-kF r expansion of g(1)

σσ up to first order (red dashed straight
line) and second order (blue dotted parabola) where we took the value
ζ = 0.95 extracted from the Monte Carlo data for g

(2)
↑↓ (see Fig. 3).

for lattice models are model independent. This can be used in
practice by extracting the values of these coefficients from nu-
merical simulations, done with some convenient continuous-
space or lattice models (usually a dramatic simplification of
the atomic physics reality); then, knowing the value of re in
an experiment, one can compute the finite-range corrections
present in the measurements, assuming that the universality
of finite-range corrections, derived in Sec. VII for compact
support potentials, also applies for multichannel O(1/r6)
models. The value of re is predicted in Ref. [194] to be

re = −2R∗

(
1 − abg

a

)2

+ 4πb

3�2 (1/4)

[ (
�2 (1/4)

2π
− b

a

)2

+ b2

a2

]
, (185)

where b is the van der Waals length b = (mC6/h̄
2)1/4, abg is the

background scattering length, and R∗ is the so-called Feshbach
length [127]. We recall that the magnetic-field dependence
of a close to a Feshbach resonance reads a(B) = abg[1 −
�B/(B − B0)] where B0 is the resonance location and �B

is the resonance width, and that R∗ = h̄2/(mabgμb�B) where
μb is the effective magnetic moment of the closed-channel
molecule. We note that the a-dependent terms in the second
term of Eq. (185) are O(b2) and thus do not contribute to the
leading-order correction in b. In contrast, the a dependence of
the first term of Eq. (185) can be significant since abg can be
much larger than b (this is indeed the case for 6Li).42 A key
assumption of Ref. [194] is that the open-channel interaction
potential is well approximated by −C6/r6 down to interatomic
distances r � b. This assumption is well satisfied for alkali-
metal atoms [194,196]. Although we have not calculated the
off-shell length ρe explicitly, we have checked that it is finite
for a −C6/r6 potential [179].

As an illustration, we estimate the finite-range corrections
to the nonpolarized unitary gas energy in typical experiments.
Similarly to Eq. (179), we have the expansion

E = Eideal(ξ + ζekF re + · · · ), (186)

where E and Eideal are the ground-state energies of the
homogeneous Fermi gas [of fixed density n = k3

F /(3π2)]
for 1/a = 0 and a = 0, respectively. The value of ζe was
estimated both from fixed-node Monte Carlo and auxiliary
field quantum Monte Carlo to be ζe = 0.12(3) [150].43 The
value of re as given by Eq. (185) is 4.7 nm for the B0 � 834 G
resonance of 6Li (in accordance with Ref. [197]) and 6.7 nm
for the B0 � 202.1 G resonance of 40K. The typical value
of 1/kF is �400 nm in Ref. [48], while 1/kF at the trap
center is �250 nm in Ref. [35] and �100 nm in Ref. [198],

42The general structure of Eq. (185) already appeared for a simple
separable two-channel model [102] with exactly the same expression
for the first term, which explains why the a dependence is correctly
reproduced by the simple expression of Ref. [102], as observed
in Ref. [195] by comparison with a coupled-channel calculation,
provided that the separable-potential range in Ref. [102] was adjusted
to reproduce the correct value of re at resonance.
43As discussed around Eq. (117), one has to take into account not only

re but also Re for lattice models, which was not done in Ref. [150].
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which respectively leads to a finite-range correction to the
homogeneous gas energy of

δE

E
� 0.4%, 0.6% and 2%. (187)

In the case of lithium, this type of analysis was used in Ref. [48]
to estimate the resulting experimental uncertainty on ξ .

XI. CONCLUSION

We derived relations between various observables for N

spin-1/2 fermions in an external potential with zero-range or
short-range interactions, in continuous space or on a lattice,
in two or three dimensions. Some of our results generalize
the ones of Refs. [91,97,98,101,104,105]: Large-momentum
behavior of the momentum distribution, short-distance be-
havior of the pair distribution function and of the one-body
density matrix, derivative of the energy with respect to the
scattering length or to time, norm of the regular part of the
wave function (defined through the behavior of the wave
function when two particles approach each other), and, in
the case of finite-range interactions, interaction energy, are
all related to the same quantity C; and the difference between
the total energy and the trapping potential energy is related to
C and to a functional of the momentum distribution (which
is also equal to the second-order term in the short-distance
expansion of the one-body density matrix). We also obtained
the following relations: The second-order derivative of the
energy with respect to the inverse scattering length (or to the
logarithm of the scattering length in two dimensions) is related
to the regular part of the wave functions and is negative at
fixed entropy; and the derivative of the energy with respect
to the effective range re of the interaction potential (or to r2

e

in 2D) is also related to the regular part, to the subleading
short-distance behavior of the pair distribution function, and
to the subleading 1/k6 tail of the momentum distribution. We
have found unexpected subtleties in the validity condition of
the derived expression of this derivative in 2D: Our expression
for ∂E/∂(r2

e ) applies because, for the class of interaction
potentials that we have specified, the effective range squared
r2
e is much larger than the true range squared b2, than the length

squared ρ2
e characterizing the low-energy s-wave off-shell T

matrix, and than the length squared R2
1 characterizing the low-

energy p-wave scattering amplitude, by logarithmic factors
that diverge in the zero-range limit. In 3D, for lattice models,
our expression for ∂E/∂re applies only for magic dispersion
relations where an extra parameter Re quantifying the breaking
of Galilean invariance (as predicted in Ref. [116]) vanishes;
also, the magic dispersion relation should not have cusps at the
border of the first Brillouin zone, otherwise the so-called Juillet
effect compromises the validity of our ∂E/∂re expression
for finite-size systems. We have explicitly constructed such
a magic relation, which may be useful to reduce lattice
discretization effects in quantum Monte Carlo simulations.
We also considered models with a momentum cutoff used
in quantum Monte Carlo calculations, either in continuous
space [57] or on a lattice [53,56,155,156]: Surprisingly, in
the infinite-cutoff limit, the breaking of Galilean invariance
survives and one does not exactly recover the unitary gas.

