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Critical dynamics of a two-dimensional superfluid near a nonthermal fixed point
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Critical dynamics of an ultracold Bose gas far from equilibrium is studied in two spatial dimensions. Superfluid
turbulence is created by quenching the equilibrium state close to zero temperature. Instead of immediately
rethermalizing, the system approaches a meta-stable transient state, characterized as a nonthermal fixed point. A
focus is set on the vortex density and vortex-antivortex correlations which characterize the evolution towards the
nonthermal fixed point and the departure to final (quasi-)condensation. Two distinct power-law regimes in the
vortex-density decay are found and discussed in terms of a vortex unbinding process and a kinetic description of
vortex scattering. A possible relation to decaying turbulence in classical fluids is pointed out. By comparing the
results to equilibrium studies of a two-dimensional Bose gas, an intuitive understanding of the location of the
nonthermal fixed point in a reduced phase space is developed.
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I. INTRODUCTION

Generically, the properties of an interacting many-body
system far from equilibrium can change violently in time.
This is not the case, however, when the system reaches a
nonthermal fixed point (NTFP). In the vicinity of such a fixed
point the dynamics is expected to slow down, and correlation
functions to exhibit universal scaling behavior. Such transient
states have been intensively studied in the context of classical
turbulence [1–4]. Similar phenomena appear in degenerate
quantum many-body systems, e.g., in superfluid helium or
dilute ultracold quantum gases, where superfluid or quantum
turbulence (QT) has been discussed in great detail [5–12].
More general types of turbulence, so-called wave turbulence,
have been studied [13,14], mainly in the framework of ki-
netic theory. Recent applications include far-from-equilibrium
quantum systems, such as dilute ultracold Bose gases [15–25],
the inflating and reheating early universe [26–30], and quark-
gluon matter created in heavy-ion collisions [31–37]. Thereby,
an extension of kinetic wave turbulence by nonperturbative
quantum-field-theory methods lead to the notion of a NTFP
[27,28,30,33], in analogy to fixed points describing equilib-
rium as well as dynamical critical phenomena [38].

It was demonstrated in Refs. [16,24] that in a two- or
three-dimensional superfluid Bose gas, such an NTFP is
realized by a state with a dilute random distribution of vortices
or vortex lines, respectively, of both positive and negative
circulation. This gave the relation to QT [5–9,14] as well as
a link between weak wave turbulence described by kinetic
theory and topological excitations in nonlinear wave systems.

In this paper, we study the nonequilibrium dynamics of a
two-dimensional Bose gas evolving towards and away from
an NTFP, the stationary properties of which were discussed in
Refs. [15,16,24]. In this process the appearance and decay of
vortex excitations play a crucial role. We monitor the vortex
density during equilibration of the turbulent gas and reveal a bi-
modal scaling behavior in time. By following vortex-antivortex
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correlations, we show that this phenomenon is directly related
to a nonequilibrium vortex unbinding process. Ultimately,
vortex excitations evolve into an almost-random distribution
which constitutes the universal scaling at the NTFP.

In contrast to classical turbulence, the decay of superfluid
turbulence is typically accompanied by a buildup of coherence
and quasicondensation [17–22,42,43]. In Fig. 1 we sketch
the projection of this process onto the space spanned by the
coherence length lC and the mean intervortex pair distance
lD. In this way, the dynamical evolution towards and away
from a NTFP can be compared to the properties of near-
equilibrium states of a two-dimensional degenerate Bose gas
[39–41,44–46]. Arrows mark the direction of the flow and
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FIG. 1. Dynamical evolution of a two-dimensional superfluid
near a nonthermal fixed point (NTFP). The sketch shows the
equilibration process after a quench, in the space of inverse
coherence length lC and inverse mean vortex-antivortex pair distance
lD. The “dynamical evolution” illustrates trajectories of decaying
superfluid turbulence starting from the time at which vortices
appear, t = tV, approaching the NTFP, and, finally, evolving towards
equilibrium. The line labeled “thermal states” qualitatively illustrates
these quantities for thermal configurations [39–41], featuring a steady
decrease in inverse coherence with inverse mean vortex-antivortex
distance and including a Berezinskii-Kosterlitz-Thouless (BKT)
phase transition. An unbinding of vortices of opposite circulation
characterizes the approach to the NTFP before, finally, all vortices
decay, lD → 0, to establish equilibrium phase coherence, here at a
temperature below the BKT transition.
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indicate that critical slowing down occurs near the NTFP. An
unbinding of vortices of opposite circulation occurs during the
approach of the fixed point before, finally, all vortices decay
to establish full equilibrium phase coherence.

