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Suppression of pair creation due to a steady magnetic field
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We investigate the electron-positron pair creation process in a supercritical static electric field in the presence
of a static magnetic field that is perpendicular. If both fields vary spatially in one direction the dynamics can
be reduced to a set of one-dimensional systems. Using a generalized computational quantum field theoretical
procedure, we calculate the time dependence of the spatial density for the created electrons. In the presence of the
magnetic field, a significant amount of suppression of pair creation is observed in the simulations and confirmed
by an analytical analysis for the limits of short-range fields and long interaction times. This suppression might
be interpreted in terms of Pauli blocking by the electron during its return to the creation region as it performs a
cyclotronlike motion in the magnetic field.
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I. INTRODUCTION

The electron-positron (e+−e−) pair production process
triggered by an external field has a long history pioneered
by the discovery of the Klein paradox [1] and then further
investigated by Sauter [2]. It was found that there is a
nonvanishing transmission of an incoming electron as it
scatters off a repulsive potential step whose height exceeds
twice the rest mass energy of the electron. Contradictory
arguments can be constructed in the theoretical framework
of a single-particle theory, but this paradox can be resolved if
one treats it as a problem in quantum field theory in which,
in addition to the incoming electron, the creation of particles
from the vacuum is also included. It turns out that the result of
the Klein transmission can help us to compute the long-time
behavior of the pair creation rate. In 1951, Schwinger [3]
proposed the proper time method to describe the long-time
behavior of e+−e− pair production process in a static and
spatially uniform electric field. As a result, particle creation in
a classical electric field is often referred to as the Schwinger
mechanism. The typical electric field strength for spontaneous
pair production requires an extraordinarily strong electric field,
which corresponds to Ecr = 1.3 × 1016 V/cm. Although
the problem of creating such an ultraintense field under
laboratory conditions remains presently unsolved, the study is
important as it urges us to go beyond the scope of perturbation
theory to probe the domain of ultraintense field-vacuum
interactions.

The e+−e− production in a classical electric field has been
extensively studied theoretically since Schwinger. Hansen and
Ravndal [4] and Holstein [5,6] used the Sauter potential to ex-
tend Schwinger’s work to compute the long-time pair creation
behavior due to spatially inhomogeneous but time-independent
electric fields. Analytical and numerical estimations of the
leading-order pair-creation rate in spatially inhomogeneous
or time-dependent electric field were also obtained using
the instanton approximation of the world line path-integral
formulation of quantum field theory [7–10].

The pair production in combined electromagnetic (EM)
fields has also been studied. According to textbooks [11],
the creation rate is eventually related to the solutions of the
Dirac equation in the external fields. Exact solutions exist
only for very simple field configurations such as plane EM
waves and spatially uniform and temporally steady electric and
magnetic fields [12]. For uniform static electric and magnetic
fields with arbitrary directions, the result is similar to the case
where the E and B fields are parallel to each other. Here the
effective electric and magnetic field strengths are given by
{[

√
(F1

2 + F2
2) + F1]/2}1/2 and {[

√
(F1

2 + F2
2)−F1]/2}1/2,

respectively, where the Lorentz invariants are defined as F1 =
E2 − B2 and F2 = 2E · B [13,14]. When the magnetic
field is perpendicular to the electric field, F2 = 0, then an
increasing magnetic field reduces the effective electric field
strength leading naturally to a lower pair creation rate. Thus,
this kind of magnetic field suppresses the pair creation in
the uniform and constant electric field. To mention another
extreme case, both F1 and F2 can be equal to zero for a plane
EM wave, such that no pairs are produced. The pair production
in a strong time-dependent magnetic field [15] was calculated
in the framework of adiabatic perturbation theory that is based
on the Landau levels characteristic of a uniform magnetic
field. For spatially inhomogeneous EM fields, such an energy
level structure is not apparent. A direct calculation of the pair
creation in inhomogeneous and time-dependent EM fields can
provide us with further understanding of this nonperturbative
mechanism.

Recently, due to the continued advancement of laser
systems with extremely high power, the pair creation triggered
solely by a laser has become a hot research topic. First
laser-based experiments were carried out at SLAC [16] in
1997 and reported on the multiphoton pair creation in the
collision of a relativistic electron with a strong laser beam.
Theoretical calculations were based on a laser-dressed quan-
tum electrodynamics [17]. Theoretical predictions were also
made for the pair creation that involves the nucleus in the laser
fields [18–24]. The creation process triggered solely by a laser
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has the virtue of being free of any nuclear processes and can be
studied more unambiguously on the theoretical level. Several
works have generalized the Schwinger formula to include also
the finite temporal extent of laser pulses [25,26]. The authors
focused on the nonadiabatic correction to the temporal extent
of the laser field and integrated the Schwinger formula over the
creation region by employing a constant-field approximation
locally. Other works examined catalysis mechanisms such as
superposition of a strong low-frequency and a weak high-
frequency laser field [27–29] and counterpropagating laser
pulses [20,21,30], where magnetic fields are often neglected.

It is important to note that as the e+−e− production
is not necessarily a spatially localized effect [9,31], the
spatial nonuniformity of the laser beam can be neglected
only when the creation region is much larger than the
Compton length, h̄/(mc). The effect of the magnetic field
component cannot be neglected in the upcoming x-ray free-
electron laser facilities [32–34]. The magnetic field compo-
nent for currently available laser pulse at the intensity of
1020 W/cm2 is about 1 GG. The focused intensity for the
planned ELI laser is expected to reach an intensity level of
1024 W/cm2, with the magnetic field on the order of 100 GG.
The experimentally measured quasistatic B field has already
reached 300 MG at a laser intensity about 1019 W/cm2 [35,36].
The supercritical magnetic field strength corresponds to 4.4 ×
1013 G = 4.4 × 109 T, which is reached when laser electric
field reaches the Ecr value.

This work attempts to build a general framework to
calculate the pair creation process in EM fields of both time-
dependent and spatially inhomogeneous field configurations. It
is our intention to make use of a computational method to study
systematically various field configurations involving the mag-
netic field. This method allows us to calculate the impact of the
the magnetic field on the temporal and spatial characteristics
of the process. In particular, we make a direct calculation of
the e+−e− production process for inhomogeneous static fields
where the electric field and magnetic field are perpendicular
to each other and their magnitude varies in one direction.
The approach is based on a numerical code used to solve the
time-dependent Dirac equation in arbitrary dimensions. The
pair production is often viewed as the result of a field-induced
transition between states of negative and positive energy.
Prior studies based on this code have already provided some
insights into various conceptual problems in quantum field
theory [37–40]. In this work, the method is extended to
accommodate for the presence of the magnetic field and
also higher spatial dimensions. The long-time behavior of
e+−e− production process can be related to one-particle
quantum-mechanical tunneling. One-particle tunneling in an
extremely narrow EM field can also be solved analytically. In
another limiting case where the EM fields remain uniform over
a large range, the numerical results reproduce the modified
Schwinger pair-production rate.

The paper is organized as follows. In Sec. II, we describe
a quantum field theory (QFT) algorithm to calculate the
pair creation process in arbitrary EM fields. In Sec. III, we
propose a model for which we calculate the pair creation
with temporal and spatial resolution for the special case in
which the magnitude of both fields varies in one direction.
We apply our QFT framework to the static and mutually

perpendicular electric and magnetic fields. In Sec. IV we
compare the spatial distributions of the single-particle wave
function for two-dimensional (2D) and 1D systems. In Sec. V
the spatial densities are calculated and analyzed for different
transverse momentum values. In Sec. VI we analyze the
long-time behavior of the pair creation rate and relate it to
single-particle tunneling between positive and negative energy
states. The two extreme cases of spatially narrow and wide
fields are studied analytically. In Sec. VII we discuss some
interesting but not very well understood questions and outline
further research directions.