Applications of general relations were presented in three
dimensions. For two particles in an isotropic harmonic trap,
finite-interaction-range corrections were obtained and were
found to be universal up to order r2

e included in 3D; in par-
ticular, this clarifies analytically the validity of some approx-
imation and self-consistent equation introduced in Refs. [131,
133,176,177] that neglect the effect of the trapping potential
within the interaction range. For the universal states of three
particles with an infinite scattering length in an isotropic
harmonic trap, the derivatives of the energy with respect to the
inverse scattering length and with respect to the effective range
were computed analytically and found to agree with available
numerics. For the unitary gas in an isotropic harmonic trap,
which has a SO(2,1) dynamical symmetry and an undamped
breathing mode of frequency 2ω, we have determined the
relative finite-1/a and finite-range energy corrections within
each SO(2,1) ladder, which allows in the large-N limit to obtain
the frequency shift and the collapse time of the breathing mode.
For the bulk unitary Fermi gas, existing fixed-node Monte
Carlo data were checked to satisfy exact relations. Also, the
finite-interaction-range correction to the unitary gas energy ex-
pected from our results to be (to leading order) model indepen-
dent and thus extractable from quantum Monte Carlo results
was estimated for typical experiments: This quantifies one of
the experimental uncertainties on the Bertsch parameter ξ .

The relations obtained here may be used in various other
contexts. For example, the result Table II, Eqs. (11a) and
(11b) on the sign of the second-order derivative of E at
constant entropy is relevant to adiabatic ramp experiments
[38,39,160,162,198], and the relation Table III, Eq. (8a) allows
us to directly compute C using determinantal diagrammatic
Monte Carlo [199] and bold diagrammatic Monte Carlo
[59,200,201]. C is directly related to the closed-channel
fraction in a two-channel model [100,102], which allowed
us to extract it [102] from the experimental photoassociation
measurements in Ref. [35]. C was measured from the tail
of the momentum distribution [52]. For the homogeneous
gas C was extracted from measurements of the equation of
state [45]. C also plays an important role in the theory of
radiofrequency spectra [101,202–206] and in finite-a virial
theorems [99,207,208], as verified experimentally [52]. C

was also extracted from the momentum tail of the static
structure factor S(k), which is the Fourier transform of the
spin-independent pair distribution function 〈n̂(r)n̂(0)〉 and was
measured by Bragg spectroscopy [50,51]. In principle one can
also measure via S(k) the parameter ζe quantifying the finite-
range correction to the unitary gas energy from the relation

∂E

∂re

= −πh̄2

m

∫
d3k

(2π )3

[
S (k) − C

4k

]
, (188)

resulting from Table V, Eq. (3a). This procedure is not
hampered by the small value of kF re in present experiments,
contrarily to the extraction of ζe from a direct measurement
of the gas relative energy correction ∝ζekF re � 10−2.

We can think of several generalizations of the relations
presented here. All relations can be extended to the case of
periodic boundary conditions. The techniques used here can be
applied to the one-dimensional case to generalize the relations
of Ref. [91]. For two-channel or multichannel models one
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may derive relations other than the ones of Refs. [100–102].
Generalization of the present relations to arbitrary mixtures
of atomic species, and to situations (such as indistinguishable
bosons) where the Efimov effect takes place, was given in
Ref. [106].

Note added. Table II, Eq. (4b), as well as Table II,
Eq. (12b), were obtained independently by Tan [209] using the
formalism of Ref. [104]. Recently, some of our 2D relations
were tested in Ref. [65] and some of them were rederived in
Ref. [210].
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APPENDIX A: TWO-BODY SCATTERING FOR
LATTICE MODEL

For the lattice model defined in Sec. III B, we recall that
φ(r) denotes the zero-energy two-body scattering state with
the normalization (9) and (10). In this Appendix we derive the
relation (11) and (12) between the coupling constant g0 and the
scattering length, as well as the expressions (15)–(18) of φ(0).
Some of the calculation resemble the ones in Refs. [15,211].

We consider a low-energy scattering state �q(r) of wave
vector q � b−1 and energy E = 2εq � h̄2q2/m; that is, the
solution of the two-body Schrödinger equation (with the center
of mass at rest):

(H0 + V ) |�q〉 = E|�q〉, (A1)

where H0 = ∫
D

ddk/(2π )d2εk|k〉〈k| and V = g0|r = 0〉〈r =
0|, with the asymptotic behavior

�q(r) =
r→∞ eiq·r + fq

eiqr

r
+ · · · in 3D, (A2)

�q(r) =
r→∞ eiq·r + fq

√
2

iπqr
eiqr + · · · in 2D. (A3)

