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Coherent emission of atomic soliton pairs by Feshbach-resonance tuning
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We present two simple designs of matter-wave beam splitters in a trapped Bose-Einstein condensate (BEC).
In our scheme, identical pairs of atomic solitons are produced by an adequate control—in time and/or space—of
the scattering length. Our analysis is performed by numerical integration of the Gross-Pitaevskii equation and
supported by several analytical estimates. Our results show that these devices can be implemented in the frame of
current BEC experiments. The system has potential applications for the construction of a soliton interferometer.
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I. INTRODUCTION

One of the most promising research tracks in the field of
Bose-Einstein condensation (BEC) in gases [1] is the design
of interferometric devices using coherent matter waves [2,3].
The potential use of these novel atomic interferometers in
new types of sensors [4], precision measurements [5], and in
the study of gravitational effects [6], among other areas, has
become a very active topic and different schemes have been
proposed, most of them based on the control of the atomic
cloud by time-dependent traps [7].

Although the general principles of interferometry apply
to both coherent light and matter waves on equal footing,
there are important distinctions between optical and atomic
devices. Besides the different intrinsic nature of waves and
the physical scales involved in both cases, one of the most
remarkable gaps is that the design of accurate and controllable
atomic beam splitters is much more difficult as compared to
light systems—it must be said, though, that it is possible
to implement atomic quantum interferometry without such
a beam splitter [8]. Moreover, once a pair of BEC pulses is
produced, the atomic clouds will show a significant spreading
due to internal repulsive interactions. This dilution of the waves
may diminish dramatically the signal-to noise ratio of the
device, precluding the detection of the effects under study,
especially if their traces are minimal as is the case of many
gravitational and quantum interactions [9].

The use of atomic soliton sources [10,11], which produce
self-trapped matter-wave packets that propagate undistorted,
can be an interesting strategy to avoid the spreading and
provide precision interferometric measurements. This possi-
bility, already pointed out in Ref. [10], has been recently
pursued in Refs. [12–18]. The engineering of a coherent
soliton beam splitter by manipulations of the external potential
[13,14,16–18] or by making use of a Rabi coupling between
two atomic states of the particles in the sample [15] has been
discussed.

The goal of this work is to introduce protocols for the
control of atomic clouds that can coherently produce soliton
pairs. The evolution is controlled by an appropriate tuning
of the strength and sign of the interatomic interactions. Our
construction is similar to the simple pulsed atomic soliton
laser first proposed by Carr and Brand in Ref. [19], where
simulations showed that a train of robust matter pulses can

be generated by the mechanism of modulational instability
(MI). However, the device of [19] has limited utility in the
frame of interferometry due to the following drawbacks: (i) the
number of wave packets generated cannot be controlled and
they have different shapes; (ii) the trap must be destroyed after
outcoupling; (iii) several pulses are always produced whereas
in many applications single-pair sources are of interest; and
(iv) the pulses will travel at different speeds once the trap is
removed.

In the following, we will show a simple mechanism that
allows the previous limitations to be overcome, yielding atomic
coherent sources suitable for unusual types of matter-wave
interferometers. This is interesting since the techniques for
generating and controlling BECs with growing numbers of
particles and their physical properties are nowadays well
established, and the current experimental challenges in the
field concern the design of practical devices [20].

Thus, in the present paper, we will demonstrate that pairs
of counterpropagating atomic solitons can be emitted from a
trapped BEC reservoir by an adequate tuning of the scattering
length a. The idea is quite simple: if the atomic cloud is placed
in the center of a shallow trap and a is tuned to a large positive
value, the atomic cloud will spread due to strong internal repul-
sive interactions. When the width of the cloud is large enough,
the interatomic forces are switched from repulsive to attrac-
tive by means of Feshbach-resonance tuning [21,22]. Then,
modulational instability yields soliton formation [23]. Once
the symmetric pair of solitons is produced, the matter-wave
pulses leave the trap with opposite velocities. The key point
is that an adequate tuning of the scattering length allows full
control over the splitting process. We will show that this idea
can be accomplished by modulating a either in time or in space.