II. QUANTUM FIELD THEORETICAL DESCRIPTION OF
PAIR CREATION IN ARBITRARY EXTERNAL FIELDS

The pair creation in classical EM fields needs to be studied
within the framework of QFT [41]. Former works have
focused on pair creation in electric fields [37,40], where the
Dirac equation is second quantized within a Hilbert space
of interaction-free basis states. In intuitive terms, the field is
switched on suddenly at t = 0 and switched off at the time
we make the measurement. The switch-on and -off causes no
difficulty for the electric field in the V gauge (scalar potential)
as no other improper fields are created. For the case when a
magnetic field is present, however, the corresponding vector
potential A becomes unavoidable and needs to be included.
The switch-on and switch-off process would lead to an—in
principle—infinite amount of electric field that could obscure
the underlying physical mechanisms.

In this section we try to formulate a general framework to
calculate the pair creation process in classical EM fields. In
order to unambiguously detect the created pairs we consider
the scalar potential free Dirac Hamiltonian (from now on we
use atomic units)

h0(t) = cα · (p + A/c) + βc2. (2.1)

As the Hamiltonian h0(t) is Hermitian at every instant of
time t , we can assume that there exists an orthonormal and
complete basis set of (instantaneous) eigenstates satisfying

h0(t)ψP (x) = EP (t)ψP (x), (2.2a)

h0(t)ψN (x) = EN (t)ψN (x). (2.2b)

The subscript P(N ) denotes positive (negative) energy
eigenstates. Note that EP > 0 and EN < 0 and that a gap exists
between positive and negative energy levels. In the case of a
pure electric field, this claim is proved explicitly in Appendix
A. The main reason for excluding a scalar potential is that
for the case of V > 2c2, it could be difficult to distinguish
between positive and negative energy states. Note that ψP and
ψN are only instant eigenfunctions of h0(t); they do not evolve
with time as they are not solutions to the time-dependent Dirac
equation. The orthonormal and complete relations read∫

dx ψ
†
U (x)ψV (x) = δUV , (2.3a)∑

U

ψU (x)ψ†
U (x′) = δ(x − x′), (2.3b)
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where U , V = P or N , and we do not denote the spinors
explicitly here. The field operator can be expanded as

�̂ (x,t) =
∑
P

B̂P (t)ψP (x) +
∑
N

D̂
†
N (t)ψN (x), (2.4)

where B̂P (t) and D̂
†
N (t) are the annihilation and creation opera-

tors for positive-energy states ψP (x) and negative-energy states
ψN (x) at the instant t . They satisfy the anti-commutator al-
gebra: [B̂P1(t),B̂P2(t)]+ = 0, [B̂P1(t),B̂†

P2(t)]+ = δP1P2, and
similar relations hold for D̂.

Independently, integrating the single-particle Dirac equa-
tion i∂φ/∂t = h(t) φ, with the full Hamiltonian including the
influence of the combined E and B fields h(t) ≡ h0(t) +
V (t), forward in time from a complete set of eigenmodes
ϕp(x, t0) and ϕn(x, t0) at an initial moment t0 gives another
set of solutions ϕp(x, t) and ϕn(x, t) at time t . Here ϕp(x,
t0) and ϕn(x, t0) denote the positive and negative states at t0,
with ϕp(x, t0) ≡ ψP (x) and ϕn(x, t0) ≡ ψN (x). Since h(t)
is Hermitian, ϕp(x, t) and ϕn(x, t) form another complete,
orthonormal basis set at every instant of time t :∫

dx φ†
u(x,t) φv(x,t) = δuv, (2.5a)∑

u

φu(x,t) φ†
u(x′,t) = δ(x − x′). (2.5b)

Here u, v = p, n. The orthogonality and completeness rela-
tion can be proven by showing that the scalar product remains
time independent, d

dt

∫
dx φ

†
uφv = ∫

dx(φ̇†
uφv + φ

†
uφ̇v) =∫

dx [(−ihφu)†φv + φ
†
u(−ihφv)] = i

∫
dx(φ†

uh
†φv −

φ
†
uhφv) = 0, and similarly, d

dt
(
∑

u φuφ
†
u)† = 0. There-

fore, the field operator can also be expanded as
�̂(x,t) = ∑

u b̂u φu(x,t). Operator b̂u is time indepen-
dent if φu(x,t) satisfies the time-dependent Dirac equa-
tion. To see this we note that �̂ satisfies the
Dirac equation, so 0 = ( ∂

∂t
+ ih)�̂ = ∑

u
˙̂bu(t)φu(x,t) −

i
∑

u b̂u(t)(i ∂
∂t

− h)φu(x,t) = ∑
u

˙̂bu(t)φu(x,t). The projec-
tion with a function φu(x,t) at time t shows that the operators
b̂u are time independent. Using this argument we can expand
the field operator as

�̂ (x,t) =
∑

p

b̂pφp(x,t) +
∑

n

d̂†
nφn(x,t), (2.6)

where b̂p and d̂
†
n are defined as b̂p = b̂p(t0) and d̂

†
n =

b̂n(t0). They are the annihilation and creation operators for the
positive energy states φp(x,t0) and the negative energy states
φn(x,t0) at the initial time t0. They satisfy the anti-commutators
[b̂p1,b̂p2]+ = 0 and [b̂p1,b̂

†
p2]+ = δp1, p2, which also hold for

d̂.
Comparing Eqs. (2.4) and (2.6) one can show that the

operators in Eq. (2.4) evolve in time according to

B̂P (t) =
∑

p

b̂p UP,p(t) +
∑

n

d̂†
n UP,n(t), (2.7a)

D̂
†
N (t) =

∑
p

b̂p UN ,p(t) +
∑

n

d̂†
n UN ,n(t). (2.7b)

Here we define the matrix element Uα,β (t) = 〈ψα|φβ(t)〉
with α = P or N and β = p or n. With these relations and an
initial state at time t0, we can define quantum field observations

at any time t . For example, if the system is initially in the
vacuum state ||0〉 state at time t0, with b̂p||0〉 = d̂n||0〉 = 0, we
can define the average number of the electrons at t as

N (t) = 〈0‖
∑
P

B̂
†
P (t)B̂P (t)‖0〉 =

∑
P

∑
n

|UP,n(t)|2. (2.8)

Other quantities such as the spatial density can also be
computed from the operators in Eq. (2.8) and will be derived
in the following sections.

III. APPLICATION TO PAIR CREATION IN STEADY
ELECTRIC AND MAGNETIC FIELDS

FOR A MODEL SYSTEM

For the case of a static and uniform electric field parallel
to a static and uniform magnetic field we refer to the work
of [12,14]. In this work we take the case of a time-independent
magnetic field (assumed to point in the z direction) and a
time-independent electric field (pointing in the x direction).
This field configuration can be described by a vector potential
A only or (as we have done) by A for the magnetic field and
a scalar potential V for the electric field. The later description
requires V to be switched on at t = 0 and switched off at the
time one makes the measurement. These two gauge choices
lead, of course, to the same result but the later one largely
simplifies the numerical computation because for a constant
vector potential Eqs. (2.2) become time independent.