Metastable multivortex states—or, in one spatial dimen-
sion, solitary waves—are also known to appear from strong
fluctuations in the vicinity of the normal fluid–to–superfluid
transition. Crossing such a transition by varying an equilibrium
macroscopic parameter like the temperature at a certain rate is
well known to induce defect creation. Their number depends
on the coherence length at the point where the parameter
variation ceases to be adiabatic [47,48]. Experiments with
ultracold Bose gases following such Kibble-Zurek-type proto-
cols [49,50] as well as generating superfluid turbulence [10,11]
are pursued with increasing effort and could serve to discover
and study systematically NTFPs.

Turbulence has served, since the seminal work of Kol-
mogorov [2–4], as one of the first phenomena to develop
renormalization-group (RG) techniques out of equilibrium.
The effectively local transport processes in momentum, i.e.,
scale space, which are at the basis of turbulent cascades
immediately suggest themselves for an RG analysis [51].
For two-dimensional ultracold gases, the dynamical evolution
in the vicinity of the Berezinskii-Kosterlitz-Thouless (BKT)
critical point [45,46] was studied in Refs. [52], also in terms
of a perturbative RG analysis. For early work see [38] and
references cited therein. A more general set of perturbative
nonequilibrium RG equations for the one-dimensional sine-
Gordon model near the Luttinger-liquid fixed point was
derived in [53], and the route to a nonperturbative analysis
also for the strong-coupling regime is provided by out-of-
equilibrium functional RG techniques [54–56] which will be
followed in a forthcoming paper.

II. DYNAMICAL SIMULATIONS

In this paper we focus on the dynamical evolution of a
two-dimensional dilute Bose gas towards an NTFP and away
from it to thermal equilibrium. We statistically simulate the
far-from-equilibrium dynamics in the classical-wave limit of
the underlying quantum field theory. The classical equation of
motion for the complex scalar field φ(x,t) reads

i∂tφ(x,t) =
[

− ∇2

2m
+ g|φ(x,t)|2

]
φ(x,t). (1)

Here, m is the boson mass, g quantifies the interaction
strength in d = 2 dimensions, and, in our units, h̄ = 1. Our
computations are performed in a computational box of size L2

on a grid with side length L = Nsas , lattice spacing as , and
periodic boundary conditions. We define the dimensionless
variables g = 2mg, t = t/τ , with lattice time unit τ = 2ma2

s

and ψn(t) = ψnasexp(2it); see [24] for further details. All
simulations are performed with parameters g = 3 × 10−5 and
N/N2

s = 1525, where N is the total number of particles. When
appropriate, we express length scales in units of the healing
length ξ = (2mgN/L2)−1/2 = 4.6 as . We drop overbars in the
following. We choose initial states with a few macroscopically
occupied modes in momentum space, as illustrated in Fig. 2.
Fluctuations around these mean values are introduced by
sampling the initial field modes according to Gaussian Wigner
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FIG. 2. (Color online) A–E illustrate the initially occupied mo-
mentum modes kini (shaded spheres) with n(kini,t = 0) � 1, for five
mean-field configurations. The areas of the spheres are proportional
to the mean numbers of particles. A sixth initial condition, A∗, is
geometrically the same as A, but with initially occupied momenta
k∗

ini = 4kini. If not stated otherwise, on average, half of the total
number of particles occupies the zero mode.

distributions. Such statistical simulations, also done under
the name truncated Wigner approach, are quasiexact in the
classical wave regime of macroscopic occupation numbers.
The type of initial conditions shown in Fig. 2 induces
transport of particles and energy, which leads to vortex creation
and turbulence. These field configurations describe quenched
superfluid states, which can, for instance, be prepared by Bragg
scattering of photons from a (quasi-)condensate. By varying
the number and geometry of initially occupied modes, we can
probe the initial-state dependence of our observables.

A. Creation of vortices and turbulence

In the presence of a nonvanishing coupling g the initial
states depicted in Fig. 2 are far from thermal equilibrium.
During the first stages of the evolution coherent scattering into
higher excited modes dominates. In Fig. 3 (left), we show

1

102

104

106

108

10−1 1 10 102

P
ar

ti
cl

e
N

u
m

b
er

Time t

105

106

107

108

109

10 102 103 104

tV

k0

k1

k2

k3

k4

k9

t 2

t 18

NC

n(k0)

FIG. 3. (Color online) Left: Single-particle occupation numbers
n(k,t) = 〈|φ(k,t)|2〉 as a function of time t (in lattice units), for
different discrete momentum modes k = (kn,0), kn = 2 sin(nπ/Ns),
along the kx axis. Results are computed on a grid of size Ns = 512,
from initial field configuration A. Note the double-logarithmic
scale. Lines show different power-law evolutions ∼t2n. Right:
Zero-mode occupation number n((k0,0),t) and coherent population
NC = ∫

d2x|〈φ(x,t)〉|2 as a function of time t (double-log scale), for
an average over 100 runs, grid size Ns = 512, and initial condition
A. tV marks the time of vortex creation.
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the time evolution of the ensemble-averaged single-particle
momentum occupation numbers n(k,t) = 〈|φ(k,t)|2〉 as a
function of time, for several momenta k = (ki,0) along the kx

axis. One observes a power-law growth of momenta with kx >

0 until t 	 102. This process, exhibiting fast power-law growth
∼t2n of occupations can be understood from analytic mean-
field calculations by approximating strong initial occupations
to be time independent. It is present for all our initial conditions
and independent of spatial dimension.

