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Model of a PT -symmetric Bose-Einstein condensate in a δ-function double-well potential
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The observation of PT symmetry in a coupled optical waveguide system that involves a complex refractive
index has been demonstrated impressively in the experiment by Rüter et al. [Nat. Phys. 6, 192 (2010)]. This
is, however, only an optical analog of a quantum system, and it would be highly desirable to observe the
manifestation of PT symmetry and the resulting properties also in a real, experimentally accessible, quantum
system. Following a suggestion by Klaiman et al. [Phys. Rev. Lett. 101, 080402 (2008)], we investigate a
PT -symmetric arrangement of a Bose-Einstein condensate in a double-well potential, where in one well cold
atoms are injected while in the other particles are extracted from the condensate. We investigate, in particular,
the effects of the nonlinearity in the Gross-Pitaevskii equation on the PT properties of the condensate. To
study these effects we analyze a simple one-dimensional model system in which the condensate is placed into
two PT -symmetric δ-function traps. The analysis will serve as a useful guide for studies of the behavior of
Bose-Einstein condensates in realistic PT -symmetric double wells.
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Beginning with the seminal paper by Bender and Boettcher
in 1999 [1], parity-time (PT ) symmetric quantum mechanics
has attracted ever-increasing attention over the past decade
because it offers a class of complex Hamiltonians which, in
spite of their non-Hermiticity, possess discrete real energy
eigenvalue spectra. Moreover, these Hamiltonians feature
the property of branch points, i.e., the coalescence of both
energy values and eigenfunctions when some parameter in the
Hamiltonian is varied, a phenomenon impossible in Hermitian
quantum mechanics (but known to appear for resonances in
the continuous spectrum; see, e.g., [2]).

RecentlyPT symmetry has been realized experimentally in
structured optical waveguides [3,4], where the complex index
of refraction is manipulated by introducing loss and gain terms.
These experiments make use of the quantum-optical analogy
that the wave equation for the transverse electric field mode
is formally equivalent to the one-dimensional Schrödinger
equation. It would, however, be desirable to observe PT
symmetry also in a real quantum system.

Klaiman et al. [5] have suggested a quantum scenario
analogous to the waveguide experiments in which a Bose-
Einstein condensate is placed in a double-well potential, and
loss and gain is realized by removing atoms in one well and
coherently adding particles in the other. These authors pointed
out that to have a close analogy with the optics experiments the
nonlinearity in the Gross-Pitaevskii equation governing these
condensates should be kept small. Here we want to ask the
opposite question: What are the effects of the nonlinearity on
the PT symmetry on such an arrangement of a Bose-Einstein
condensate? It is namely exactly the nonlinearity, proportional
to |ψ(x)|2, in the Gross-Pitaevskii equation that complicates
matters. A necessary condition for the Hamiltonian to be PT
symmetric is that the imaginary part of the potential is an odd
function and the real part an even function of x. The latter
cannot be assumed from the outset for |ψ(x)|2 when solving
the Gross-Pitaevskii equation.

In this paper we will investigate the effects of the nonlinear-
ity on the PT symmetry in the spirit of a model calculation by
considering the situation where the double well is idealized by

two δ-function traps, with loss added in one trap and gain in the
other. We will demonstrate that the stationary solutions of the
Gross-Pitaevskii equation indeed preserve the PT symmetry
of the nonlinear Hamiltonian, and merge in a branch point
at some critical value of the loss and gain, beyond which
the symmetry is broken. Our results show that it will be
a worthwhile enterprise to investigate PT -symmetric Bose-
Einstein condensates in realistic double-well potentials, and
possibly pin down physical parameters where PT breaking
could be observed in a real experiment.

A model which mimics the physical situation of a BEC in
a symmetric double well with loss and gain has already been
investigated by Graefe et al. [6–8] in the framework of a two-
mode Bose-Hubbard-type PT -symmetric Hamiltonian. As an
optical analog, in the two-mode approximation Ramezani et al.
[9] have recently looked at a mathematical model of a PT -
symmetric coupled dual waveguide arrangement with Kerr
nonlinearity. It is one objective of this paper to see which
features of these models are recovered when actually solving
the nonlinear PT -symmetric Gross-Pitaevskii equation.