In this work we assume for each simulation that the spatially
localized magnetic field is temporally constant and therefore
acts as a constant background at all times. The initial state
is the QFT vacuum state associated with this magnetic field.
We could equivalently assume that the vacuum is initially
in the field-free state and the magnetic field (via the vector
potential A) is turned on adiabatically from t = −∞ to its
full strength at t = 0. If the magnetic field were turned on
nonadiabatically and too rapidly, the associated electric field
by itself could possibly lead to a small amount of pair creation,
which, however, is not the focus of our attention here. The true
interaction (with A = const.) begins at t = 0, when the strong
electric field (via the scalar potential V ) is turned on, and it is
completed after V is turned off. The observables are computed
then by projecting on the corresponding states in the presence
of the magnetic background. If the electric field were turned
on or off too abruptly, this rapid temporal change by itself
could induce the creation of pairs, even if the amplitude of the
electric field is still subcritical. We also illustrate below the
dynamical manifestation of this turn-on effect.

In our model (where E · B = 0) the electron’s motion is
confined to the x-y coordinate plane and executes a 2D motion
if initially there is no velocity in the z direction. We consider
further that the 2D Dirac Hamiltonian under investigation
contains vector and scalar potentials A and V that only vary
in the x direction. This corresponds to E and B fields that also
vary only in the x direction. In such a field configuration, the
2D problem can be reduced to a set of effective 1D dynamics
and therefore avoids an exceeding amount of computations. A
similar kind of consideration has been introduced to classical
problems. For example, this simplification is often exploited in
particle-in-cell simulations in plasma physics [42,43], where
the 3D evolution of particles accumulates to a 1D statistical
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distribution:

h(x) ≡ h0 + V (x)

≡ cαx p̂x + cαy p̂y + αy Ay(x) + βc2 + V (x). (3.1)

As the commutator [p̂y,h] vanishes, the momentum py is
a conserved quantity. For particle detection we consider the
scalar-potential-free situation first. The basis in Hilbert space
of h0 can be chosen as ψ

py

α (x,y) = χ
py

α (x)eipyy/
√

2π, where
h

py

0 χ
py

α (x) = E
py

α χ
py

α (x) and α = P or N while (the reduced
h0) h

py

0 ≡ cαxp̂x + cαypy + αyAy(x) + βc2. Note that in the
definition py has become a fixed number rather than an
operator. The functions χ

py

α (x) form a basis of h
py

0 . Generally
speaking, it is difficult to obtain an analytical expression for
χ

py

α (x) for arbitrary EM fields. However, with the help of the
field-free states with a fixed momentum py along the y axis,
they can be calculated numerically. The ψ

py

α (x,y) form an
orthonormal and complete basis set for the Dirac Hamiltonian
h0 with

h0ψ
py

α (x,y) = h
py

0 χ
py

α (x)eipyy/
√

2π = E
py

α ψ
py

α (x,y). (3.2)

To calculate the time evolution of h(x) we start from
the positive and negative energy eigenstates at initial time
t0 φ

py

p (x,y,t0) = ζ
py

p (x,t0)eipyy/
√

2π and φ
py

n (x,y,t0) =
ζ

py

n (x,t0)eipyy/
√

2π . The time evolution of this basis is
given by the Dirac equation i∂φ(x,y,t)/∂t = h φ(x,y,t).
The time evolution can be factorized into φ

py

β (x,y,t) =
ζ

py

β (x,t)eipyy/
√

2π , where ζ (x,t) evolves as

i∂ ζ
py

β (x,t)/∂t = hpy ζ
py

β (x,t), (3.3)

while hpy = h
py

0 + V (x) and β = n or p. Equation (3.3) and
ζ

py

n (x,t0) define an initial value problem which can be solved
using the split-operator technique [44,45]. The field operator
can be expanded as

�̂ (x,y,t) =
∑
P, py

B̂
py

P (t) ψ
py

P (x,y) +
∑
N , py

D̂
py

N
†(t) ψ

py

N (x,y)

= 1√
Ly

∑
py

eipyy

×
[∑

P
B̂

py

P (t)χ
py

P (x) +
∑
N

D̂
py

N
†(t)χ

py

N (x)

]

(3.4a)

or

�̂ (x,y,t)

=
∑
p, py

b̂
py

p φ
py

p (x,y,t) +
∑
n, py

d̂
py

n
† φ

py

n (x,y,t)

= 1√
Ly

∑
py

eipyy

×
[∑

p

b̂
py

p ζ
py

p (x,t) +
∑

n

d̂
py

n
† ζ

py

n (x,t)

]
. (3.4b)

Here superscripts py in B̂
py

P , b̂
py

p , D̂
py†
N , and d̂

py†
n denote an-

nihilation or creation operators with fixed py , respectively. For
our numerical calculations, we discretize py by introducing a

numerical box with length Ly along the y axis. The creation
and annihilation operators satisfy the algebra [b̂

py

p1 ,b̂
p′y
p2 ]+ = 0

and [b̂
py

p1 ,b̂
p′

y

p2

†
]+ = δp1 p2 δpy p′

y
, which also hold for d̂, B̂, and

D̂. The time-dependent operators B̂
py

P (t) and D̂
py

N
†(t) are

given by

B̂
py

P (t) =
∑

p

b̂
py

p U
py

P,n(t) +
∑

n

d̂
py

n
† U

py

P,n(t), (3.5a)

D̂
py

N
†(t) =

∑
p

b̂
py

p U
py

N ,p(t) +
∑

n

d̂
py

n
†U

py

N ,n(t). (3.5b)

Here the matrix element is defined as U
py

α,β(t) = 〈χpy

α |ζ py

β (t)〉,
while α = P or N and β = p or n.

For a system in the (magnetic field dressed) vacuum state
||0〉 at t0, the average electric density is

ρe (x,y,t) = 〈0||�̂†
e (x,y,t)�̂e(x,y,t)||0〉

= 1

Ly

〈0||
⎡
⎣∑

P,py

B̂
py

P
†(t) χ̂

py

P
†(x)eipyy

⎤
⎦

×
⎡
⎣∑

P ′,p′
y

B̂
p′

y

P ′ (t)χ
p′

y

P ′ (x)e−ip′
yy

⎤
⎦ ||0〉

= 1

Ly

∑
py.n

∣∣∣∣∣
∑
P

U
py

P,n(t)χ
py

P (x)

∣∣∣∣∣
2

. (3.6)

Obviously, this result is y independent and we can integrate
over y to remove the factor 1/Ly . Integrating over x and y

gives the average total amount of pair creation

Ne(t) =
∑

P, py ,n

∣∣Upy

P,n(t)
∣∣2 . (3.7)

The reduction of the 2D problem to a set of quasi-
1D systems discussed above is applicable to more general
configurations. For example, a 3D problem where the EM
fields (time dependent or time independent) vary in the same
spatial dimension can be treated with the same procedure.
This simplification, however, not only largely reduces the
amount of numerical computations (it currently still takes
days of computing time), but it can also be relevant to other
experimental conditions such as two counterpropagating laser
pulses.

IV. SINGLE-PARTICLE DYNAMICS FOR MODEL 2D AND
1D SYSTEMS IN A STATIC B FIELD

With the considerations discussed in Sec. III we calculate
a 2D system that varies in one spatial dimension. We will
compare the exact 2D cyclotron motion in the x-y plane of
an electron wave packet in a constant magnetic field and its
marginal x-dependent density (obtained by integrating the
density over y) with a 1D theory. To keep the comparison
as illustrative as possible we investigate here the situation in
which we approximate the 1D theory by only a single value of
the external parameter py .