In Fig. 3 (right), we continue to follow the time evolution
of the condensate mode, n(0,t). The decay of the zero-mode
occupation is part of a nonlocal energy and particle transport
to higher momenta. In coordinate space, this process leads
to the formation of shock waves, which decay into large
numbers of vortices (see Ref. [24] and videos of the evolution
[57]). In addition, we study the coherent population NC =∫

d2x |〈φ(x,t)〉|2 for an initially phase-coherent ensemble
NC(t = 0) = N . The dynamics preserve coherence until vor-
tices form around time t = tV 	 103. This can be understood
by considering that the local phase angle ϕ(x,t) of the complex
field φ = |φ|exp{iϕ} is determined by the positions of the
vortices. Since vortices interact strongly, their trajectories in
position space quickly randomize. Hence, in the ensemble
average the coherent population decays. Beyond this time,
density fluctuations are significant only at momenta larger
than the inverse healing length, k > 1/ξ , whereas long-range
fluctuations of the Bose gas are dominated by vortical flow.
For t � tV, the zero-mode population n(0,t) starts to increase,
signaling the onset of phase ordering associated with vortex
annihilations. This process is studied in the following sections.

B. Vortex density decay

After the creation of vortices, the dynamical evolution
exhibits a dual cascade in momentum space, transporting
particles from intermediate to small momenta and energy
from intermediate to large momenta [24]. The single-particle
momentum spectrum develops a quasistationary bimodal
scaling, with characteristic exponents corresponding to the
respective cascade processes. The system approaches an NTFP
[15,24]. The low-momentum scaling of the single-particle
momentum distribution can be related to the presence of
randomly distributed vortices and antivortices [24]. In the
present article, the evolution towards and away from the NTFP
is investigated. First, we show that the approach to the NTFP
is accompanied by a change of the characteristic scaling of the
ensemble averaged vortex density ρ(t) with time.

Figure 4(a) shows the time evolution of the vortex density

ρ(t) = 〈NV(t) + NA(t)〉/V, (2)

with NV(A)(t) being the number of vortices (antivortices) in
volume V at time t , found in simulations starting from the
initial conditions defined in Fig. 2. Vortices are counted by
detecting their characteristic density and phase profiles. In
all runs, vortex formation occurs around tV 	 103, apparent
from the steep increase in vortex density around this time.
For t � tV, two distinct stages in the vortex density decay are
observed, a rapid early stage and a slow late stage. Specifically,
the vortex density follows power laws ρ(t) ∼ t−αi with two
different exponents αi , i = 1,2. The exponent during the early
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FIG. 4. (Color online) Vortex density ρ as a function of time t

(in lattice units). Note the double-logarithmic scale. (a) Evolution
for various initial conditions as given in Fig. 2, averaged over 20
runs on a grid of size Ns = 1024. Lines show different power-law
evolutions. Assuming the area of a vortex to be given by VV = (2ξ )2π ,
a maximally dense packing of vortices would correspond to the vortex
density ρmax = 1/VV = 1/(4πξ 2). (b) Evolution for different initial
zero-mode populations n(0)/N . Averages were taken over 20 runs on
a lattice of size Ns = 1024, for initial condition A. Fitted parameters
are c1 = 0.0026 and c2 = 0.0012. The closest approach to the NTFP
is reached at t 	 (5–10) × 105.

stage depends considerably on initial conditions 1 � α1 � 2,
whereas the late stage features a decay exponent in a narrow
interval, 0.3 � α2 � 0.4. From our analysis given in Sec. II G,
we estimate that the closest approach to the NTFP is reached
at t 	 (5–10) × 105.