An atomic Michelson interferometer configuration can
be easily implemented by the addition of a wide parabolic
potential that forces the solitons to return and interfere. As
we will show in the rest of this work, this simple device can
be straightforwardly built in the frame of current experiments
with ultracold atoms.

II. SYSTEM CONFIGURATION AND
MATHEMATICAL MODEL

For our analysis, we will assume a quasi-one-dimensional
BEC, strongly trapped in the transverse directions (x,y) by a
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parabolic trap V⊥ of characteristic frequency ω⊥ and weakly
confined in the longitudinal dimension (z) by a shallow optical-
dipole trap with a Gaussian shape [24,25]. The choice of this
geometry is justified by the need of outcoupling atoms along
the z axis, so the strength of the atomic interactions may be
tuned to overcome the shallow potential. Thus, the trap will
have the following mathematical form:

V (�r)=V⊥ + Vd = mω2
⊥

2
(x2 + y2) + V0

[
1 − exp

(
− z2

L2

)]
,

(1)

where m is the mass of the atoms, V0 is the depth of the
shallow optical-dipole potential, and L is its characteristic
width. The well-known mean-field theory for a system of N

equal bosons of mass m, weakly interacting in a potential,
yields a Gross-Pitaevskii [26] equation (GPE) of the form

ih̄
∂�

∂t
= − h̄2

2m
∇2� + V (�r)� + U (t,�r)|�|2�, (2)

where � is the condensate wave function and N = ∫ |�|2d3�r
the number of atoms. The coefficient U (t,�r) = 4πh̄2a(t,z)/m

characterizes the two-body interaction which we consider a
time- and space-dependent function. In this situation, we can
describe the dynamics of the condensate in the quasi-one-
dimensional limit as given by a factorized wave function of
the form [27] �(t,�r) = e−i ω⊥t�0(x,y)ψ(t,z), where �0(x,y)
is a Gaussian and ψ(t,z) is determined by

i
∂ψ

∂τ
= −1

2

∂2ψ

∂η2
+ f (η)ψ + g(τ,η)|ψ |2ψ. (3)

Our analysis is based on this equation. We have introduced the
dimensionless variables

τ = ω⊥t, η = z/r⊥ = z/
√

h̄/mω⊥, (4)

which are the time measured in units of the inverse of the
transverse trapping frequency and the length along the z axis
expressed in units of r⊥—which determines the size of the

cloud in the transverse (x,y) plane. The functions

f (η) = Vd

(h̄ω⊥)
, g(τ,η) = 2a(τ,η)

r⊥
(5)

correspond, respectively, to the trap and to the effective atomic
interaction coefficient. We must stress that g depends on time
and space and can be externally tuned; this is a key point of
our analysis. The new normalization is

∫ |ψ |2dη = N .
The simulations and figures that follow have been made

with standard experimental parameters corresponding to 7Li
atoms. In particular, we will take ω⊥ = 1 kHz, and r⊥ = 3 μm.
The choice of 7Li has been motivated by previous well-known
results on soliton formation [10,11]; however, we must stress
that our results can be straightforwardly extrapolated to
different values of ω⊥ and to other atomic species provided that
external control of the scattering length can be achieved. Since
our goal is to study manipulations via Feshbach-resonance
tuning, we will also fix the parameters determining the external
potential: L = 15r⊥ and V0 = h̄ ω⊥/4—in the following, we
will also use the definitions L̃ = L/r⊥ and Ṽ0 = V0/(h̄ ω⊥).