Figure 1 shows the comparison between 2D and 1D
single-particle wave function evolutions for a Gaussian wave
packet in a constant magnetic field. The gauge is chosen to
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1D simulation
2D, Δy=0.08
2D, Δy=0.24

FIG. 1. Comparison between 2D (top) and 1D (bottom) evolu-
tions of a Gaussian wave packet in a constant magnetic field along
the z direction with Ax = Az = V = 0, Ay = B x, and �y = �x =
0.08 a.u. For the 2D simulation (top) the y variable is integrated
out, and the marginal x density is shown as the dot-dashed curve in
the lower panel. In a second 2D simulation, �y = 0.24 a.u. is used,
which produces x density indicated as the dashed curve. For the 1D
simulation py = 0 is used and the evolution is the solid curve. Time
t is labeled in units of 0.006 a.u. The wave packet has a cyclotron
radius of 0.73 a.u. and a period of 0.057 a.u.

be Ax = V = 0, and Ay = Bx. In other words, the constant
magnetic field is assumed to be along the z direction. For an
illustration of the gauge equivalence between the choice of
V and A fields, see Appendix A. We use py = 0 for the 1D
simulation.

For the 2D simulation, the initial wave function is chosen
as

ψ (x,y,t = 0) = N0

⎛
⎜⎜⎝

1
0
0
ck0

c2+
√

c4+c2k2
0

⎞
⎟⎟⎠ exp (ik0x)

× exp

[
− x2

(2�x)2

]
exp

[
− (y − y0)2

(2�y)2

]
. (4.1a)

For the 1D simulation, the corresponding initial wave function
is chosen as

ψ (x,t = 0) = N0

⎛
⎜⎜⎝

1
0
0
ck0

c2+
√

c4+c2k2
0

⎞
⎟⎟⎠ exp (ik0x)

× exp

[
− x2

(2�x)2

]
, (4.1b)

with k0 = 100, N0 are the corresponding normalization factors,
and we set B = c2. Equations (4.1) were chosen such that the
marginal and 1D density are identical at t = 0 to allow for a
better comparison.

The motion of the exact marginal density of this 2D wave
packet is very well approximated by the effective 1D theory
(based on a single value py = 0), if the initial transverse
width �y is chosen large enough. In this limit the momentum
density is rather narrowly distributed around py = 0, and other

py values, which would make our approximation (based here
on py = 0) less valid, are not so important. Had we included
all possible values of py the set of the 1D equations would,
of course, be completely identical to the full 2D dynamics.
This simplification is generally not possible when the E and
B fields are parallel to each other when the dynamics is truly
3D. Our model system allows us to analyze the pair creation
in great detail using realistic computation times. For the width
�y = 0.24 the 2D motion (with the y motion integrated out) is
already very close to the corresponding 1D evolution. For still
larger width �y > 0.5 it becomes essentially indistinguishable
from the 1D motion.

V. PAIR CREATION AND SPATIAL DENSITY
IN COMBINED STATIC E AND B FIELDS

In this section we calculate the pair creation for time-
independent but spatially inhomogeneous electric and mag-
netic fields. The electric field is represented by the corre-
sponding scalar potential V (x) = V0[1 + tanh(x/W )]/2 and
the magnetic field is given by vector potential components
Ay(x) = M[1 + tanh(x/W )]/2, and Ax = Az = 0. These
scalar and vector potentials correspond to an E field pointing
in the x direction and a B field pointing in the z direction. Both
fields vary along the x direction within a range of about 2W

around x = 0. Note that since E = −dV (x)/dx ∼ V0/(2W ),
at the peak around x = 0, and B = dAy(x)/dx ∼ M/(2W ), V
and M can be expressed in units of c2 and, for W ∼ 1/c, E and
B are given in units of c3. We also see here that M is directly
proportional to the B field. While spatial inhomogeneities
make many standard theoretical approaches more difficult,
they have the advantage that we can examine the dynamics also
from a spatially resolved perspective. The system is initially
in the QFT vacuum state ‖0〉 in the magnetic field where V

is switched off and the magnetic field is present. The overall
pair creation is obtained by summing up all py contributions.
Since our computations require us to scan through all values
of py , it seems interesting to examine first how each individual
py component contributes to the pair creation.

A. For momentum py = 0

The corresponding Hamiltonian for the special case of py =
0 simplifies to

h = cαxp̂x + αyAy(x) + βc2 + V (x). (5.1)

The total number of created electron-positron pairs is
illustrated in Fig. 2. The two curves labeled with py = 0 start
from zero when the fields are turned on. Even though the two
simulations differ by their magnetic field values, the number of
created pairs for both is virtually identical within a time period
that is close to 1/c2 = 0.000 05. After this the curves turn into
straight lines with constant slopes in the long-time limit. The
slopes measured from Fig. 2 are 843.93 and 407.75 for the
cases of B = 0 and B 
= 0 that corresponds to M = 0.6c2,
respectively. It is obvious that the presence of the magnetic
field has reduced the pair creation rate by as much as a factor
of 2 for py = 0. Note that the E field is supercritical, since
V0 = 2.5c2 and E ∼ V0/(2W ) = 2.5c2/(0.2/c) = 12.5c3. The
magnetic field was B ∼ M/(2W ) = 0.6c2/(0.2/c) = 3c3.
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FIG. 2. The number of created pairs as a function of time for
W = 0.1/c, V = 2.5c2, and M = 0.6c2. In the long-time limit, the
curves approach straight lines with slopes of 843.93, 553.71, 407.75,
and 310.45, respectively. These slopes are computed analytically in
Sec. VI. The two curves labeled py 
= 0 correspond to the simulations
with py = −62.83.

We next examine the corresponding electron spatial dis-
tributions. They are displayed in Fig. 3 with identical para-
meters as used in Fig. 2. Both static electric and magnetic
fields are centered at x = 0 with a width of W = 0.1/c =
0.00073 a.u. corresponding to a narrow range around the
origin. Since the barrier is repulsive on the right side for the
electron, the electron moves to the left and the positron (not
shown in Fig. 3) moves to the right. At time t = 0.0005 the
initially created electrons have moved mostly to the left and the
wave front reached to around x = 0.07 a.u. This corresponds
to an effective traveling speed of v = 0.07/0.0005 ∼ 137 = c.

The electrons, when being created, have roughly the same
probability of traveling to the left and to the right. The portion
that travels to the left will continue to travel to the left. Outside
of the interaction region the electron undergoes a free evolution
with possible quantum spreading.

0

10

20

-0.05 0 0.05

ρ (x)

x [a.u.]

p
y

= 0, B = 0

p
y

= 0, B ≠ 0

p
y

≠ 0, B ≠ 0

p
y

≠ 0, B = 0

FIG. 3. The spatial distribution for the created electrons for
W = 0.1/c, V = 2.5c2, and M = 0.6c2 at time t = 0.0005. The solid
curves are for py = 0, the dashed curves are for py = −62.83. The
case of a static electric field is labled with B = 0 while the case of
combined E and B fields is labled with B 
= 0.

The portion of the electron that travels to the right can
be divided into two groups. Most electrons have an energy
that is below the maximum barrier height so after climbing the
barrier they come to rest before they slide down the potential to
escape to the left to minus infinity. A small number of electrons
have an energy that is larger than the maximum barrier height.
These electrons can manage to overshoot the barrier and move
to the right. The small peak on the right of the origin in Fig. 3
represents the electron that has undergone this type of motion.
The small peak near x = 0.07 a.u. is due to the sudden turn
on of the electric fields and thus a slightly higher density is
formed as a “wave front.” The fastest velocity of the right
moving electrons is also near the speed of light. The higher
density for the electrons that eventually move to the left near
x = −0.055 is also due to the sudden turn on.