We have repeated our simulations on various grid sizes,
Ns ∈ {256,512,1024,4096}. Thereby, we found that decay
exponents saturate for and above Ns = 512. We attribute
deviations on smaller grids to effects from regular (integrable)
dynamics of few-vortex systems [58]. We remark that the
onset of the slow decay coincides with the development of
a particular scaling behavior in the single-particle momentum
distribution n(k) ∼ k−4, which in Refs. [15,16,24] was shown
to signal the approach to the NTFP and the formation of a set
of randomly distributed vortices. In this context, the reduction
of the vortex density decay exponent, compared to the early
stage of rapid decay, is interpreted as a (critical) slowing-down
of the nonlinear dynamics near the NTFP.
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As shown in Fig. 4(b), the vortex density decay at late times
is not always given by a power law. By considerably increasing
the initial population of the zero mode, e.g., n(0)/N ∈
{0.6,0.8,0.9}, we find that for some time the vortex density
is better described by an inverse-ln function ρ(t) ∼ 1/ln(t).
However, at late times t � t∗, the decay seems to converge to
a power law from the slow-decay regime. By analyzing the
dynamics of the single-particle momentum distribution, we
could identify the time t∗ to be the time when compressible
excitations have thermalized the high-momentum tail of the
spectrum (for details see Fig. (10) in Ref. [24]). This is
consistent with the observation that the inverse-ln decay could
not be observed for initial conditions with small zero-mode
occupation, where high-momentum thermalization happens
more rapidly.

C. Vortex correlations

In the following, the dynamical transition in the vortex
annihilation dynamics is discussed in terms of characteristic
features of the vortex-antivortex correlation function

gVA(x,x′,t) = 〈ρV(x,t)ρA(x′,t)〉
〈ρV(x,t)〉〈ρA(x′,t)〉 , (3)

where ρV(A)(x,t) = ∑
i δ(x − xi(t)) is the distribution of vor-

tices (antivortices) at time t in a single run. For sufficiently
large ensembles, gVA is a function of r = |x − x′| only.

In Fig. 5(a), we show the evolution of gVA(r,t) as a
function of r for different times during the fast-decay stage.
At early times, one finds a strong pairing peak near r = 0.
This peak is quickly reduced and a hole is “burned” into the
correlation function near the origin [see Fig. 5(b)]. Following
the time evolution of the spatial vortex distribution, we observe
that this involves qualitatively different processes: Mutual
annihilations of closely positioned vortices and antivortices
occur under the emission of sound waves. Further separated
vortices can approach each other in different ways as illustrated
in Fig. 6. The scattering of two pairs can directly lead to
the annihilation of one pair under the emission of sound
waves. We consider this to include events where the pair
distance of one dipole reduces below a certain threshold,
so that it looks like a density dip rather than a vortex pair.
This density dip can still interact with other vortices, but it
will quickly vanish. Alternatively, the scattering reduces the
vortex-antivortex separation within one pair, while it increases
it within the other, in accordance with the Onsager point-vortex
model [44]. We refer to this characteristic change in gVA(r) as
a vortex unbinding process. The scattering of a closely bound
vortex off an isolated vortex is not shown, because it is included
as a collision between a closely and a loosely bound pair. At
around the time t3 � t � t4 the power-law exponent of the
vortex density decay changes to about a third of its previous
value [see inset in Fig. 5(a)]. Next, we compute the mean
vortex-antivortex pair distance lD, by averaging over distances
between each vortex and its nearest antivortex. In accordance
with the previous discussion, lD grows continuously, exhibiting
two characteristic stages [see inset in Fig. 5(b)]. At times
t � 104, lD(t) approaches the power-law solution lD ∼ ρ−1/2,
as expected for uncorrelated vortices.

(a)

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40

g V
A
(r

)

10−3

10−2

104 105

ρ
[u

n
it

s 
of

 ξ
−2

]

t

t1

t2

t3
t4

t5
t6

t1
t2
t3

(b)

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40

g V
A
(r

)

r [units of ξ]

r [units of ξ]

5

10

104 105

l D
[u

n
it

s 
of

 ξ
]

t

t1

t2

t3

t4

t5
t6

t4
t5
t6

FIG. 5. (Color online) Normalized vortex-antivortex correlation
functions gVA defined in Eq. (3) as a function of radial coordinate
r , for six times, ti (in lattice units). (a) gVA(r) at times ti , i = 1,2,3,
during the rapid-decay stage, averaged over 174 runs on a grid of
size Ns = 1024, using initial condition A. Inset: Vortex density ρ

as a function of time t , taken from the simulations for Fig. 4(a). (b)
gVA(r) at times ti , i = 4,5,6, during the slow-decay stage, averaged
over 174 runs on a grid of size Ns = 1024, using initial condition A.
Inset: Mean vortex-antivortex pair distance lD as a function of time,
from the simulations for Fig. 4(a).