For a system where a real δ-function potential is augmented
by a PT -symmetric pair of δ functions with imaginary
coefficients, bound states and scattering wave functions have
been calculated by Jones [10]. His interest was devoted to the
quasi-Hermitian analysis of the problem, and no nonlinearity
was present. Jakubský and Znojil [11] have considered
the explicitly solvable model of a particle exposed to two
imaginaryPT δ-function potentials in an infinitely high square
well, and determined the energy spectrum. The nonlinear
Schrödinger equation for a δ-functions comb was studied by
Witthaut et al. [12] with the aim of gaining insight into the
properties of nonlinear stationary states of periodic potentials.
Also, there exists a vast amount of literature on solitons and
Bose-Einstein condensates in periodic optical and nonlinear
lattices with PT symmetry and their nonlinear optical analogs
(see, e.g., [13–21]). But to the best of our knowledge the
basic problem of two PT -symmetric δ-function double wells
with Gross-Pitaevskii nonlinearity has not been considered
so far.
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HOLGER CARTARIUS AND GÜNTER WUNNER PHYSICAL REVIEW A 86, 013612 (2012)

The Gross-Pitaevskii equation we analyze in this paper has
the form

−� ′′(x) − [(1 + iγ )δ(x + b) + (1 − iγ )δ(x − b)]�(x)

− g|�(x)|2�(x) = −κ2�(x) , (1)

with κ ∈ C, Re(κ) > 0, and γ real. It consists of two δ-
function traps with distance a, located at b = ±a/2, with a
real attractive part of the potential and imaginary gain-loss
terms whose strengths are determined by the parameter γ ,
and a nonlinear term with amplitude g, which arises from
the contact interaction of the condensate atoms. Units have
been chosen in such a way that the strength of the real part
of the δ-function potential is normalized to unity. While the
δ-function potentials are PT symmetric, it is not clear a priori
that the equation itself is PT symmetric since this requires the
nonlinear term to be a symmetric function.

For vanishing nonlinearity, we find that the simple quantum
mechanics model captures, for both eigenvalues and wave
functions, all the effects of a PT -symmetric waveguide
configuration in optics. This is essentially due to the fact
that two attractive δ-function potentials have exactly two
bound states which correspond to the two supermodes in the
waveguide arrangement.

For nonvanishing nonlinearity we have solved the Gross-
Pitaevskii equation (1) numerically using a procedure in
which the energy eigenvalues are found by a five-dimensional
numerical root search. The free parameters which have to be
adjusted in such a way that a physically meaningful wave
function is obtained are the eigenvalue κ as well as initial
conditions for the wave function and its derivative. Since the
overall phase is arbitrary we can choose it such that �(0) is
a real number. Therefore five real parameters remain, viz.,
the real part of �(0) and the real and imaginary parts of
both � ′(0) and κ . Physically relevant wave functions must
be square integrable and normalized. The normalization is
important since the Gross-Pitaevskii equation is nonlinear and
the norm influences the Hamiltonian. This gives in total five
conditions which have to be fulfilled: The real and imaginary
parts of � must vanish for x → ±∞, and the norm of the
wave function must fulfill ||ψ || − 1 = 0.

Outside the δ-function traps the Gross-Pitaevskii equa-
tion (1) coincides with the free nonlinear Schrödinger equa-
tion, which has well-known real solutions in terms of Jacobi
elliptic functions (cf., e.g., [12,22,23]). The function which
solves the equation in the ranges |x| > b for the attractive
nonlinearity considered here and decays to zero for |x| → ∞
is cn(κx,1) = 1/cosh(κx). We find that once the correct
eigenvalues and eigenfunctions are obtained our numerical
wave functions exactly show this behavior.

Figure 1 shows the results for the eigenvalues κ calculated
for a value of the nonlinearity parameter g = 1.0 and a trap
distance of a = 2.2 as functions of γ . The results for the
case g = 0 are also shown for comparison. It can be seen
that even with nonlinearity there still exist two branches of
real eigenvalues up to a critical value γcr ≈ 0.4, at which
the two eigenvalues coincide. There also appears a branch
of two complex conjugate eigenvalues, but surprisingly these
are born, not at γcr, but at the smaller value of γ ≈ 0.31 where
they bifurcate from the real eigenvalue branch of the ground
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FIG. 1. (Color online) Eigenvalues κ of the nonlinear equation (1)
as functions of the size of the loss-gain parameter γ for a = 2.2.
The value of the nonlinearity parameter chosen is g = 1. The case
g = 0 is drawn (dashed lines) for comparison. A branch of complex
conjugate eigenvalues appears which bifurcates from the ground-
state branch before the critical value of γ where the branches of the
real eigenvalues coalesce in an exceptional point. There a pair of
complex eigenvalues only emerges after an analytical continuation of
the nonlinearity in the Gross-Pitaevskii equation. All quantities are
plotted dimensionless.

state. This implies that there is a range of γ values where two
real and two complex eigenvalues coexist.