III. SOLITON-PAIR EMISSION WITH A
TIME-DEPENDENT SCATTERING LENGTH

In Fig. 1 a numerical simulation of the effect of a sharp
tuning with time of the scattering length a is shown. For
τ < 0, we have a = ai = L Ṽ0

√
π/(2N ), such that, in the

Thomas-Fermi approximation, there is a stationary solution
with a Gaussian shape. This provides an initial condition for
the subsequent time evolution:

ψ(τ = 0,η) =
√

N

π1/4
√

L̃
exp

(
− η2

2L̃2

)
(6)

The value of a is assumed to change at τ = 0 to a larger
one a1 > ai . Therefore, the strength of the repulsive atomic
interactions will stretch the BEC wave function, as the shallow
Gaussian potential is not strong enough to keep the cloud
trapped. The broadening effect can be appreciated in the plots
labeled (a) and (b) in the left column of Fig. 1. Once the cloud
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FIG. 1. (Color online) Simulation showing the controlled emission by sharp tuning of the scattering length of a trapped BEC, yielding a
pair of equal counterpropagating solitons. The experimental parameters correspond to 7Li atoms with N = 5 × 104 and ai = 0.2 nm. At t = 0,
the scattering length is set to a1 = 1.5 nm and at t = ts = 8 ms, it is tuned to a2 = −0.2 nm. Left: evolution of the wave function |ψ |2(z)
at different times indicated in the plots. The red dotted lines indicate the size of the trap. Each of the two emitted solitons contains around
8500 atoms. Right: color contour map of the whole process.
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FIG. 2. (Color online) Emission of an increasing number of pulses by an adequate control of the value of a with time. In the first plot,
we have taken a1 = 3 nm, a2 = −0.2 nm. In the second, a1 = 3 nm, a2 = −1 nm. The total number of atoms N = 5 × 104 is as in Fig. 1. In
the third plot, we repeat the simulation of Fig. 1 but allowing noise in the initial wave function. We have discretized the initial function ψ ,
performed a fast Fourier transform, and multiplied its value at each point by a real pseudorandom number obtained from a normal distribution
with mean 1 and standard deviation 0.2. After time evolution, the outcome does not change substantially.

spreads out of the trap, the interactions are instantaneously
switched to a negative value a2 at t = ts . This can be done
with standard magnetic [21] or optical [22] techniques which
allow the values of a to be tuned over a wide range. The
effect on the cloud can be seen on Figs. 1(c) and 1(d). The
modulational instability effect [19] in the stretched condensate
yields solitons that move away with a constant velocity, as can
be appreciated in the contour plot on the right side of the figure.

We must stress that not only one but a controllable number
of soliton pairs can be produced by means of the technique
proposed. This is shown in Fig. 2, where we illustrate the
emission of an increasing number of pulses by an adequate
control of the value of a with time. In the last plot of Fig. 2,
we show that the process is not greatly modified in the
presence of a limited amount of noise. We also stress that
the production of pairs can be achieved for a wide range of
values of the scattering lengths. These observations accentuate
the robustness of the process.

Atomic Michelson interferometer. In Fig. 3 we show a
simulation of a simple Michelson interferometer that can be
easily implemented by simply adding a wide parabolic trap
to the previous configuration, such that solitons eventually
collide and yield an interference pattern [28]. In the absence
of interaction of the soliton with the rest of the atoms the center

of mass of the soliton would behave as a classical particle in
the external potential due to an Ehrenfest theorem—see, for
instance, [29]. The time at which solitons meet and interfere
would then be around 2π/ωz. In the figures one can appreciate
that the interference happens earlier because of the attractive
interaction from the atoms in the trap. We also show that if
a linear perturbation is added to the potential, it is possible
to have the solitons interfering outside the Gaussian trap. In
Fig. 4, we enlarge the interesting interference region.

Simple modelization. In order to give the experimentalists a
brief guide and get a qualitative understanding of the physics,
we can make a simple analysis of the process and give a rough
approximation to the number of solitons produced as a function
of the main physical parameters involved (N ,a1,a2).