The overall height of each curve in Fig. 3 is consistent with
Fig. 2. In fact, for py = 0 the B field suppresses the pair
creation but for py 
= 0 the effect can also be an enhancement.
There are several structures in the spatial density distributions,
which depend on the particular value of py .

B. For momentum py �= 0

For the case of py 
= 0 at an instant t , the evolution can be
chosen as

ψ
py

n (x,y,t) = eipyy ζ
py

n (x,t0) . (5.2)

Because of momentum py conservation, only the matrix
elements with the same py are nonzero. In this case the
Hamiltonian is

h = cαxp̂x + cαypy + αyAy(x) + βc2 + V (x). (5.3)

The total number of electrons with a fixed momentum py

can be calculated similar to those for py = 0. The resulting
time-dependent pair creation signal and the spatial density
distributions are similar to those associated with py = 0. The
corresponding pair creation was shown in Fig. 2 and the spatial
distributions were shown in Fig. 3 with the label py 
= 0. In our
example, py has been assumed to be −62.83. This particular
value was chosen to illustrate that the pair creation for some py

can be enhanced. In our numerical calculations the momentum
takes only discrete values. The specific value quoted above
(∼100 2π ) is just the result of our chosen parameters for the
numerical grid. While the data for py = −62.83 and py = 0
are quite similar, we notice that the suppression obtained early
can be reversed into an enhancement. In other words, for py =
−62.83 the pair creation in the presence of magnetic field
is enhanced (instead of suppressed) compared to the case of
py = 0.

C. Total pair creation and the corresponding spatial density

In order to compute the total pair creation and the
corresponding spatial density we need to add up the individual
contributions associated with each values of py. Our set of
(uncoupled) 1D equations is then identical to a single 2D
calculation.

The result of the total pair creation is displayed in Fig. 4
and the corresponding spatial distribution is shown in Fig. 5.

Even though for some values of py the presence of the
magnetic field enhances and some other values suppress the
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FIG. 4. The total number of the created electrons as a function
of time t . W = 0.1/c, V = 2.5c2 (top solid line), and additionally
M = 0.6c2 (lower solid line). The slopes in the long-time limit for
the top and the lower solid curves are 4312.2 and 3004.2, respectively.
The dashed curve is for M = 0.6c2 also and is explained in Sec. VI. It
has essentially the same long-time limit slope as the lower solid curve.

pair creation, the number of total pairs is always suppressed in
the presence of the magnetic field. This conclusion is obvious
from Figs. 4 and 5.

From Fig. 4 we also see that the pair creation increases
from zero as the electric field is switched on at t = 0. For
short times of 1/c2, it grows independent of the magnetic field
strength. In the long-time limit it approaches linear regions
that can be represented by a constant slope, which represents
the creation rate. These rates can be computed also by other
means, as we show in Sec. VI. In the long-time limit our
numerical result approaches the computed rate extremely well.
The curves with the magnetic field show a significant amount
of suppression of pair creation compared to the pure static
electric field case. This result with nonzero magnetic field is
interesting. Unlike the case when the static E field is parallel to
the B field [12,14] for which the pair creation is believed to be
slightly enhanced by the magnetic field, the configuration with

-0.02 -0.01 0  0.01  0.02

ρ(x)

x

B=0
B≠0

FIG. 5. Snapshots of the electron densities at time tn = n × 5 ×
10−5 a.u. (n = 1, 2, . . . , 20). The dashed curves are for the case of
a static electric field only, while the solid curves are for the case of
combined E and B fields with the same parameters as in the Fig. 4.
For better visibility, we have added a constant vertical shift to each
distribution to represent the time evolution.

the E field perpendicular to the B field produces an overall
suppression of created pairs.

There are several ways to explain how the magnetic field
might suppress the pair creation. For example, we could
consider transforming the observer to a moving frame in which
the magnetic field is completely absent. It turns out that in this
moving frame the effective electric field strength is lower than
its original value. Since the pair creation is, in general, propor-
tional to the amplitude of the electric field the observed sup-
pression of pair creation due to the magnetic field is obvious.

We could also argue that the presence of the magnetic
field causes the created electrons to execute a quasicircular
cyclotron motion. Such a motion can return the electron back
to the interaction zone where the pair creation occurs. The
returned electron can occupy the same state a newly created
electron would require. Due to the Pauli exclusion principle
for fermions, the pair creation is suppressed. Note the
suppression presented in Fig. 4 can be seen most prominently
after the early stage of t ∼ 0.000 05, similar to the starting
time of suppression in Fig. 2.

The suppression obviously manifests itself also in the
spatial domain, as shown in Fig. 5. In this plot we see that the
electrons created at x = 0 moved away from the interaction
region. The speed of the electrons is close to the speed of light.
The small density in the opposite direction corresponds to
high-momentum electrons that could climb over the potential
barrier. Outside of the field region it just moves with a uniform
speed, which happens to be very close to the speed of light
again. Since the probability of overcoming the barrier is small,
the resulting spatial density is small. Note that there are certain
momentum values that correspond to the electrons moving up
the potential barrier initially but eventually do not overcome
the barrier. These electrons will reverse their motion to move
away from the barrier. They will register on the same side
as those that were created and moved down the barrier and
away from the barrier. Note that the cyclotron radius of the
created electron in this case should be around 0.25/c for our
simulation parameters. After adding all py up, the density in
Fig. 5 is very smooth when compared to Fig. 3.

VI. LONG-TIME BEHAVIOR OF THE PAIR CREATION

A. Creation rate and its relation to the transmission coefficient

We observed from the previous discussions that in the long-
time limit the creation curves settle into a straight line. This
means that the process in the long-time limit can be approxi-
mated by a single rate that corresponds to the slope of the line.
In order to analyze the pair creation rate and its variation with
energy, we study the transmission of a particle moving from a
positive energy state to a negative state in a supercritical barrier.
In one spatial dimension one can show that the long-time
limits of the pair-creation rate can be obtained from the energy
integral over the transmission coefficient as [30,37,46]

S = 1

2π

∫ V −c2

c2
T (E)dE. (6.1)

The key question is how well this well-known relationship
between quantum mechanical single-particle scattering and
pair creation also holds if in addition a magnetic field is present.
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FIG. 6. The quantum mechanical transmission coefficient T as a
function of incoming energy E. For all cases V = 2.5c2, W = 0.1/c.
For B 
= 0, M = 0.6c2. For fixed nonzero momentum py = −62.83.
The dash curves are the analytical results for the step potential case
from Eq. (C9).

For a specific momentum py , we generalize this formula to

S(py) = 1

2π

∫ Emax

Emin

Tpy
(E)dE (6.2)

where Emin = √
[c4 + c2py

2] and Emax = V −√
[c4 +

c2(py + M/c)2]. This generalization ensures the energy of
integration for the states is within the Klein region. If we add
all S(py) including the spin we obtain for the total rate S =
2
∑

py
S(py). In the general case, transmission coefficient T

can be obtained numerically through single-particle evolution
or by the quantum transmitting boundary method (QTBM; see
Appendix B). The numerical results with py = 0 for static E
field or static E and B fields are illuminated in Fig. 6.

The area from Fig. 6 times 2 (spin, assumed four spinor
components in our calculations) fits the slope in Fig. 2.
As a matter of fact, the four slope values that the curves
approached in the long-time limit came from an evaluation
of the corresponding areas of the semicircled structures in
Fig. 6. The agreement with the numerical result is excellent
and confirms the validity of Eq. (6.1) even for the more general
case of a magnetic field. For example, the numerical slopes
in Fig. 2 of 857.11, 563.14, 415.20, and 317.07 differ from
the computed rates by only 1.6%, 1.7%, 1.8%, and 2.1%,
respectively. It is quite interesting to find that Eq. (6.1) is
valid even for combined electric and magnetic fields. Of
course, the transmission only requires us to solve the single
particle scattering problem. This agreement shows once again
a mathematical connection between QFT and (single-particle)
quantum mechanics.