Here, fq is the scattering amplitude, which in the present case
is independent of the direction of r as we will see. Note that, in
2D, the present definition corresponds to the convention (96),
it differs, for example, from Ref. [212] by a factor 1/(4i). Also√

i ≡ eiπ/4. We then have the well-known expression

|�q〉 = (1 + GV ) |q〉, (A4)

where G ≡ (E + i0+ − H )−1. Since G = G0 + G0V G, with
G0 ≡ (E + i0+ − H0)−1, Eq. (A4) is equivalent to

|�q〉 = (1 + G0T ) |q〉, (A5)

where the T matrix is T = V + V GV . Indeed, Eq. (A4)
clearly solves Eq. (A1), and one can check [using the fact that
〈r|G0|r = 0〉 behaves for r → ∞ as −[m/(4πh̄2)][eiqr/r] in
3D and −(m/h̄2)

√
i/(8πqr)eiqr in 2D] that Eq. (A5) satisfies

Eqs. (A2) and (A3) with

fq = − m

4πh̄2 b3〈r = 0|T |q〉 in 3D, (A6)

fq = m

4ih̄2 b2〈r = 0|T |q〉 in 2D. (A7)

Using T = V + V GV and G = G0 + G0V G one gets

〈r = 0|T |q〉 = b−d

[
1

g0
−

∫
D

ddk

(2π )d
1

E + i0+ − 2εk

]−1

.

(A8)

In 3D the scattering length in defined by fq →
q→0

−a, which

gives the relation (11) between a and g0. In 2D,

fq =
q→0

iπ/2

ln(qaeγ /2) − iπ/2 + o(1)
, (A9)

where a is by definition the 2D scattering length. Identifying
the inverse of the right-hand-sides of Eqs. (A7) and (A9) and
taking the real part gives the desired Eq. (12). We note that
Eqs. (A9) and (12) remain true if q → 0 is replaced by the
limit b → 0 taken for fixed a.

To derive Eqs. (15) and (16) we start from V |�q〉 = T |q〉,
which directly follows from Eq. (A4). Applying 〈r = 0| on the
left and using Eqs. (A6) and (A7) yields

g0�q(0) = −4πh̄2

m
fq in 3D, (A10)

g0�q(0) = 4ih̄2

m
fq in 2D. (A11)

In 3D, we simply have φ = −a−1 limq→0 �q,44 and the result
(15) follows. In 2D, the situation is a bit more tricky because
limq→0�q(0) = 0. We thus start with q > 0, and we will take
the limit q → 0 later on. At finite q, we define φq(r) as being
proportional to �q(r) and normalize it by imposing the same
condition (10) as for zero energy, but only for b � r � q−1.
Inserting Eq. (A9) into Eq. (A11) gives an expression for
�q(0). To deduce the value of φ(0), it remains to calculate the
r-independent ratio φq(r)/�q(r). But for r � b we can replace
φq(r) and �q(r) by their values within the zero-range model
(since we also have b � q−1) which we denote by φZR

q (r) and
�ZR

q (r). The two-body Schrödinger equation

−h̄2

m
��ZR

q = E�ZR
q ∀ r > 0 (A12)

44In the case of an infinite scattering length, one has to take a finite
a so that this expression makes sense, and only then take the limit
|a| → ∞ (this comes from the fact that the scattering amplitude at
zero energy is infinite in this case).
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implies that

�ZR
q (r) = eiq·r + NH

(1)
0 (qr) , (A13)

whereN is a constant and H
(1)
0 is an outgoing Hankel function.

The contact condition

∃ A/ �ZR
q (r) =

r→0
A ln(r/a) + O(r), (A14)

together with the known short-r expansion of the Hankel
function [213] then gives

A = −1

ln (qaeγ /2) − iπ/2
. (A15)

Of course we also have �ZR
q /φZR

q = A, which gives Eq. (16).
Finally, Eqs. (17) and (18) are obtained from Eqs. (15)

and (16) using the relations d[m/(4πh̄2a)]/d(1/g0) = 1 in 3D

and d(1/g0)/d(ln a) = −m/(2πh̄2) in 2D, which are direct
consequences of the relations (11) and (12) between g0 and a.

APPENDIX B: DERIVATION OF LEMMA

In this Appendix, we derive the lemma (33) in three
dimensions, as well as its two-dimensional version (35).

Three dimensions. By definition we have

〈ψ1,Hψ2〉 − 〈Hψ1,ψ2〉

= − h̄2

2m

∫ ′
d3r1 · · · d3rN

N∑
i=1

[
ψ∗

1 �ri
ψ2 − ψ2�ri

ψ∗
1

]
.

(B1)

Here the notation
∫ ′ means that the integral is restricted to the

set where none of the particle positions coincide.45 We rewrite
this as

〈ψ1,Hψ2〉 − 〈Hψ1,ψ2〉 = − h̄2

2m

N∑
i=1

∫ ′ (∏
k 
=i

d3rk

)
lim
ε→0

∫
{ri /∀ j 
=i,rij >ε}

d3ri

[
ψ∗

1 �ri
ψ2 − ψ2�ri

ψ∗
1

]
. (B2)

We note that this step is not trivial to justify mathematically. The order of integration has been changed and the limit ε → 0 has
been exchanged with the integral over ri . We expect that this is valid in the presently considered case of equal mass fermions
and more generally provided the wave functions are sufficiently regular in the limit where several particles tend to each other.