D. Energy equilibration

The main result of the previous section is the relation of
different stages in the evolution of the vortex density ρ(t)
to characteristic features in the vortex-antivortex correlation
function gVA(r,t). The vortex density decay was shown to be
accompanied by a dynamical vortex unbinding. This finding
can be supplemented by considering the evolution of different
energies contained in the gas. In Refs. [5,59] it was suggested
to decompose the kinetic energy into an incompressible and
a compressible component, which, for conciseness, we give
details of in the Appendix. In this way, contributions from
vortical excitations can be separated from other excitations
such as sound waves. In Fig. 7, we show the time evolution
of different energy components for initial condition A. One
observes that the decay of the incompressible energy can be
estimated to follow a power law ∼t−1.25 during the early-time
stage and ∼t−0.2 in the late-time stage. This decay happens
considerably more slowly than the vortex density decay in
the early-time (late-time) stage, ∼t−1.7(∼t−0.3), discussed in
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FIG. 6. (Color online) Sketch of scattering events between two
vortex-antivortex pairs in d = 2 dimensions. Left: Scattering of two
vortex pairs resulting in the mutual annihilation of two vortices and
the emission of density waves. Right: Scattering of two vortex pairs,
leading to a change in the vortex-antivortex distance lD and pair
velocity v. We remark that once lD ∼ ξ , a vortex pair decays rapidly
under the emission of density waves.

Sec. II B. As a result, the incompressible energy per vortex
grows as ∼t0.45 at early times and as ∼t0.1 at late times.
Since the energy of a vortex pair increases with distance,
this is in agreement with the phenomenon of increasing
vortex-antivortex pair distance lD.

At late times, compressible and quantum-pressure en-
ergy components develop into an equipartitioned state, also
observed in decaying superfluid turbulence starting from a
Taylor-Green vortex configuration [60].

E. Possible relation to classical turbulence
in d = 2 dimensions

In the following, we discuss a similarity between our results
and findings in classical fluid turbulence. Great efforts have
been made to investigate freely decaying turbulence in two-
dimensional classical fluids, see, e.g., Refs. [62–69]. In this
context, special focus was set on the decay of the enstrophy
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FIG. 7. (Color online) Contributions to the total energy as
functions of time t (in lattice units), averaged over 174 runs. We show
the interaction energy Eint, compressible energy Ec, incompressible
energy Ei, and quantum pressure Eq, as defined in the Appendix,
derived on a grid of size Ns = 1024 and for initial condition A
defined in Fig. 2. Note the double-logarithmic scale. See Sec. II D
for a discussion of the power-law evolutions.

�(t), which is related to the vorticity ω = ∇ × v of the velocity
field v(x,t) by

�(t) = 1

2

∫
d2x |ω(x,t)|2. (4)

It was found by different methods that the long-time decay
of the enstrophy is given by a power-law �(t) ∼ t−γ , with
γ 	 0.35–0.4 [62–69].

In superfluids, vorticity is concentrated in the vortex cores.
The vorticity of a turbulent flow consisting of M vortices
with circulations κi and positions xi , for i < M , is given
by ω(x,t) = ∑

i κiδ(x − xi(t)). Hence, in a flow consisting
of vortices with circulations κi = ±1 the enstrophy reads

�(t) = 1
2δ(0)M(t), (5)

which is, with δ(0) ∼ 1/V , proportional to the vortex density,
�(t) ∝ ρ(t). As shown in Fig. 4(a), in the late-time stage,
our results are in accordance with the results from classical
turbulence. However, we point out that the mechanisms
of enstrophy decay in the two systems are fundamentally
different. Whereas in superfluids vortices annihilate, the main
process of vorticity decay in classical two-dimensional fluids
is the merging into larger vortices.

We, finally, remark that in numerical simulations of freely
decaying classical turbulence, a crossover between two stages
of power-law decay similar to our findings has been reported
in Ref. [69].

F. Kinetic theory of vortex scattering

The decay of the vortex density has been investigated
in two-dimensional classical fluids [62–69] and superfluids
[43,70–72], mainly in the presence of driving or dissipation.
Several authors have proposed kinetic theories building on
assumptions about the decay process [61,62,67,68]. The
vortex decay cannot be explained by a simple model of
independent vortices and antivortices moving towards each
other to minimize the energy. Neglecting interactions with
sound waves, vortex-antivortex pairs perform a collective
motion perpendicular to their relative distance vector without
changing their distance. This motion quickly leads to pair-
pair collisions and establishes a kinetic-theory picture for
vortex pairs. In Fig. 6, we show two examples of vortex-pair
scattering processes altering the vortex density ρ(t) and vortex
correlation functions gVA(r,t).

