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Mutual influence of locality and chaotic dynamics on quantum controllability
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Quantum control tasks are classified either as classical-like or as quantum requiring interference of pathways.
We study the generation of interference pathways and relate them to the fidelity of the control target at a fixed time
for various tasks. The model drift Hamiltonian studied is the two-dimensional Henon-Heiles (HH) potential. This
system shows regular classical dynamics for low energies and chaotic dynamics for higher energies. A control
operator supported by the whole momentum space and therefore connecting the entire Hilbert phase space is
a random spiky potential. The other extreme is a smooth control potential. Intermediate cases are obtained by
filtering the random spiky potential in momentum space. The fidelity of achieving a control task was related to
the connectivity in phase space of the control operators. Typical quantum tasks such as generating a superposition
of generalized coherent states rely on interfering pathways. For these cases the nonlinearity in the drift or control
Hamiltonian is a necessary requirement for creating interferences. Control over rapidly diverging components
of the wave function is achieved by the use of highly nonlocal control operators. Quantum control under chaotic
drift was found to give a better yield than control under regular dynamics for such cases. For classical tasks we
study the transformation of an initial generalized coherent state to another one. The best fidelity is obtained for
regular or harmonic regions of the potential and smooth control operators. The approach to the classical limit is
checked by decreasing the effective value of h̄. Control under both quantum and classical tasks suffered from the
decrease of h̄ and the approach to classical proximity. Classical control tasks which rely heavily on maintaining
a generalized coherent state throughout the evolution were found to be dysfunctional and lead to a completely
uncontrolled situation once the classical chaos starts to appear.
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I. INTRODUCTION

Quantum control (QC) is dedicated to steering a quantum
objective from an initial state to a final target. The basic
ingredient for QC is to utilize multiple interfering pathways of
the dynamics to achieve a desired goal [1,2]. Is there a control
field that can achieve a desired result?

A. Control problem: The control, the drift,
and the relation to controllability

Controllability of quantum systems deals with an existence
principle. This issue has been addressed in an algebraic
formulation [3–5]. A generic control Hamiltonian takes the
form

Ĥ = Ĥ0 +
∑

j

αj (t)Âj , (1)

where Ĥ0 is the free drift Hamiltonian, αj (t) are the control
fields, and the set {Â} forms a closed control Lie algebra of
operators. A closed quantum system is completely controllable
provided the commutators generated by the control operators
with the uncontrolled Hamiltonian Ĥ0 generate the trivial
algebra Û(N ) that includes all the available Hilbert space.
The existence of a possible control does not give a clue how
to actually find such a control field. The task of obtaining
a control field is termed the inversion problem. This paper
will try to investigate the role of the various components
of a control problem, that is, the drift, the control, and the
types of control tasks (see below) on the ability to achieve the
inversion.

B. Classification of control tasks

Optimal control theory (OCT) has been developed to find
a control field to achieve a quantum objective subject to
constraints [6–9]. The task of finding such a field is nonlinear
since the control field alters dynamically the Hamiltonian
of the systems. As a result, iterative procedures have been
developed to find the control field. The number of iterations
required to converge to a control field of high fidelity vary
vastly reaching a number that can scale exponentially with
the Hilbert space size [8,10]. Once the control field is found,
could it be utilized for the same objective with the same control
Hamiltonian in a larger Hilbert space?

Previously we were able to connect the computation
complexity of obtaining a high fidelity control field to the
algebraic structure of the control problem [10]. State-to-state
control tasks can be classified by two categories with respect
to the generalized coherent states (GCS) of the control algebra.
GCS are defined as quantum states with maximum purity or
minimum uncertainty with respect to the control algebra [11].

(1) Easy control tasks: GCS to GCS. For these control tasks
a control field found for a system of a small scale can serve as
pilot fields to generate solutions for larger systems efficiently.
The dynamics of such processes follows a continuous set of
GCSs. This can be interpreted by dynamics characterized via
a single classical path, independent of the size of the systems
Hilbert space.