Note that there is a constraint on the parameters V and
M . The supercritical threshold corresponds to V > 2c2 for a
static electric field. Here the overlap between the negative and
positive energy states leads to the following inequality, Emax

> Emin or V −√
[c4 + c2(py + M/c)2] >

√
[c4 + c2py

2].
This inequality simplifies to V 2 − M2 > 4c4 if py is zero.
Otherwise, no positive states can transmit into the negative
states; thus, no permanent flux of electron-positron pairs can
occur. This is consistent with an argument for E and B fields
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FIG. 7. The pair creation rate R for various py , with and without
magnetic field. V = 2.5c2, M = 0.6c2, and W = 0.1/c.

described above based on Lorentz boosted frame, where there
is only an effective static electric field. Here the amplitude of
the effective scalar potential is given by

√
[V 2 − M2] such

that in this frame the condition for supercriticality translates
into

√
[V 2 − M2] > 2c2.

B. Variation of pair creation rate with momentum py

We have compared the rates using the formulas developed in
Sec. VIA with the numerical simulations presented in Sec. V.
In Fig. 7 we show how the pair creation rate varies with the
value of py with and without magnetic field. This figure also
explains why for py = 0 there is a suppression due to the B

field and for py =−62.83 there is an enhancement as displayed
in Figs. 2 and 4. This is quite interesting as this dependence on
py is not monotonic. In fact, there is an apparent shift in the
peak value to the left in Fig. 7 with the increase of the magnetic
field. Also there is an apparent suppression in the overall area
that, after multiplied by Ly/(2π ), corresponds to half of the
slopes in Fig. 4 (the factor of 2 accounts for the spin).

For the case of M = 0, a nonzero py has two effects on
the pair creation rate in Eq. (6.1). It leads to a higher limit for
Emin and a lower limit for Emax compared to the case of py =
0. For example, for py = −62.83 the lowest energy one can
obtain is

√
[c4 + c2py

2]. This explains why the corresponding
curves in Fig. 6 did not begin from the origin. We also note
from the analytical results for the extreme narrow field (see
Appendix C) that py causes a mass shift from m (1 in a.u.) to
a larger effective mass according to m∗ = √

[m2 + (py/c)2]
that enters the expression of transmission coefficient T . Thus,
we can expect a maximum value for py = 0.

When M 
= 0, as Ay and V have the same spatial
configuration, one can introduce a Lorentz transformation
along the y axis⎛

⎜⎝
ct ′
x ′
y ′
z′

⎞
⎟⎠ =

⎛
⎜⎝

γ 0 −βγ 0
0 1 0 0
−βγ 0 γ 0
0 0 0 1

⎞
⎟⎠
⎛
⎜⎝

ct

x

y

z

⎞
⎟⎠ . (6.3)

With β = v/c = −Ay/V = −M/V0 = −0.6/2.5 = −0.24
and γ = 1/

√
[1 − β2] = 1.03. After this transformation, the

new fields are A′
y = γ (βV + Ay) = 0 and V ′ = γ (V + βAy) =
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√
[V0

2 − M2] [1 + tanh(x/W )]/2. Thus, in the new inertial
frame, the field is again a pure electric field with the same
spatial configuration but with the lower potential V ′

0 = √
[V0

2

− M2]. The most probable energy and longitude momentum
in this frame of reference for the created electron is E′ =
V ′

0/2 and p′
y = 0. This corresponds to the largest transmission

coefficient. Thus, the peak value shifts to py = −M/2c due
to the existence of a magnetic field. When we transform back
to the original frame of reference we obtain py = γp′

y +
γE′ β/c = −M/2c = −0.6c2 /2/c = −0.3c = −41.11.
From Fig. 7 the peak is roughly located at −41.89, so the
error is around only 2%. Because of the reduction of the
effective potential, the peak value for the pair creation has
to be suppressed. The most probable energy in the former
frame of reference is E = γE′ + cγ βp′

y = V0/2.
To see how our simple Lorentz transformation-based

analysis is valid for our situation, we have made a simulation
for V = 2.5c2, M = 0.6c2 and where the pair creation has
been obtained by an integration over all momenta py . The pair
creation agrees with V ′ = √

(V 2 − M2) = 2.427c2 M ′ = 0
case. The predicted creation rates are 3.14 × 103 and 3.13 ×
103, respectively; that is, they differ by less than 0.4%. This
is the origin of the dashed curve in Fig. 4. The slope for the
long-time limit is nearly identical to that of the lower solid
line. However, different short-time behaviors give rise to the
shift between the two curves.

In Fig. 6 we can see the curves take elliptical shapes, and
the area under the curve is the rate in Fig. 7. To approximate
the semicircle by an ellipse introduces an error on the order of
3% to 4% for the area. The energy integration in the integral
over the transmission rate ranges from Emin = √

[c4 + c2py
2]

to Emax = V −√
[c4 + c2(py + M/c)2]. We can therefore

choose the half of the energy interval �E = (Emax − Emin)/2
and the relevant transmission rate T (Epr) as the semimajor
and the semiminor axis of the ellipse, respectively. Here Epr,
which equals (Emax − Emin)/2 + Emin, is the most probable
energy and the value of T (Epr) can be obtained from Eq. (C9).
The center of the ellipse is at the point (Epr, 0).

This rate is half of the area, namely R = S/2 = �E
T(Epr)/2. Therefore, we get the ratio of the rate with and with-
out the magnetic field: R|B=0/R|B 
=0 = (�E T (Epr))|B=0/

(�E T (Epr))|B 
=0. In our situation, we get R|B = 0,py = −62.83/

R|B 
= 0,py = −62.83 = 0.568, and R|B 
= 0, py = 0/R|B = 0, py = 0 =
0.489. They agree excellently with a small error of less than 2%
with the ratios of the slopes shown in Fig. 2, 310.45/553.71 =
0.561 and 407.75/843.93 = 0.483. When the momentum
is integrated out, Rtot = Ly

2π

∫ pmax

pmin

�E T (Epr)
2 dpy, we obtain the

estimated total rate of pair creation to be 3041.85 (for B 
= 0)
and 4350.42 (for B = 0). Comparing with the slopes obtained
from Fig. 4, 3004.2 (for B 
= 0) and 4312.2 (for B = 0), the
error is again very small and under 2%.

C. The constant field limit

The pair creation rate per unit volume per unit time for
mutually perpendicular static and spatially homogeneous EM
fields [14,40] is (again in atomic units) for the 2D system

Rs = ε3/2

2π2c1/2
exp

(
−πc3

ε

)
, (6.4)
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FIG. 8. The pair creation rate as a function of the field’s width W .
The two dashed lines are calculated from Eq. (6.4) after integration
over x and y. The solid curves are calculated from Eq. (6.2) after
integration over all py . [V0 = 25c3 W and M = 6c3 W]

where ε = √
[E2 − B2]. Within the locally constant field

approximation and integration over space we can compute the
total number of created pairs. The results are shown in Fig. 8.
For field widths W much greater than the Compton wavelength
1/c, the locally constant field approximation gives a nearly
perfect description of the pair creation rates. However, for
widths W within the Compton wavelength, this approximation
leads to deviations from the exact results. When W < 6 ×
10−4, the exact pair creation rate is zero, which corresponds to
a subcritical potential V0 < 2c2.