Assuming that the vortices are moving in pairs and that
annihilations happen as the result of collisions of vortex pairs,
the decay rate for the number NV of vortices follows from
the number of dipoles ND ∼ NV and ∂tND(t) ∼ −ND(t)/τ ,
with mean free collision time τ . The mean free collison time
τ = lmfp/v̄ is given by the mean velocity of the pairs v̄ and
the mean free path lmfp = V/(σND) with cross section σ . Both
the mean velocity and the cross section depend on the number
of vortices via the mean vortex-antivortex pair distance lD
according to v̄ ∼ 1/lD and σ ∼ lD. These considerations result
in a rate equation,

∂tNV(t) = −cN2
V/τ, (6)

with dimensionless constant c. Equation (6) has the power-law
solution NV(t) ∼ t−1. This decay law can only be observed
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FIG. 8. (Color online) Vortex and antivortex positions shortly
after turbulence creation at t 	 tV, for two single runs of the
simulations on a grid of size Ns = 1024. Left: Initial condition A∗.
Right: Initial condition A, as defined in Fig. 2.

for specific initial conditions A∗ in the early-time stage. We
attribute deviations from t−1 scaling during this period to
an inhomogeneous distribution of vortices, encountered for
certain initial conditions. To give an example, we show the
vortex distributions created from the two initial conditions A∗
and A in Fig. 8.

During the late-time stage, only a few vortices are bound
in pairs, while most vortices are loosely bound and interact
equally with a larger number of vortices around them. We
heuristically take this into account by considering a modified
scattering cross section σ ∼ lDN2

D. The resulting kinetic
equation reads ∂tNV(t) ∼ −N4

V, with solution NV(t) ∼ t−1/3,
and hence yields the reduction of the decay exponent observed
at late times in our simulations.

G. Phase correlations

In the remainder of this article, we focus on the growth
of long-range coherence at late times, associated with the
annihilation of topological defects [17–22,42,43]. From this
point of view, freely decaying superfluid turbulence is a
particular example of phase-ordering dynamics after a quench
into the ordered phase [73]. Whereas in three dimensions a
second-order phase transition connects a normal fluid and a
superfluid phase, a Bose gas in two dimensions experiences
a BKT transition [45,46]. For the two-dimensional ultracold
Bose gas, experimental and theoretical results support the
understanding of the phase transition in terms of vortices
undergoing an unbinding-binding transition [40,41,50,74–77].

In this context, we are interested in a comparison between
correlation properties observed in the nonequilibrium dynam-
ics near a NTFP and those known from equilibrium studies.
We compute the dynamical trajectory of the vortex gas in the
space of inverse coherence length and inverse mean vortex-
antivortex pair distance. We compare our results to simulations
of a thermal two-dimensional Bose gas specifically for our
system parameters. For this, we evolve field configurations
in time which are initially close to a thermal Rayleigh-Jeans
distribution at a temperature T . After equilibration is reached,
we compute the position of the states in the above phase space
for different T .

We define a coherence length lC in terms of the partici-
pation ratio [78] of the angle-averaged first-order coherence

function g(1)(r) = ∫
dθ〈φ∗(x)φ(x + r)〉/√〈n(x)〉〈n(x + r)〉,

lC =
(
N

∫
dr [g(1)(r)]2

)−1

, (7)

with N = [
∫

drg(1)(r)]−2. It measures the spatial extension
of the first-order coherence function. Other than rcoh =∫

dr r2 g(1)(r)/
∫

dr r g(1)(r), the quantity lC does not sum
up values of g(1)(r) weighted by the distance, which would
enlarge insignificant contributions at large r . In addition, it
gives meaningful results also in the case of large coherence
g(1)(r) 	 1, where, for instance, the FWHM measure cannot
be applied any more. Note that in equilibrium this quantity
smoothly interpolates between the regime of exponential decay
of g(1) above the BKT transition, where the exponential
coherence length ξC is defined as g(1)(r) ∼ exp(−r/ξC), and
its power-law decay in the superfluid regime.