(2) Difficult control tasks: These targets can be charac-
terized as generating superpositions of GCSs, for example,
merging a superposition of two GCSs to a single one. Such
objectives require a control field where the intermediate states
are supported by a vast part of the Hilbert space. In addition,

013420-11050-2947/2012/86(1)/013420(7) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.013420


S. KALLUSH AND R. KOSLOFF PHYSICAL REVIEW A 86, 013420 (2012)

the control field is not scalable, meaning that a unique field is
required for each Hilbert space size.

These categories also apply to the influence of the unavoid-
able noise generated by the control fields α(t). For difficult
control tasks upon increasing the size of Hilbert space the noise
will dominate, destroying some of the control tasks resulting
in a loss of complete controllability [12].

The classification of a control task to quantum requiring
interference and classical-like has been suggested recently
using different criteria [13]. The idea is to employ the
one- vs two-photon control scenario as a classification tool.
These criteria rely on the fact that single-photon processes
are insensitive to phase control. Quantum control tasks are
ones that are phase sensitive and are generated by multiple
photon transition. The two approaches have a common goal
to differentiate a control task dominated by interference from
ones that the control field is employed to modify an effective
potential on which a single control trajectory resides. The
classical control task should therefore be insensitive to a
change in the effective h̄ for the same control Hamiltonian.
The classification criteria employed here are based on the fact
that the control that achieves a classical path is nearly invariant
to a change in Hilbert space, maintaining the inner structure
of the classical Hamiltonian. This fits the time domain control
approach used throughout this study.

Recently, Moore et al. [14] have classified the computa-
tional difficulty of obtaining a control field. They defined the
depth of a control operator Â as the number of commutations
with Ĥ0 that generate a state-to-state connection. They found
that for low-depth control Hamiltonians the task becomes more
difficult with the increase in the size of the system. In this case
the control operators do not connect the whole Hilbert space
directly. On the other hand, for high-depth control operators
that connect directly distant states of Ĥ0, the difficulty of the
task changes only slightly with size.

C. Mutual influence of the drift, the control,
and the environment

In this paper, the two notions of classicality of the dynamics
and locality of the control operators will be combined to asses
the contribution of multiple path interferences in the control.
To do so, quantum control tasks will be examined in the
presence of classically regular and chaotic drift Hamiltoni-
ans. The basic conjecture is that quantum control requiring
multiple paths will prefer chaotic dynamics which maximize
interferences, while a single-path scalable control task will be
preferably obtained under regular conditions.

We remark hereby that the quantum systems that will be
used in this paper are such that their classical analog of the
drift Hamiltonian Ĥ0 is chaotic. By decreasing h̄ for the same
Ĥ0 we increase the effective Hilbert space size and approach
the classical limit. The pure quantum dynamics under the
drift Hamiltonian is regular since the quantum-mechanical
evolution of a closed quantum system is quasiperiodic [15].
Considering that searching for the control field is a nonlinear
process, could the underlying classically chaotic Hamiltonian
affect the generation of a state-to-state control task?

This paper is arranged as follows. In the next section the
formal model for the uncontrolled and controlled Hamiltonians

will be presented. Section III will present the role of chaos on
the invertibility and discuss the result of operator localization,
and Sec. IV will add conclusive remarks.

II. FORMAL MODEL

For the drift generator of the dynamics, a Hamiltonian
Ĥ0 is studied which is classically chaotic and tunable. The
Henon-Heiles (HH) Hamiltonian (with the mass taken as 1)
was chosen as our two-dimensional model system [16]

Ĥ0 = 1

2

(
P̂2

x + P̂2
y

) + V̂(x,y),
(2)

V̂ (x,y) = x2 + y2

2
+ λ(x2y − y3/3).