The first step of the process is the expansion due to large,
positive a1. We can find an estimate of the expansion rate
by making use of the variational method called the averaged
Lagrangian formalism [30]. We use the following variational
ansatz:

ψ = A(τ )e−η2/2w(τ )2
ei[μ(τ )+η α(τ )+η2 β(τ )], (7)

where A(τ ), w(τ ), μ(τ ), α(τ ), and β(τ ) are real functions to
be determined by minimizing the action from which GPE
stems [30]. A straightforward analysis yields α(τ ) = 0 as

−0.3 −0.15 0 0.15 0.3
0

100

200

300

t(
m

s)

z(mm)
−0.3 −0.15 0 0.15 0.3
0

100

200

300

t(
m

s)

z(mm)
−0.3 −0.15 0 0.15 0.3
0

100

200

300

t(
m

s)

z(mm)

FIG. 3. (Color online) Simulation of a simple Michelson interferometer. The first plot is a simulation with a harmonic potential along the
z axis, ωz = 0.01ω⊥. The rest of the parameters are as in Fig. 1. In the second plot we have added a small linear perturbation to Vd , namely,
0.0025h̄ω⊥z/r⊥. The third plot is as the second one with noise included in the initial condition, as explained in the caption of Fig. 2.
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FIG. 4. (Color online) Enlargement of the second plot of Fig. 3 around the region where the solitons cross. Left: evolution of the wave
function |ψ |2(z) at different times indicated in the plots. One can appreciate constructive-destructive interference when the solitons meet. Right:
color contour map of the enlarged region.

implied by the η → −η symmetry of the problem, A(τ ) =√
N

π1/4
√

w(τ )
as required by normalization, β(τ ) = ẇ(τ )

2w(τ ) , a first-
order ordinary differential equation (ODE) for μ(τ ) which we
do not write, and

ẅ(τ ) = − d�

dw(τ )
(8)

with the pseudopotential

� = 1

2w(τ )2
+ L̃ Ṽ0

(
g√

2g0w(τ )
− 2√

L̃2 + w(τ )2

)
. (9)

We ought to solve (8) with the initial conditions w(0) =
L̃, ẇ(0) = 0. Noticing that 1

2 ẇ2 + � is a conserved quantity,
one can estimate the expansion velocity at the time when
the scattering-length sign is swapped. Considering that the
second term in (9) is the dominant one and assuming that
the change in a is performed when w ≈ 2L̃, we find ẇ|out ≈
(2/π )1/4√a1N/L.

The second step of the process is soliton formation via
modulational instability when the scattering length becomes
a2 < 0. For a flat initial wave function, there is a wavelength
of the perturbation for which the instability is maximal [31],
which, in terms of our dimension-less formalism, reads l =
2π

√
w/|g2|N . The number of produced solitons is obtained by

dividing the size of the wave function by this length. We should
just consider the atoms which are outside the trap so they can
escape. Thus, the relevant condensate size for soliton formation
can be approximated by 2r⊥(ẇ|outτs − L̃). Putting everything
together, we find the following expression for the functional
dependence of the number of solitons in the adimensional
parameters:

Ns ≈ 2

[
c1

√|g2|N (c2
√

g1N − L̃)

(g1N )1/4

]
. (10)

We have compared this estimate to the outcome of numerical
simulations (keeping always τs = 8, L̃ = 15, Ṽ0 = 0.25) and
found that, introducing the fitted coefficients c1 = 0.22 and
c2 = 2.49, Eq. (10) is a reasonably accurate approximation in
a wide range of parameters; see Fig. 5. We have also confirmed
by numerical simulations that the estimate for ẇ|out is related

to the velocity of the fastest outgoing soliton which turns out
to grow—roughly—as

√
a1N .

IV. SOLITON-PAIR EMISSION WITH A
SPACE-DEPENDENT SCATTERING LENGTH

We explore now a second possibility, and we consider an
s-wave scattering length which varies in space. We will utilize

a(z) = a2 + (a1 − a2) exp(−z2/L2) (11)

for τ > 0. As before a1 > ai > 0, a2 < 0. Since a is positive
for small z, atoms are pushed out of the trap. The negative a for
larger z contributes to this stretching process and, additionally,
it can repack the outgoing atom cloud into solitons [32].