VII. DISCUSSION AND OUTLOOK

In summary, we have examined the electron-positron pair
creation for a configuration, where the electric and magnetic
fields are perpendicular to each other. We further allowed
both fields to have a spatial dependence in one direction
permitting us to study for the first time the effect of a localized
interaction region with full spatial and temporal resolution. It
permits us to examine the dynamics by computing the short-
and long-time evolution of the spatial particle density. These
simulations extend prior findings (for spatially uniform fields)
where one can compare the usual Schwinger pair creation rate
with a modified one for the long-time limit. In agreement with
these findings we observe that the magnetic field can severely
suppress the creation process. The time-resolved analysis of
the spatial density permits us to illustrate the underlying
physical mechanisms. These space-time resolved studies
become computationally feasible, as the field configuration
can be reduced to a set of 1D problems.

For differently aligned electric and magnetic fields that
are also inhomogeneous in space and time it is presently
not possible to simulate the pair-creation process in full
space-time resolution. The required fully 3D simulation is
computationally very demanding and one has to rely on
different techniques. For example, it is not clear what happens
when the electric field and magnetic fields are parallel to one
another. Early work based on the long-time rates for spatially
and temporally homogeneous fields suggest a possible weak
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enhancement of the pair creation rate, but any physical
mechanism that could explain this is presently lacking. It is
also not clear how this suggestion needs to be modified to
account for the unavoidable spatial inhomogeneities.

It seems that the effect of the magnetic field on the
pair creation dynamics is rather sensitive to the mutual
angle between both fields and only the two extreme cases
of precisely parallel or perpendicular alignments have been
studied systematically. It would be interesting to learn what
happens when the two fields are neither exactly perpendicular
nor parallel. There could be an interesting middle point where
the suppression associated with perpendicular arrangement
and the enhancement associated with the parallel arrangement
could compete directly with each other.

In this study we have assumed for simplicity that the
spatial inhomogeneities of the electric and magnetic field are
identical. Our numerical simulation technique would permit
us also to explore how the more general case where the two
fields only overlap partially or have different widths. We will
devote separate works to these important issues.
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APPENDIX A: THE EQUIVALENCE OF THE A AND V
GAUGES IN STATIC ELECTRIC FIELDS

For a 1D system without a magnetic field, the equivalence
for the pair creation between the A gauge (with V = 0) and
the V gauge (with A = 0) can be easily proven. In the V
gauge, the pair creation is determined by the matrix element
UV

p,n ≡ 〈p|UV|n〉, where p and n denote the positive and
negative eigenstates of the free Hamiltonian h0 and UV is
the time evolution operator in the V gauge. We denote the
result in the V gauge by a superscript V and the A gauge by
a superscript A. One can go from the V gauge to the A gauge
via the transformations

V ′(x) = V (x) − 1

c

∂

∂t
χ (x,t) = 0, (A1a)

Ax (x,t) = ∂

∂x
χ (x,t) . (A1b)

The choice of χ (x, t) is not unique, and we can always
choose a transform such that A(x,t = 0) = 0. In such a case
hA(t0) = h0, the eigenstates for hA(t0) are just the field-free
p, n states as mentioned before. From the gauge invariance of
the Dirac equation, the field-free states |n〉 evolve with time in
the A gauge according to

|φn (t)〉 = exp [−iχ (x,t) /c] UV |n〉 . (A2)

On the other hand, one can show that

hA(t)exp [−iχ (x,t) /c] |p〉
= [

cαxpx + αxAx (x,t) + βc2
]

exp [−iχ (x,t) /c] |p〉

= exp [−iχ (x,t) /c] h0 |p〉 + cαx |p〉
(

−i
∂

∂x

)
× exp [−iχ (x,t) /c] + αxAx (x,t)

× exp [−iχ (x,t) /c] |p〉
=
{
Ep + αx

[
Ax (x,t) − ∂

∂x
χ (x,t)

]}
× exp [−iχ (x,t) /c] |p〉

= Ep exp [−iχ (x,t) /c] |p〉 . (A3)

In other worlds, exp[−iχ (x,t)/c]|p〉 is a eigenstate of
hA(t) at every instant time t with energyEp =

√
c4 + c2p2.

There is an obvious gap between the positive and negative
states. The orthonormality relation is preserved. For example,
〈p′|exp[iχ (x)t/c] exp[−iχ (x)t/c]|p〉 = 〈p′|p〉.

In conclusion, we find that |ψP〉 = exp [−iχ (x)t/c] |p〉
and |ψN 〉 = exp [−iχ (x)t/c] |n〉 , which satisfy hA(t)|ψP〉 =
Ep|ψP〉 and hA(t)|ψN 〉 = En|ψN 〉 , form a complete set at
every instant t for the Hamiltonian hA(t) in the A gauge.
Because of the gap between Ep =

√
c4 + c2p2 and En =

−
√

c4 + c2p2, there exists a gap between the positive and
negative states at every instant t . As a result we can write

UA
P,n = 〈ψP | φn(t)〉

= 〈p | exp [iχ (x)t/c] exp [−iχ (x)t/c] UV| n〉 = UV
p,n .

(A4)

The equivalence holds also for the other matrix element in
Eq. (3.5).

Next we provide some simulation results to illustrate the
equivalence between the A and the V gauge in a static electric
field. For the pair creation in the A gauge, the system is
described by a static electric field with the gauge Az = Ay =
V = 0, and

Ax(x) = cV0 (t − 0.0003)

2W
[1 − tanh2(x/W )]. (A5)

0

4

8

-0.1 -0.05 0 0.05

ρ(x)

x [a.u.]

V and A gauges

FIG. 9. Comparison of the electric density created by A and V at
t = 0.0006, V = 2.53c2, W = 0.5/c.
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FIG. 10. The energy eigenvalues for the Hamiltonian in A gauge
at t = 0 and t = 0.0006. Same parameters as Fig. 9 are used.

For the V gauge, Ax = Ay = Az = 0, and

V (x) = V0/2 [1 + tanh (x/W )] . (A6)

Figure 9 is the probability density obtained with the V and
the A gauges, respectively. The results are identical. Figure 10
is the energy spectrum of the states in the A gauge when the
field is supercritical, the gap between the positive and negative
energy states is obvious.

APPENDIX B: THE QUANTUM TRANSMITTING
BOUNDARY METHOD FOR DIRAC EQUATION

The scattering of a single particle described by the Dirac
equation for a field defined by the scalar and the vector

potentials V (x) and A(x) can be discussed within the frame-
work of the so-called QTBM. For simplicity, let us consider
the case when the potentials vary only along the x direction
and are constant for x � 0 and x � 0. In the Klein region, the
general solution to Dirac’s equation ψ(x) in these regions can
be written as

ψ(x) =
{

a0e
ipxx+ipyy/

√
2π + b0e

−ipxx+ipyy/
√

2π, x < 0,

c0e
−iqxx+ipyy/

√
2π, x > 0,

(B1)

where the spinors take the form

a0 = 1√
2E

⎛
⎜⎜⎜⎜⎝

√
E + c2

0

0
cpx+icpy

cp

√
E + c2

⎞
⎟⎟⎟⎟⎠ ,

b0 = r√
2E

⎛
⎜⎜⎜⎜⎝

√
E + c2

0

0
−cpx+icpy

cp

√
E + c2

⎞
⎟⎟⎟⎟⎠ , (B2)

c0 = t |J |√
2E′

⎛
⎜⎜⎜⎜⎝

√
E′ − c2

0

0
cqx−i(cpy+M)

cq

√
E′ + c2

⎞
⎟⎟⎟⎟⎠ ,

and where E′ = V − E, E′ = √
[c4 + c2q2], q = √

[qx
2 +

(py + M/c)2], and the Jacobian |J | = | dE
dpx

/ dE′
dqx

| = E′
px/Eqx .