Since the integrand is the divergence of ψ∗
1 ∇ri

ψ2 − ψ2∇ri
ψ∗

1 , the divergence theorem gives

〈ψ1,Hψ2〉 − 〈Hψ1,ψ2〉 = h̄2

2m

N∑
i=1

∫ ′ ( ∏
k 
=i

d3rk

)
lim
ε→0

∑
j,j 
=i

©
∫∫

Sε (rj )

[
ψ∗

1 ∇ri
ψ2 − ψ2∇ri

ψ∗
1

] · dS, (B3)

where the surface integral is for ri belonging to the sphere
Sε(rj ) of center rj and radius ε, and the vector area dS points
out of the sphere. We then expand the integrand by using
the contact condition, in the limit rij = ε → 0 taken for fixed
rj and fixed (rk)k 
=i,j . Using Rij = rj + εu/2 with u ≡ (ri −
rj )/rij we get

ψn =
ε→0

(
1

ε
− 1

an

)
A

(n)
ij + 1

2
u · ∇Rij

A
(n)
ij + O (ε) , (B4)

∇ri
ψn =

ε→0
− u

ε2
A

(n)
ij

+ 1

2ε

[∇Rij
A

(n)
ij − u

(
u · ∇Rij

A
(n)
ij

)] + O(1), (B5)

where n equals 1 or 2, and the functions A
(n)
ij and ∇Rij

A
(n)
ij are

taken at (rj ,(rk)k 
=i,j ). This simply gives

©
∫∫

Sε (rj )

[
ψ∗

1 ∇ri
ψ2 − ψ2∇ri

ψ∗
1

] · dS

=
ε→0

4π

(
1

a1
− 1

a2

)
A

(1)∗
ij A

(2)
ij + O (ε) (B6)

because the leading-order term cancels and most angular
integrals vanish. Inserting this into Eq. (B3) gives the desired
lemma (33).

Two dimensions. The derivation is analogous to the 3D
case. In Eq. (B3), the double integral on the sphere of course
has to be replaced by a simple integral on the circle. Instead

of Eqs. (B4) and (B5), we now obtain, from the 2D contact
condition [Table I, Eq. (1b)],

ψn =
ε→0

ln (ε/an) A
(n)
ij + O (ε ln ε) , (B7)

∇ri
ψn =

ε→0

u
ε
A

(n)
ij + O (ln ε) , (B8)

which gives∮
Sε (rj )

[
ψ∗

1 ∇ri
ψ2 − ψ2∇ri

ψ∗
1

] · dS

=
ε→0

2π ln (a2/a1) A
(1)∗
ij A

(2)
ij + O(ε ln2 ε), (B9)

and yields the lemma (35).

APPENDIX C: ZERO-RANGE LIMIT OF LATTICE
MODEL’S CONTACT

In this Appendix, we show that our definition [Table III,
Eqs. (1a) and (1b)] of the contact operator Ĉ within the lattice
model agrees in the zero-range limit b → 0 with the way
[Table II, Eq. (1)] C is usually defined within the zero-range
model.

45In other words, the Dirac distributions originating from the
action of the Laplacian onto the 1/rij divergences can be ignored.
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1. Stationary state

Let us first consider an eigenstate |ψ〉 of the zero-range
model with an energy E. Let |ψb〉 denote the eigenstate of
the lattice model which tends to |ψ〉 when b → 0, and let Eb

denote the corresponding eigenenergy. Then, Cb ≡ 〈ψb|Ĉ|ψb〉
tends to the contact C of the state ψ [defined in Table II,
Eq. (1)] when b → 0. Indeed, C is related to dE/d(−1/a) by
Table II, Eq. (4a), Cb is related to dEb/d(−1/a) by Table II,
Eq. (4a), and the function Eb(1/a) should tend smoothly to
E(1/a) when b → 0.

2. Arbitrary pure state

We now consider any pure state |ψ〉 satisfying the contact
condition [Table I, Eq. (1a)]. We will show that Cb ≡
〈ψb|Ĉ|ψb〉 tends to the contact C of the state |ψ〉 [defined
in Table II, Eq. (1)] when b → 0, where |ψb〉 is defined as
follows: Writing |ψ〉 as a linear combination

∑
n c(n)|ψ (n)〉

of the zero-range model’s eigenstates |ψ (n)〉, we define the
linear combination |ψb〉 ≡ ∑

n c(n)|ψ (n)
b 〉 of the lattice-model’s

eigenstates |ψ (n)
b 〉.

We consider only the 3D case—the derivation being almost
identical in 2D. Let A and A(n) denote the regular parts
of ψ and ψ (n) [defined by the contact condition Table I,
Eq. (1a)], and Ab and A

(n)
b denote the regular parts of ψb

and ψ
(n)
b [defined by Eq. (19)]. Linearity immediately gives

A = ∑
n c(n)A(n) and Ab = ∑

n c(n)A
(n)
b , as well as Cb =∑

n,m(c(n)
b )∗c(m)

b 〈ψ (n)
b |Ĉ|ψ (m)

b 〉. Expressing Ĉ in terms of Hint

thanks to Table III, Eq. (2), and using the lemma (56) as
well as Eq. (15), we get 〈ψ (n)

b |Ĉ|ψ (m)
b 〉 = (4π )2(A(n)

b ,A
(m)
b ).

When b → 0, we expect that this last quantity tends to
(4π )2(A(n),A(m)) because A

(n)
b → A(n) [see Eq. (19) and the

discussion thereafter]. Thus Cb indeed tends to C.