FIG. 5. (Color online) Some examples of comparison of the
number of emitted solitons (as computed from numerical simulations)
with the approximate expression (10) (solid lines). In each case
we plot Ns vs a1 for fixed N and a2. The three curves, from
top to bottom, correspond to N = 4.5 × 105, a2 = −0.1 nm; N =
2.5 × 105, a2 = −0.2 nm, and N = 0.5 × 105, a2 = −0.2 nm. In the
inset, we compare the speed of the fastest emitted solitons to fits of
the form v ≈ −b1 + b2

√
a1N in the same three cases.
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FIG. 6. (Color online) Emission and subsequent interference of a soliton pair with a space-varying s-wave scattering length, Eq. (11). We
have taken N = 3.5 × 104, a1 = 5 nm, and a2 = −0.1 nm. There is an external harmonic potential ωz = 0.01ω⊥. In the graph below, we show
an enlargement of (d), exhibiting the interference pattern.

We show in Fig. 6 that, by appropriately tuning the physical
parameters, it is possible to create a soliton pair while leaving
the Gaussian trap almost empty. This can be an advantage as
compared to Sec. III. As in the previous case, these solitons
can be made to interfere by turning on a parabolic potential in
the axial direction. It is worth noticing that, when the solitons
reenter the small-z region, they disintegrate as they return to
the region of positive a. The resulting atoms interfere yielding
a typical pattern of fringes; see Fig. 6(d).

As an example, let us discuss an extremely simple interfer-
ometric Michelson-like gedanken experiment. We add a linear
term to the external potential:

Vd = V0

[
1 − exp

(
− z2

L2

)]
+ 1

2
mω2

z z2 + mγz. (12)

We assume that γ is tunable and that we wish to determine
its value. The linear potential affects the soliton trajectories
and causes a displacement of the fringe pattern. As in a
typical optical Michelson experiment, the resolution of the
interferometer should be related to the shift in γ that displaces
one maximum of the interference pattern to the position of the
next one. A convenient way to estimate this resolution from
numerical simulations is to compute the atom density at the
center of the trap when the interference takes place, say, at
t = tm = 310 ms and z = 0; see Fig. 7. Since it is the whole
interference pattern being displaced, a similar plot would be
found at any position z inside the trap.

The order of magnitude of the minimal acceleration that
may be measured with such a device is related to the spacing
between maxima in the plot, namely, γ ≈ 2 × 10−4 m/s2.
We stress that this simple estimation is solely based on
the computation of the displacement of the fringes. When,
eventually, a method is put forward to measure the fringe
displacement in an actual experimental setup, there may
well be experimental considerations that could influence the
resolution.

Let us now provide an analytical estimation of the value
of γ found above. The difference in the paths of the two
parts of the beam when the interference pattern is shifted
by one maximum should be given by mv�z

h̄
= π where mv

is the momentum when the atoms interfere. By considering
the solitons as particles in a classical potential which depart
initially from z = 0 with opposite velocities, one can check
that the difference in their paths before meeting again is
�z = 4γ /ω2

z . In order to find a rough approximation to the
momentum, we use the estimate of the previous section for
the velocity of the outgoing solitons, which in terms of

dimensionful quantities reads v ≈ ( 2
π

)1/4
√

a1N
L

r⊥ω⊥. Inserting

0 0.5 1 1.5 2 2.5 3
γ (10−4m/s2)

|ψ
(t

m
,0

)|
2

FIG. 7. (Color online) The value of the atom density (arbitrary
units) at the center of the trap at time t = 310 ms, computed by
numerical integration, as a function of the uniform acceleration γ

caused by an external force.
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these values of �z and v in the condition above and inserting
the value of the parameters used in Figs. 6 and 7, one finds

γ ≈ π5/4

29/4 r⊥ω2
z

√
L

a1N
≈ 1.3 × 10−4 m/s2, which captures the

order of magnitude of the value obtained from the plot.