The Hamiltonian reads

h(x) =

⎛
⎜⎜⎜⎝

c2 + V (x) 0 0 cp̂x − i[cpy + Ay(x)]

0 c2 + V (x) cp̂x + i[cpy + Ay(x)] 0

0 cp̂x − i[cpy + Ay(x)] −c2 + V (x) 0

cp̂x + i[cpy + Ay(x)] 0 0 −c2 + V (x)

⎞
⎟⎟⎟⎠ . (B3)

If we discretize the operator p̂x such that p̂xfj = −i∂fj /∂x = −i(fj − fj −1)/�x = −i(fj +1 − fj )/�x . The discrete form
of the Dirac equation, hψ = Eψ , then becomes

(c2 + Vj )�xψ
1
j − ic

(
ψ4

j − ψ4
j−1

)− i(cpy + Ayj )�xψ
4
j = E�xψ

1
j (B4a)

−ic
(
ψ1

j+1 − ψ1
j

)+ i(cpy + Ayj )�xψ
1
j + (−c2 + Vj )�xψ

4
j = E�xψ

4
j . (B4b)

To obtain the QTBM equations, we need to solve the
equations on the boundary by adding points at j = 0 and
j = n + 1:

a1 = ε1ψ
4
0 + χ1ψ

1
1 , (B5a)

an = εnψ
1
n+1 + χnψ

4
n . (B5b)

Using Eq. (B1) on the boundary points we get a set of
solution

ε1 = (px + ipy)/
√

E − c2

χ1 = eipx�x /
√

E + c2

a1 = [(px + ipy)e−ipx�x /(px − ipy) + eipx�x ]eipxx1/
√

2E

(B6a)
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and

εn = eiqx�x /
√

E′ − c2

χn = −[cqx + i(cpy + M)]/cq
√

E′ + c2

an = 0

. (B6b)

Adding Eqs. (B6a) and (B6b), the discrete Dirac equation
has the matrix representation⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1 χ1

s1 d1 u1

S1 D1 U1

. . .
. . .

. . .

Sn Dn Un

χn εn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ4
0

ψ1
1

ψ4
1

...

ψ4
n

ψ1
n+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

0

0

...

0

an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(B7)

where dj = (c2 + Vj − E) �x , sj = ic, uj = −ic − i(cpy +
Ayj )�x , Dj = (−c2 + Vj − E) �x , Sj = ic + i(cpy + Ayj )�x ,
and Uj = −ic.

APPENDIX C: SCATTERING OF A PARTICLE WITH
A FINITE py WITH A STEP POTENTIAL

For a supercritical step potential barrier with V > 2c2 and
a step potential with Ay , the transmission coefficient T can be
obtained analytically. We investigate the 2D scattering process
in a potential V (x) combined with a step vector potential
Ay(x) which is independent of y and z. The potentials may be
expressed as V (x) = V

2 [1 + θ (x)] and Ay(x) = M
2 [1 + θ (x)].

Note θ (x) = −1 for x < 0 and θ (x) = 1 for x � 0. The
Hamiltonian reads

h = cαxp̂x + cαyp̂y + αyAy(x) + βc2 + V (x). (C1)

This is the Hamiltonian for the case of pz = 0. In the region
x < 0, the incoming wave can be chosen as

�+
I = 1√

2E

⎛
⎜⎜⎜⎜⎝

√
E + c2

0

0
cpx+icpy

cp

√
E + c2

⎞
⎟⎟⎟⎟⎠

eipxx+ipyy

2π
(C2a)

or

�−
I = 1√

2E

⎛
⎜⎜⎜⎝

0√
E + c2

cpx−icpy

cp

√
E − c2

0

⎞
⎟⎟⎟⎠ eipxx+ipyy

2π
. (C2b)

The reflected wave is

�+
R = r√

2E

⎛
⎜⎜⎜⎝

√
E + c2

0

0
− cpx−icpy

cp

√
E − c2

⎞
⎟⎟⎟⎠ e−ipxx+ipyy

2π
(C3a)

or

�−
R = r√

2E

⎛
⎜⎜⎜⎝

0√
E + c2

− cpx+icpy

cp

√
E − c2

0

⎞
⎟⎟⎟⎠ e−ipxx+ipyy

2π
, (C3b)

where E =
√

c4 + c2p2, p2 = p2
x + p2

y, with c2 < E < V −
c2. The transmitted wave is

�+
T = t |J |√

2E′

⎛
⎜⎜⎜⎜⎝

√
E′ − c2

0

0
cqx−i(cpy+M)

cq

√
E′ + c2

⎞
⎟⎟⎟⎟⎠

e−iqxx+ipyy

2π
(C4a)

or

�−
T = t |J |√

2E′

⎛
⎜⎜⎜⎝

0√
E′ − c2

cqx+i(cpy+M)
cq

√
E′ + c2

0

⎞
⎟⎟⎟⎠ e−iqxx+ipyy

2π
. (C4b)

The superscripts + and − in Eqs. (C2a) to (C4b) denote the
two different spins. In the following calculations, our results
are the same for either kind of spin. Here E′ = V − E, E′ =√

[c4 + c2q2], q = √
[qx

2 + (py + M/c)2]. The Jacobian
|J | = | dE

dpx
/ dE′

dqx
| = E′px/Eqx . Since this is an energy eigen-

state we have hψ = Eψ . The continuum condition at x =
0 leads to a set of equations:

1 + r = t

√
E√
E′ |J | μ, (C5a)

cpx ± icpy

cp
− cpx ∓ icpy

cp
r

= t

√
E√
E′ |J | ν cqx ∓ i(cpy + M)

cq
, (C5b)

where μ =
√

E′−c2√
E+c2 , ν =

√
E′+c2√
E−c2 . Substituting (cpx − icpy)/cp

with a, the condition T + R = 1 (R = |r|2, T = |t |2|J |) as

1 − R = p

px

Re[(1 + r)(a − a∗r∗)]

= t t∗|J ||J |μν
pqxE

pxqE′ = T . (C6)

The equation above can be further simplified by substitu-
tions

b = cqx − i(cpy + M)

cq
, j = t

√
E√
E′ |J | ,

1 + r = jμ, a∗ − ar = jvb, (C7)

a∗ + a = j (aμ + bν) = 2px/p.
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Note:

jj ∗ = 4p2
x

p2

1

(aμ + bν) (a∗μ + b∗ν)

= 4p2
x

p2

1

μ2 + ν2 + μν (ab∗ + a∗b)
(C8)

= 2p2
x

p2

c2p2

E′E + c4 + cpxcqx + cpy(cpy + M)
.

We finally arrive at

T = jj ∗qx

px

= 2c2pxqx

E′E + c4 + cpxcqx + c2py(py + M/c)
.

(C9)

The magnetic field dependence is described by the terms
(py + M/c) and E′ in the transmitted part. Note that for M =
0 the transmission reduces to

T = 2c2pxqx

E′E + c4 + cpxcqx + c2p2
y

. (C10)

If we restore the mass m in the expression (again in atomic
units, m = 1 is assumed), the longitudinal momentum py adds
only an additional term to the mass m compared to the case
of py = 0. The efficient mass m∗ then satisfies m∗2c4 = m2

c4 + c2py
2. An effective mass increase is apparent from this

expression when py 
= 0.
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