At this point it is useful to establish a link with the model
of a PT -symmetric Bose-Hubbard dimer with loss and gain
investigated by Graefe et al. [8]. An eigenenergy spectrum with
a structure similar to the one in Fig. 1 also appeared in their
calculations (see Fig. 13 in Ref. [8]). In the model, stationary
states correspond to fixed points of the motion of a vector on
the surface of the Bloch sphere, whose types can be classified
according to the eigenvalues of the Jacobian matrix. In the
region where only two real eigenvalues exist the solutions
correspond to centers, while in the region with four eigenvalues
the solutions correspond to a center and a saddle point, and
a sink and a source. The center and saddle point collide at
the branch point and vanish. This behavior is in complete
agreement with the results shown in Fig. 1. It may be concluded
that the familiar branching scheme known for PT -symmetric
Hamiltonians quite generally will be changed into a scheme
of the type as shown in Fig. 1 if a nonlinearity is added to the
Hamiltonian.

Figure 2 shows the real and imaginary parts of the ground
state and the excited state determined numerically for g = 1,
a = 2.2, and γ = 0.35, below the the critical value γcr ≈ 0.4.
The PT symmetry of each wave function is evident since their
real parts are even functions and their imaginary parts odd
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FIG. 2. (Color online) Real and imaginary parts and moduli of the
eigenstates of the nonlinear Hamiltonian in Eq. (1) for g = 1, a =
2.2, and γ = 0.35, (a) ground state and (b) excited state. The wave
functions arePT symmetric, and the moduli are symmetric functions,
producing the PT symmetry of the total nonlinear Hamiltonian. All
quantities are plotted dimensionless.

functions of x. From the PT symmetry of the wave function
follows that the modulus, also shown in Fig. 2, is an even
function, and with it the nonlinear term in Eq. (1). We therefore
have the important result that the nonlinear Hamiltonian picks
as eigenfunctions exactly those states in Hilbert space which
render the nonlinear Hamiltonian PT symmetric. In the
ground state, which emerges from the symmetric real wave
function for γ = g = 0, the symmetric contribution from the
real part still dominates, while for the excited state, which
originates from the antisymmetric solution for γ = g = 0, the
antisymmetric contribution from the imaginary part prevails.

The PT symmetry of the wave functions is broken for
the eigenstates with complex eigenvalues. Figure 3 shows as
an example the wave functions obtained for g = 1, a = 2.2,
and γ = 0.5 for the corresponding pair of complex conjugate
eigenvalues κ . It can be seen that the real and imaginary parts
are no longer even or odd functions, and thereforePT symme-
try is lost. As a consequence, the moduli of the wave functions
also are no longer even functions of x. Thus we find that
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FIG. 3. (Color online) Real and imaginary parts and moduli of
the eigenstates of the nonlinear Hamiltonian in Eq. (1) for g = 1,
a = 2.2, and γ = 0.5, (a) solution with imaginary part of κ > 0
and (b) imaginary part of κ < 0. The PT symmetry is broken, the
moduli are not symmetric functions, and the PT symmetry also
of the nonlinear Hamiltonian is broken. All quantities are plotted
dimensionless.

beyond the branch point not only thePT symmetry of the wave
functions is broken but also that of the nonlinear Hamiltonian.