V. DISCUSSION

We have shown that, by an appropriate tuning in time and/or
space of the s-wave scattering length related to the atom-atom
interaction, it is possible to engineer a beam splitter for atomic
interferometers. In particular, we have analyzed the possibility
of generating a soliton pair. We emphasize that this can be
done in a controlled way and in a broad regime of the physical
parameters than can be typically achieved in BEC experiments.
We have shown the results for a particular set of dimensionful
parameters, but they can be easily generalized to different situ-
ations. It is reasonable to expect that the robustness and lack of
dispersion involved in soliton propagation might prove useful
in ameliorating the precision obtained in atom interferometers
which deal with BECs but not with solitons. The next natural
step is to design a concrete experiment to measure, for instance,
the gravity acceleration g or to test gravity at short distances,
but this lies beyond the scope of the present work.

Our analysis of the dynamics has been performed using a
reduction to one dimension of the GPE, Eq. (3). This one-
dimensional (1D) approximation remains sensible as long as
the atoms are not energetic enough to get excited and probe
the transverse directions. We now discuss in more detail the
validity and limitations of Eq. (3). The first relevant issue is
how good is the approximation leading to the reduction of
Eq. (2) to its 1D counterpart Eq. (3). For a recent analysis, see
[33]. Of particular importance is the fact that, with attractive
interactions, collapses not describable with (3) may occur.
Avoiding collapse in the transverse 2D space or collapse of a
single soliton requires conditions [19] which in our notation
read −g|ψ |2 < 0.93 and −gNais < 1.254, where Nais stands
for the number of atoms in a soliton. These limitations have,
in part, motivated our choice of physical parameters in the
previous sections.

On the other hand, the GPE describes the evolution of a
condensate at vanishing temperature. In any realistic situation,
there will be corrections controlled by the adimensional
quantity kBT

h̄ ω⊥
. The thermal cloud can produce friction for

the motion of the soliton [34] or deplete the condensation
and even cause incoherent splitting of a soliton after some
time [35]. These considerations affect the coherent evolution of
the system and therefore the sensibility of an eventual soliton
interferometer will depend on the temperature of the atom
cloud. It would be of great interest to explore this point.

Moreover, when one deals with elongated condensates, as
is the case of this paper, one has to take into account that there
may be non-negligible fluctuations of the phase along the axial
direction, even well below the BEC transition temperature Tc

[36]. The most important contributions come from fluctuations
of wavelength larger than r⊥, due to the similarity of the
system to 1D trapped gases [37]. The equilibrium state is a
quasicondensate. If these fluctuations were large, they would
hinder any interferometric measurement so it is essential to
estimate their amplitude. Using the Thomas-Fermi approxima-
tion for an elongated trap with repulsive interactions, in [36]
it was shown that phase fluctuations are controlled by the
parameter

δ2
L(T ) = T

Tc

(
N

N0

)3/5

δ2
c , (13)

where N is the total number of atoms in the sample, N0 the
number of those which are condensed, and

δ2
c = 16a2/5m1/5ω

22/15
⊥

153/5N4/5h̄1/5ω
19/15
‖

, (14)

where ω‖ corresponds to the trapping potential on the lon-
gitudinal axis. In our setup, the potential along z given in
Eq. (1) is parabolic only in the vicinity of z = 0, but we
can write ω2

‖ ≈ 1
m

[∂2
z V (�r)]x=y=z=0 = 2Ṽ0ω

2
⊥/L̃2. By inserting

the numerical values describing the initial conditions of the
simulations of Figs. 1 and 6, we find δ2

c = 0.18 and δ2
c = 0.23,

respectively. Assuming N ≈ N0 and, obviously T < Tc, we
see that fluctuations are not large on any distance scale
since δ2

c < 1. This shows that for the situations we have
analyzed this effect would not spoil an eventual interferometric
measurement, even if it may reduce the contrast of the
observable signatures. If in some other case one had N ≈ N0

but δ2
c 	 1, it would be necessary to cool down the condensate

below Tφ = Tc/δ
2
c [36] in order to avoid problems with this

kind of phase fluctuation.
Finally, we would like to mention that soliton splitting

in different situations has been investigated in a quantum
framework beyond the mean-field GPE in Refs. [13,14,17].
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