APPENDIX D: SPECTRAL EFFECT OF TRAPPING
POTENTIAL WITHIN THE INTERACTION RANGE

The motivation of this Appendix is to justify the fact
that, in Eq. (88) and in its equivalent form in 2D for an
N -body problem, we have neglected the effect of the trapping
potential within the interaction range. In the case of an isotropic
harmonic trap, the exact form of Eq. (88) contains the external
potential term 1

4mω2r2
ij . This issue is thus mappable to the two-

body problem in a trap with a finite-range interaction, which
was the object of numerous studies in 3D [131,133,176,177]
that have, however, not analytically quantified the effect of
the trapping potential within the interaction range. After
elimination of the center-of-mass motion and restriction to
a zero angular momentum, one faces the 3D or 2D eigenvalue
problem

Eψ(r) = −h̄2

m
�ψ(r) +

[
1

4
mω2r2 + V (r; b)

]
ψ(r), (D1)

with the conditions that ψ diverges neither in r = 0 nor at
infinity. The rotationally invariant compact support potential
V (r; b) of range b is of the minimal depth ensuring a fixed
scattering length a (as discussed in Sec. VII B). In the limit
b → 0, where E converges to a finite value, we show that
neglecting the effect of the trapping potential within the

interaction range r � b, as done in Sec. VII A, introduces on
the eigenenergy E an error O(b3) in 3D and O[b4 ln2(a/b)] in
2D, which thus does not affect the results [Table V, Eqs. (1a)
and (1b)].

The starting point is the Hellmann-Feynman theorem, with
ψ real and normalized to unity:

dE

db
=

∫
ddrψ2(r)∂bV (r; b) . (D2)

To reexpress this integral in a more operational way, we
introduce the solution ψ̃(r) of Schrödinger’s equation with
the same eigenvalue E but for the interaction potential V (r; b̃)
of a different range b̃. This solution ψ̃(r) remains finite in
r = 0 but it diverges at infinity and cannot be L2 normalized.
In what follows we take a convenient normalization of ψ̃ such
that limb̃→b ψ̃ = ψ .

We multiply Schrödinger’s equation for ψ (respectively ψ̃)
by ψ̃ (respectively ψ) and we integrate the difference of the
two resulting equations over the domain r < R. Using the
divergence theorem, the Wronskian W (R) appears,

W (r) ≡ ψ̃(r)ψ ′(r) − ψ(r)ψ̃ ′(r). (D3)

For r > b,b̃, the Wronskian satisfies the differential equation

W ′(r) = −d − 1

rd−1
W (r),

so that, for large R, W (R) = w/Rd−1 and

w = m

h̄2

∫ +∞

0
drrd−1[V (r; b) − V (r; b̃)]ψ̃(r)ψ(r). (D4)

Turning back to the Hellmann-Feynman formula (D2), we
obtain the exact relation

dE

db
= 2 (d − 1) πh̄2

m
lim
b̃→b

w

b − b̃
. (D5)

It remains to calculate w treating perturbatively the trapping
potential within the interaction range.

To zeroth order, one neglects the trapping potential for r �
b [or r � b̃ for ψ̃], so that ψ (0)(r) = Aχ (r), where χ is the
scattering state of energy E for V (r; b). Taking for simplicity
E > 0, we set E = h̄2k2/m, k > 0, and χ is normalized as
in Eqs. (89) and (95). Note that A is then fully specified by
the continuous matching of ψ (0) in r = b to the outer solution
in the trapping potential (that can be expressed in terms of
Whittaker functions, see Sec. X A) and by the fact that ψ is
normalized to unity. We also have ψ̃ (0)(r) = Aχ̃ (r) for r � b̃,
where χ̃ is the scattering state of energy E for V (r; b̃) and the
same prefactor A was taken for convenience. The zeroth-order
Wronskian W (0) can then be calculated explicitly, in particular
using relations 8.477(1), 8.473(4), and 8.473 (5) of Ref. [178].
We use Eqs. (93) and (97), with · · · = O[(kb)4 ln(a/b)] in
Eq. (97) [as we have checked for the square well], to obtain(

dE

db

)(0)
3D= 2πEA2 dre

db
+ O(b2), (D6)(

dE

db

)(0)
2D= πEA2 d

db

(
r2
e

) + O[b3 ln(a/b)]. (D7)

We have checked that the b → 0 limit of these relations
coincide with Table V, Eqs. (1a) and (1b).
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To first order, we treat the trapping potential perturbatively
within the interaction range. We rescale the distance by b, so
that ψ (1)(r) = f (x), and χ (r) = Nu(x), where x = r/b and
the function u(x) is normalized by the condition u(0) = 1. The
function f solves the inhomogeneous Schrödinger equation:

Fx2u(x) = f ′′(x) + d − 1

x
f ′(x)

+
[
k2b2 − mb2

h̄2 V (bx; b)

]
f (x),

F = 1

4
AN m2ω2

h̄2 b4. (D8)

The function u(x) is a solution of the corresponding homoge-
neous equation. A second solution v(x) can be constructed that
diverges for x → 0. It is of the form v(x) = −u(x)/x + Z3(x)
with Z3(x) = O(x) for x → 0 in 3D, and v(x) = u(x) ln x +
Z2(x) with Z2(x) = O(x2) for x → 0 in 2D. More precisely,
one has Zd (x) = u(x)

∫ x

0 dyy1−d [−1 + 1/u2(y)]. Since the
expression between square brackets in Eq. (D8) is O(1), u(x)
and Zd (x) are O(1) for x � 1. A first consequence is that the
factor N scales as 1/b in 3D and as ln(a/b) in 2D.46 A second
consequence is that, both in two and three dimensions,

ψ (1)(b) and bψ (1)′ (b) = O (F) . (D9)

This can be seen with the method of variation of con-
stants, where one sets (f (x),f ′(x)) = α(x)(u(x),u′(x)) +
β(x)(v(x),v′(x)), with the boundary conditions α(0) = 0 (so
that ψ (1) does not duplicate the zeroth-order solution) and
β(0) = 0 (so that ψ (1) does not diverge in r = 0). This leads
to

α(x) = −F
∫ x

0
dyyd+1u(y)v(y), (D10)