For the states with complex eigenvalues there is, however,
an important difference between the case with and without
nonlinearity: For complex eigenvalues the modulus squared
of the wave functions grows or decays proportional to
exp[−2Im(κ2)t], and so does the nonlinear term in Eq. (1).
Therefore the solutions presented here are not true station-
ary states of the time-dependent Gross-Pitaevskii equation.
However, Im(κ2) correctly describes the onset of the temporal
evolution of the two modes as can be verified by inserting
the eigensolutions with complex eigenvalues as initial wave
functions into the time-dependent Gross-Pitaevskii equation
and letting them evolve in time. Even though in thePT -broken
regime all initial wave functions will finally explode since the
increase of particles in the well with gain will always dominate
for long times, the influence of the two solutions with complex
eigenvalues is always observable for Im(κ2)t � 1 and initial
wave functions not deviating much from the two eigenstates.
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In Fig. 3 the mode with positive imaginary part of κ is the
one which begins to decay—as expected it is more strongly
localized in the trap with loss—while the mode with negative
imaginary part is the one which starts to grow and is more
strongly localized in the trap with gain.

The fact that at the branch point two real solutions
coalesce without giving rise to two solutions with complex
eigenvalues contradicts the usual behavior seen at exceptional
points. Obviously these solutions cannot be found by solving
the nonlinear Gross-Pitaevskii equation in its form (1), but
require an analytical continuation of the nonlinear Hamiltonian
beyond the critical point γcr. The reason is that the nonlinear
term g|�|2 is a nonanalytic function, and some care has to be
taken when analytically continuing the Hamiltonian beyond
the exceptional point.

In the PT -symmetric regime up to γcr we have �∗(x) =
�(−x). Therefore on the way to the bifurcation point we can
write the nonlinearity for the PT -symmetric states in the form
g|�(x)|2 ≡ g�(x)�(−x). This function can be continued an-
alytically. In the numerical calculation the additional condition∫

�(x)�(−x)dx = 1 must be introduced to fix the phase
of the nonlinearity in the PT -broken regime. In the (then)
six-dimensional root search also Im[�(0)] must be varied. As
a result we find two more complex conjugate solutions that
emerge from the coalescing states; see Fig. 1. These states are
not PT symmetric and no longer possess vanishing imaginary
parts at the origin.

In this paper we have analyzed the simple quantum
mechanical model of a Bose-Einstein condensate in PT -
symmetric δ-function double traps by directly solving the
nonlinear Gross-Pitaevskii equation. We find two stationary
eigenstates with real eigenvalues which at a critical value of
the loss-gain parameter merge in a branch point. We have the
important result that the wave functions arePT symmetric. As
a consequence their moduli are even functions, and therefore
the nonlinear Hamiltonian selects as solutions exactly such
states which make itself PT symmetric. We also find a branch
of two complex conjugate eigenvalues for which the PT
symmetry of the wave functions is broken, and with it that
of the nonlinear Hamiltonian.

An unexpected result is that, with the nonlinearity present,
the branches of complex conjugate eigenvalues do not bi-
furcate from the point where the real eigenvalues coincide,
but emerge at a smaller value of the gain-loss term from the
eigenvalue branch of the ground state. On the other hand,
at the critical value of the gain-loss parameter we find the
behavior characteristic of a branch point, i.e., the coalescence
of both eigenvalues and eigenfunctions, but no pair of complex
conjugate eigenvalues seems to emerge. These are found
only after continuing analytically the nonlinear term in the
Gross-Pitaevskii equation. Note, however, that as stated before,
for complex eigenvalues the squared modulus of the wave
function becomes time dependent, and a description using
the stationary Gross-Pitaevskii equation breaks down anyway.
This does not, however, affect the main result of our paper,
namely the existence ofPT -symmetric eigenfunctions and the
PT symmetry of the Hamiltonian also when the nonlinearity
is present.

We have considered the case of an attractive nonlinearity but
found that the same behavior occurs for repulsive nonlinearity.

The results of our model calculation make one expect that
similar PT behavior should also prevail in Bose-Einstein
condensates in more realistic double wells [24] with PT
symmetry, in one or more dimensions. Also, in addition to the
nonlinearity resulting from the short-range contact interaction,
condensates with a long-range dipole-dipole interaction [25]
could be considered. Investigations of the Gross-Pitaevskii
equation in these directions are under way. It would also
be interesting to extend the quasi-Hermitian analysis given
by Jones [10] and to investigate whether for the nonlinear
PT -symmetric Hamiltonian considered in the present paper
the construction of a metric operator is possible with respect
to which the nonlinear Hamiltonian is quasi-Hermitian. Fur-
thermore it would be worthwhile looking for simple matrix
models which show the behavior of the eigenvalues found for
finite nonlinearity.

We thank Eva-Maria Graefe and Miloslav Znojil for helpful
comments.
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