In Fig. 9, we follow the time evolution of the gas for
t > tV. One can observe that a state of low coherence and
small mean vortex-antivortex pair distance evolves towards
larger coherence and larger vortex-antivortex separation. As
discussed in Secs. II B and II C, this is due to vortex annihila-
tions and vortex-antivortex unbinding. For times t > 104, the
coherence length grows as lC ∼ ρ−1/2, in the same way as lD
shown in Fig. 5(b). The evolution considerably slows down
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FIG. 9. (Color online) Trajectories of multivortex states in the
space of inverse coherence length 1/lC and inverse mean vortex-
antivortex distance 1/lD, starting from t = tV. Arrows are added to
guide the eye along the time direction. Dashed lines mark the minimal
values 2/L = 0.018ξ−1, available on a grid of size Ns = 512. Our
understanding of the NTFP as a configuration with a few, maximally
separated pairs on an otherwise maximally coherent background
implies it to be located near the crossing of the dashed lines. Hence,
the NTFP is approached most closely between t 	 5 × 105 and
t 	 106 = t3. Filled (red) circles mark an average over 174 runs, Ns =
1024, initial time tV = 2.3 × 103, and final time tf = 1.3 × 105; filled
squares, an average over 1223 runs, with Ns = 512, tV = 1.7 × 103,
and tf = 2.6 × 105; and open squares, an average over 16 runs,
Ns = 512, ti = 2.6 × 105, and tf = 4.2 × 106. Note that the symbols
are equally spaced on a logarithmic time scale. We indicate the times
t0 = 1.7 × 103, t1 = 1.6 × 104, t2 = 1.3 × 105, t3 = 1.0 × 106, and
t4 = 4.2 × 106. The average number NV(t) of vortices left in the
system is NV(t0) = 97.7, NV(t1) = 21.8, NV(t2) = 11.7, NV(t3) =
5.8, and NV(t4) = 2.1.
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for 1/lC ∼ 1/lD → 0. In this regime, the Bose gas shows
characteristic scaling properties (see Refs. [16,24]), which
indicate the presence of the NTFP [15]. After spending a long
time near this point, the mean vortex-antivortex pair distance
declines. This is a sign that the last remaining vortex-antivortex
pairs reduce their size prior to their annihilation and the
equilibration of the system. At about the same time the power
law in the vortex density decay shown in Fig. 4 breaks down.

Our understanding of the NTFP as a configuration with a
few, maximally separated pairs on an otherwise maximally
coherent background implies it to be located near the crossing
of the dashed lines. Hence, the NTFP is approached most
closely between t 	 5 × 105 and t 	 106 = t3.

To set the above evolution in relation to equilibrium
configurations, we show, in Fig. 10(a), the thermal line
[l−1

D (T ),l−1
C (T )] for a range of temperatures T for which the

system shows a nonvanishing zero-mode population. Note
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FIG. 10. (Color online) Multivortex states in the space of inverse
coherence length and inverse mean vortex-antivortex distance. (a)
Thermal configurations [l−1

D (T ), l−1
C (T )] for a range of temperatures

T , increasing from bottom right to top left. The solid line marks the
point where the decay of the g(1)(r) function changes from algebraic
to exponential, signaling the BKT transition. (b) Comparison of the
thermal line [l−1

D (T ),l∗−1
C (T )] for the same range of temperatures T

with the corresponding dynamical evolution. (Same data as in Fig. 9.)
Dashed lines mark the minimal values 2/L = 0.018ξ−1, available on
a grid of size Ns = 512. Note that the (1/lD) axis interval [0.25,0.55]
has been cut out.
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FIG. 11. (Color online) First-order coherence function g(1) as
a function of radial coordinate r . We show one example for the
system during the equilibration process at time t = 1.05 × 106, with
lC = 41.6ξ , l∗C = 26.2ξ , and one for a thermal configuration, giving
lC = 51.3ξ , l∗C = 14.8ξ .

that, in order to define what counts as a bound vortex pair,
we filter out field fluctuations on scales smaller than 0.55ξ

before detecting vortices and antivortices. Hence, the resulting
inverse of the mean vortex-antivortex pair distance represents a
lower bound, and the separation of the NTFP from the thermal
configurations becomes obvious.

In view of the thermal results it is useful to consider an
alternative definition for the coherence length. The length
l∗C = ∫

dr g(1)(r) shares the above-mentioned advantages of
the participation ratio. In addition, it does not overestimate the
coherence of flat distributions. The thermal g(1)(r) functions
show a fast decay at short distances rs to a value g(1)

c and are
almost constant for r > rs . Figure 11 shows two typical g(1)

functions, one for the system during the equilibration process at
time t = 1.05 × 106, with lC = 41.6ξ , l∗C = 26.2ξ , and one for
a thermal configuration, giving lC = 51.3ξ , l∗C = 14.8ξ . Due
to the small area under g(1)(r) up to rs the normalization N in
the definition of the participation ratio enlarges the integrand in
Eq. (7) close to unity. Hence, lC becomes large while l∗C is less
affected by this effect. In Fig. 10(b) we compare the thermal
line [l−1

D (T ),l∗−1
C (T )] for the same range of temperatures T

with the corresponding dynamical evolution.
In Fig. 1, our findings are summarized qualitatively in

a reduced phase space of the vortex gas. In this way, the
“dynamical evolution” of decaying superfluid turbulence is
compared to an estimate of the expected equilibrium con-
figurations illustrated by the dashed line marked “thermal
states,” along which the temperature T varies. The most
significant difference between these two lines is that the
nonequilibrium dynamics is characterized by an increase
in the mean vortex-antivortex pair distance with increasing
coherence, whereas equilibrium configurations are expected to
feature a decrease in pair distance with increasing coherence. A
slowdown of the dynamics together with characteristic scaling
of the single-particle momentum distribution, observed in the
regime of large coherence and large vortex-antivortex pair
distance, marks the position of the NTFP. Finally, when all
vortices have annihilated, the system reaches the “thermal
states” line deep in the superfluid regime.
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III. CONCLUSIONS