β(x) = F
∫ x

0
dyyd+1u2(y). (D11)

Similar results hold for ψ̃ (1). From Eq. (D9) and its counterpart
for ψ̃ (1)(b̃), ψ̃ (1)′ (b̃), we can estimate the variation of the
Wronskian W (R) for R close to b, b̃, and thus the variation
w(1) of w due to the trapping potential. Dividing by b − b̃ and
taking the limit b̃ → b as in Eq. (D5) amounts to taking a
derivative with respect to b̃, which gives an additional factor
O(1/b). Finally, the error δE introduced on the eigenenergy by
neglecting the trapping potential within the interaction range
is bounded in the zero-range limit b → 0 as

δE
3D= O(mω2b3A2), (D12)

δE
2D= O[mω2b4A2 ln2(a/b)], (D13)

where the factor A converges to a finite, energy-dependent
value for b → 0.

APPENDIX E: LOW-ENERGY T MATRIX
PARAMETERS IN 2D

We derive the hierarchy of Eqs. (109)–(111) for a 2D
nonpositive minimal-depth potential of finite range b, V (r) =

46This also results from the fact that u(1) is not particularly close to
zero: For 1/a = 0 in 3D, u(1)/u′(1) = −1.

[h̄2k2
0/m]v(r/b), for b → 0 and k0 adjusted to have a constant

s-wave scattering length a. The key point is then that k0b → 0
(differently from 3D).

In the s-wave channel, we write the zero-energy scattering
wave function as ψ(r) = f (x), with x = r/b. The function
f solves f ′′(x) + f ′(x)/x = (k0b)2v(x)f (x) and it is normal-
ized as f (0) = 1. We expand f (x) in powers of (k0b)2. To ze-
roth order, f0(x) = 1. To first order, f ′′

1 + f ′
1/x = (k0b)2v(x),

with f1(0) = 0. This is integrated with the method of variation
of constants, f1(x) = α(x) + β(x) ln x and f ′

1(x) = β(x)/x:

α(x) = − (k0b)2
∫ x

0
dyyv(y) ln y, (E1)

β(x) = (k0b)2
∫ x

0
dyyv(y). (E2)

Expressing that f1(x) � β(+∞) ln(r/a) at infinity gives

− 1

ln(a/b)
� β(+∞)

1 + α(+∞)
� m

h̄2

∫ +∞

0
drrV (r), (E3)

and further using Eq. (106) leads to

1

2
ρ2

e ∼ b2
∫ +∞

0
dxx

[
β(x) − β(+∞)

β(+∞)
ln x

+ α(x) − α(+∞)

β(+∞)

]
. (E4)

Integration by parts then gives Eq. (110). Using Eqs. (105),
(E3), and (E4) and realizing that φ(r) + ln(r/a) =
2/β(+∞) + O(1) for b → 0 with 0 < r/b � 1 fixed, gives
Eq. (109). Reproducing this perturbative expansion with the
same v(x) in the l wave, one gets

R2l
l ∼

b→0

(
bl

2l l!

)2
1

ln(a/b)

∫ ∞
0 dxx2l+1v(x)∫ ∞

0 dxxv(x)
. (E5)

This relation for l = 1, combined with Eq. (110), gives
Eq. (111).

APPENDIX F: SOME MATH FOR JUILLET EFFECT

Here, in the context of the Juillet effect for lattice models,
we justify the expansion (133). The quantity R1 defined in
Eq. (130) may be expressed in terms of the difference between
an integral and a 3D Riemann sum. We are then guided by
the following type of results: If f (x) is a C∞ function inside
the cube B = [−1/2,1/2]3, then for ε = 1/(2N + 1), with the
integer N → +∞:∫

B

d3xf (x) − ε3
∑

n

f (εn) = ε2

24

∫
B

d3x�f (x) + O(ε4),

(F1)

where �f is the Laplacian of f and the sum over n ranges
over {−N, . . . ,N}3. To show this lemma, we introduce the
short-hand notation S[f ] for the left-hand side of Eq. (F1) and
we pave B with little cubes of volume ε3 and of centers εn:

S [f ] =
∑

n

ε3
∫

B

d3x [f (εn + εx) − f (εn)] . (F2)

Then we use the fourth-order Taylor-Lagrange formula for f

restricted to the line connecting εn to εn + εx: f (εn + εx) −
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f (εn) = (ε2/2)
∑

i,j xixj ∂i∂jf (εn) + odd + O(ε4) where
“odd” stands for terms that are linear and cubic in the
components of x, and O(ε4) results from the fact that the
fourth-order derivatives of f are uniformly bounded on B.
Integration over x inside the cube B eliminates the odd terms,
and the i 
= j quadratic terms, so that

S[f ] = ε5

24

∑
n

[�f (εn) + O(ε2)]. (F3)

A Riemann sum thus deviates from the integral by O(ε2) for a
C∞ integrand. Applying this conclusion to Eq. (F3), where �f

is C∞, we obtain the desired Eq. (F1). This result, however, is
not immediate to apply to the quantity R1 because the integrand
of R1 is singular in k = 0. We thus use several steps.

We first consider the quantity R1 for a quadratic dispersion
relation that is cut in a smooth way: One twice replaces
1/(2εk) in Eq. (130) by φ(kb/2π )/(h̄2k2/m) where φ(x) is
a C∞ rotationally invariant function, equal to 1 in x = 0, and
of compact support included inside B ≡ [−1/2,1/2]3 (which
allows us to replace the set D by R3 in the integration and
in the summation). After the change of variable k = 2πx/L,
we decompose R3 as a collection of cubes of size unity (as in
Ref. [149]) to obtain

h2L

m
R

φ

1 =
∑

n∈Z3∗

∫
B

d3x

[
φ (εn + εx)

(n + x)2 − φ (εn)

n2

]

+
∫

B

d3x
φ (εx)

x2
, (F4)

with h = 2πh̄ is Planck’s constant and ε ≡ b/L is the small
parameter. As shown in Ref. [149], the right-hand side of
Eq. (F4) has a finite limit when ε → 0, here called C �
8.913 63, that one can obtain by taking ε to zero inside
the sum and the integral, which amounts to replacing φ by
unity. The deviation of Eq. (F4) from its ε → 0 limit can
thus be exactly written as {S[f ] + ε3f (0)}/ε, with S[f ] =
ε3 ∑

n∈Z3

∫
B

d3x[f (εn + εx) − f (εn)], that we treat as we
did for Eq. (F2). Here, f (x) = [φ(x) − 1]/x2 (extended by
continuity to x = 0) is a C∞ function since φ is rotationally
invariant. In the fourth-order Taylor-Lagrange formula, O(ε4)
is replaced with the more accurate O[ε4/(1 + ε2n2)3], due to
the fact that the fourth order derivatives of f (x) are uniformly
bounded and decrease as 1/x6 at infinity. The integral of
the Laplacian of f appears as in Eq. (F1), except that is in
integrated over the whole R3 space, which gives zero. We
finally obtain

h2L

m
R

φ

1 =
b→0

C +
(

b

L

)2

lim
x→0

φ (x) − 1

x2
+ O (b/L)3 . (F5)

Turning back to the lattice model, we now evaluate how R1

deviates from its b → 0 limit for the uncut parabolic dispersion
relation k → h̄2k2/(2m). The difference between the smoothly
cut R

φ

1 and the uncut R
parab
1 (times h2L/m) is now of the form

ε2f (0) plus 1/ε times the difference S[f ] between an integral
and a Riemann sum, with f (x) = [φ(x) − 1]/x2 as before is
C∞. We then use the result (F1); the key point being that the
integration domain is B (rather than the whole space), so that
the integral of the Laplacian of f over B gives a nonzero
surface contribution and equals the flux of the gradient of

f through the surface of B. This leads to Eq. (133) for the
particular case of the parabolic dispersion relation. The surface
term can be evaluated explicitly, as in Sec. VII B, from the
integral evaluated in polar coordinates:

∫
[−1,1]2

dxdy

(1 + x2 + y2)2
=

√
8 arcsin

1√
3
. (F6)

Finally, we consider a general dispersion relation (132),
with ηx = 1

2x2 + O(x4) for x → 0. One can consider the

difference between the corresponding R1 and R
parab
1 . The

corresponding function f (x) = 1/(2ηx) − 1/x2 is then not
C∞ in x = 0. For example, for the Hubbard model, ηx =
[3 − ∑

i cos 2πxi]/(2π )2 is not rotationally invariant and f (x)
behaves as

∑
i x

4
i /x

4 at low x, its x → 0 limit depends on
the direction of x. This limiting behavior, however, is scaling
invariant, a feature that holds for a general dispersion relation.
The nth order derivatives of f are then O(1/xn) for x → 0.
For this class of functions, we introduce S∗[f ] defined as
S[f ] in Eq. (F1) except that one excludes the term n = 0 in
the sum. This implies that in the equivalent of Eq. (F2), there
is an isolated contribution, the integral of f over εB, which is
O(ε3) and negligible. Then reproducing the analysis with the
fourth-order Taylor-Lagrange formula, we obtain

S∗[f ] = ε2

24

∫
B

d3x�f (x) + O(ε3). (F7)

Since (h2L/m)(R1 − R
parab
1 ) = S∗[f ]/ε, we obtain Eq. (133).

APPENDIX G: ISENTROPIC DERIVATIVES OF MEAN
ENERGY IN CANONICAL ENSEMBLE

One considers a system with a Hamiltonian H (λ) de-
pending on some parameter λ, and at thermal equilibrium
in the canonical ensemble at temperature T , with a density
operator ρ = exp(−βH )/Z. In terms of the partition function
Z(T ,λ) = Tre−βH (λ), with β = 1/(kBT ), one has the usual
relations for the free energy F , the mean energy Ē = Tr(ρH ),
and the entropy S = −kBTr(ρ ln ρ):

F (T ,λ) = −kBT ln Z (T ,λ) , (G1)

F (T ,λ) = Ē (T ,λ) − T S (T ,λ) , (G2)

∂T F (T ,λ) = −S (T ,λ) . (G3)

One now varies λ for a fixed entropy S. The tempera-
ture is thus a function T (λ) of λ such that S(T (λ),λ) =
constant. The derivatives of the mean energy for fixed
entropy are (dĒ/dλ)S ≡ d

dλ
[Ē(T (λ),λ)] and (d2Ē/dλ2)S ≡

d2

dλ2 [Ē(T (λ),λ)]. Writing (G2) for T = T (λ) and taking the
first-order and the second-order derivatives of the resulting
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equation with respect to λ, one finds(
dĒ

dλ

)
S

= ∂λF (T (λ) ,λ) (G4)(
d2Ē

dλ2

)
S

= ∂2
λF (T (λ),λ) − [∂T ∂λF (T (λ),λ)]2

∂2
T F (T (λ),λ)

. (G5)

It remains to use (G1) to obtain a microscopic expression of
the above partial derivatives of F , from the partition function
expressed as a sum Z = ∑

n e−βEn over the eigenstates n of
the Hamiltonian:

∂λF (T ,λ) = dE

dλ
, (G6)

∂2
λF (T ,λ) = d2E

dλ2
− βVar

(
dE

dλ

)
, (G7)

∂2
T F (T ,λ) = −VarE

kBT 3
, (G8)

∂T ∂λF (T ,λ) = Cov (E,dE/dλ)

kBT 2
. (G9)

Here the expectation value (· · · ) stands for a sum over the
eigenenergies with the canonical probability weights, and Var
and Cov are the corresponding variance and covariance; for
example,

Cov(E,dE/dλ) ≡
∑

n

En

dEn

dλ

e−βEn

Z
− E

dE

dλ
. (G10)

Insertion of Eq. (G6) into Eq. (G4) gives Eq. (146). Insertion
of Eqs. (G7)–(G9) into Eq. (G5) gives Eq. (150).

APPENDIX H: NONZERO 1/a AND re CORRECTIONS
WITHIN A LADDER OF THE TRAPPED UNITARY GAS

For N spin-1/2 fermions at the unitary limit in an isotropic
harmonic trap, there is separability of the wave function in
internal hyperspherical coordinates [185]:

ψ (r1, . . . ,rN ) = ψc.m. (C) R−(3N−5)/2F (R)� (�) , (H1)

where C is the center-of-mass location of the N fermions,
R is the hyperradius, and � is a set of 3N − 4 hyperangles
constructed from the Jacobi coordinates (see, e.g., Ref. [122]).
One has the general formulas C = ∑N

i=1 miri/M and R2 =∑N
i=1 mi(ri − C)2/m̄, where M = ∑N

i=1 mi is the total mass,
m̄ an arbitrary mass unit, and mi is the mass of particle i

(here equal to m). We shall not need the expression of the
hyperangles. Equation (H1) is due to the separability of the
noninteracting Hamiltonian in a harmonic trap and to the
fact that the Bethe-Peierls contact condition does not break
this separability for 1/a = 0. One finds that �(�) is an
eigenstate of the Laplacian on the unit sphere of dimension
3N − 4, with contact conditions. Corresponding eigenvalues
are conveniently written as(

3N − 5

2

)2

− s2, s > 0.

In the N -body case, s is not known analytically. On
the contrary, F (R) solves a simple 2D Schrödinger-like

equation

(E − Ec.m.) F (R) = − h̄2

2m̄

[
F ′′(R) + 1

R
F ′(R)

]

+
(

h̄2s2

2m̄R2
+ 1

2
m̄ω2R2

)
F (R). (H2)

This leads to a spectrum of the form (165), with eigenfunctions
expressed in terms of generalized Laguerre polynomials
multiplied by a Gaussian [185].

To derive Eqs. (169) and (170), one uses the fact that this
separability extends to the functions Aij (Rij ,(rk)k 
=i,j ). One
takes the limit rij → 0 for a fixed Rij in (H1): �(�) diverges
as R/rij (since it depends on the hyperangles only), C and
R respectively tend to the center-of-mass position Č and the
hyperradius Ř of a fictitious system of N − 1 particles of total
mass M = Nm, composed of a particle of position Rij and
mass 2m, and N − 2 fermions of positions rk , k 
= i,j and
mass m.47 We thus obtain the form

Aij (Rij ,(rk)k 
=i,j ) = ψc.m.(Č)Ř−(3N−7)/2F (Ř)�̌(�̌). (H3)

It remains to express the Hamiltonian [Table V, Eq. (2)] of
the fictitious system in terms of its center-of-mass Č and
hyperspherical coordinates (Ř,�̌):

Hij = − h̄2

2M
�Č + 1

2
Mω2Č2

− h̄2

2m̄

[
∂2
Ř

+ 3N − 7

Ř
∂Ř + 1

Ř2
��̌

]
+ 1

2
m̄ω2Ř2.

In the integral over Ř, we use the fact that F solves Eq. (H2)
and we integrate by parts to obtain for s > 1/2:48

(A,A) =
∫ ∞

0
dŘF 2(Ř)

∫
d�̌�̌2(�̌), (H4)

(A,(H − E)A)

=
∫ ∞

0
dŘ

h̄2F 2(Ř)

2m̄R2

∫
d�̌�̌(�̌)[� − ��̌]�̌(�̌), (H5)

with

� =
(

3N − 8

2

)2

+ 1

4
− s2.

Within a given SO(2,1) energy ladder, �̌ is fixed, only
F depends on the quantum number q. The normalization
of ψ to unity imposes that

∫ +∞
0 dRRF 2(R) is also fixed

within a ladder. From known integrals involving the Laguerre
polynomials [see, e.g., Eq. (F7) in Ref. [214]), one gets
Eqs. (169) and (170). Another by-product is for N = 3, where
�̌(�̌) is a spherical harmonic of spin l: This leads to

∂re
E/∂(−1/a)E = mω

4h̄

�(s − 1/2)

�(s + 1/2)

[
s2 − 1

2
− l(l + 1)

]
.

47If the first Jacobi coordinates of the N particles are chosen to be
∝rij , the other ones tend to the Jacobi coordinates of the fictitious
system.
48Note that F (R) scales as Rs for R → 0. Also, each term of the

sum over i < j gives the same contribution, due to the fermionic
antisymmetry, and we have dropped this sum and the ij indices for
simplicity.
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M. Köhl, Phys. Rev. Lett. 108, 070404 (2012).

[68] G. Dell’Antonio, R. Figari, and A. Teta, Ann. Inst. Henri
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