We have studied the nonequilibrium dynamics of a two-
dimensional dilute ultracold Bose gas towards and away from
an NTFP. Following an initial quench, evolution towards a
fixed point appears to be a generic feature of the (quasi-) con-
densation process and the buildup of coherence. In the course
of a critically slowed evolution, vortex excitations evolved
into an almost-random distribution reflected in the scaling of
the single-particle spectra at the NTFP. We showed that the
vortex-density decay is directly related to a nonequilibrium
vortex unbinding process.

Our results allow us to draw a picture of the NTFP. The
evolution path towards and away from the fixed point is
summarized schematically in Fig. 1. There, we sketch the
evolution of the multivortex states in the plane spanned by
the coherence length lC, defined in terms of the participation
ratio, and the mean intervortex pair distance lD. This picture
allows us to compare our results with quasiequilibrium studies
of a two-dimensional vortex gas. The NTFP emerges to bear
similarities to the equilibrium BKT fixed point. The NTFP
is characterized by a few pairs (in the extreme case, one
pair) of far-separated anticirculating vortices. While the BKT
transition also features unbinding of vortices, the finite temper-
ature implies the simultaneous excitation of many rotons, i.e.,
strongly bound vortex-antivortex pairs. The NTFP is identified
by strong wave turbulent scaling in the infrared limit [15],
n(k) ∼ k−4. At the same time, the high-energy modes can be
populated in a much weaker way, e.g., at a considerably lower
temperature than the BKT critical temperature, or remain out
of equilibrium. The details of the UV mode populations are
determined by the way in which the NTFP is being approached.
We emphasize that the approach of the NTFP is a generic but
out-of-equilibrium process and that, eventually, the system will
decay to an equilibrium state potentially far away from the
NTFP. In the examples discussed in this paper, the total energy
is sufficiently low that the final equilibrium state emerges to
be considerably below the BKT critical temperature.

The way we force the system here (as in the work reported
in [16,24]) to approach the NTFP generalizes the method of
Kibble and Zurek. A strong sudden quench replaces the more
or less adiabatic approach of the BKT phase transition. To
what extent the BKT phase transition can be understood as
happening within a class of thermal states near the NTFP
studied here needs to be clarified by analyzing full out-
of-equilibrium RG equations in comparison with standard
descriptions in thermal equilibrium. We point out that the
concept of an NTFP is far more general than the specific
situation studied here (see, e.g., Refs. [15,25,27–30,32,33]).

Further important questions concern the relation to fully
developed QT [5–12], which is believed to exhibit a qua-

siclassical Kolmogorov-Obukhov scaling [2,3] of the radial
energy, E(k) ∼ k−5/3, in the infrared regime below the
mean inverse distance between vortices [5–9]. In a recent
experiment, a strong reduction of the vortex decay rate at
late times has been reported [12]. Quantitative experimental
observation of the predictions made here could provide new
insight into the character of the NTFP and its relation
to QT.
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APPENDIX: QUANTUM HYDRODYNAMIC ENERGY
DECOMPOSITION

In this Appendix we give details on the energy decom-
position introduced in Refs. [5,59]. To exhibit vortical flow
and define the decomposition we use the polar representation
φ(x,t) = √

n(x,t) exp{iϕ(x,t)} of the field in terms of the
density n(x,t) and a phase angle ϕ(x,t). This allows us to
express the particle current j = i(φ∗∇φ − φ∇φ∗)/2 = nv in
terms of the velocity field v = ∇ϕ. With this, we decompose
the kinetic-energy spectrum following Refs. [5,59], splitting
the total kinetic energy Ekin = ∫

ddx 〈|∇φ(x,t)|2〉/(2m) as
Ekin = Ev + Eq into a “classical” part and a “quantum-
pressure” component,

Ev = 1

2m

∫
ddx 〈|√nv|2〉, (A1)

Eq = 1

2m

∫
ddx 〈|∇√

n|2〉 . (A2)

The radial energy spectra for these fractions involve the Fourier
transform of the generalized velocities wv = √

nv and wq =
∇√

n,

Eδ(k) = 1

2m

∫
kd−1d�d 〈|wδ(k)|2〉, δ = v,q. (A3)

Following Refs. [5,59], the velocity wv is, furthermore, de-
composed into “incompressible” (divergence-free) and “com-
pressible” (solenoidal) parts, wv = wi + wc, with ∇ · wi = 0,
∇ × wc = 0, to distinguish vortical superfluid and rotationless
motion of the fluid.
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