For λ = 0, the potential is harmonic, the system is separable
and decomposed into normal modes. As a result, the classical
dynamics are regular. For the localized control set {Âloc} ≡
{P̂x,P̂y,X̂,Ŷ}, the generalized coherent states (GCSs) of this
system are products of coherent states in the x and y

coordinates |αx〉 ⊗ |αy〉. These states are the most classical-
like with respect to the position-momentum phase space. The
set {Âloc} with the drift Hamiltonain Eq. (2) is completely
controllable if the dissociation channels of the HH potential
are blocked. For λ = 0 the set is not completely controllable;
for example, there is no control field which can split an initially
localized GCS into a superposition of GCSs.

For nonzero λ, the potential is nearly harmonic close to
the origin {x,y} = {0,0}. As a result, the spectrum at low
energies is similar to a two-mode harmonic spectrum. For
energies that are closer to the dissociation limit of the potential
E � 1/6λ2, anharmonicity becomes dominant. In this regime
the classical motion is chaotic showing the signatures of
chaos such as a finite Kolmogorov entropy [15,17] and
positive Lyapunov exponent. For a closed quantum system the
dynamics are regular, however, the onset of chaos will appear
as a rapid spreading of an initial localized wave packet [18,19].
Throughout this paper we choose λ = 0.11108. For this value
of λ, about half of the bound spectrum of the HH potential is in
the classically chaotic region, where well-pronounced chaotic
dynamics are obtained with small islands of stability.

The consequence of quantum scars [20] in the chaotic
dynamics of the HH model are shown in Fig. 1. A GCS chosen
by the localized control algebra is displaced by � on the x

direction and is propagated under Ĥ0. Under this displacement,
the energy is determined by the harmonic term as E =
�2/2 + 1. The temporal generalized purity is a measure of the
projection of the wave function on the subspace of GCSs. In
this case the GCSs are localized phase-space functions which
are the product of harmonic oscillator coherent states in x

and y. The temporal generalized purity is a measure of the
projection of the wave function on the subspace of GCSs. In
terms of the generalized purity a wave funtion that is projected
into a single GCS is a (generally) pure state with minimal
uncertainty and maximal resemblance to classical distribution.
A reduction of the generalized purity is thus a sign for an
increased uncertainty and a nonclassical wave function. We
have to remark here that the generalized purity is not to be
confused with the conventional purity of quantum states, which
is defined by the trace of the square of the density matrix,
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FIG. 1. (Color online) Signatures of chaotic dynamics generated
by the HH potential. The temporal purity of the system as a function
of time for harmonic and HH potentials. Different initially localized
CS displaced by � with respect to the origin are shown.

so that a variation of this purity will take place only under
non-Hamiltonian dynamics. From here on, we use solely the
term purity to denote generalized purity.

The purity can be related to the uncertainty with respect to
the localized control algebra

1 − P = �x̂ + �p̂x + �ŷ + �p̂y, (3)

where �Â ≡ 〈Â2 − 〈Â〉2〉 1
2 is the uncertainty of the operator

Â. This generalized purity is a measure of the spread of the
wave function over phase space. As can be seen in the figure,
a localized GCS with minimal purity remains GCS under a
harmonic Hamiltonian and for relatively low energies (E = 2
for � = 1) also under the HH potential. For higher energies, in
the HH case the state spreads rapidly over the whole available
phase space and the purity decreases until it saturates once the
whole phase space is covered. In what follows the physical
unit of time is the harmonic period (2π ). The total target time
for control is chosen as T = 100. This time is much longer
than the harmonic period of the system. However, this time is
much shorter than the recurrence time scale of this system.

The set of local phase-space controls {Âloc} connects
directly only a small band of states in the drift Hamiltonian Ĥ0.
We seek a control operators set {Â}, with higher connectivity.
This set has to be nonlocal with respect to coherent states in
phase space. We choose control operators Âj (x,y) diagonal or
local in position space so that they do not couple directly
different position in the phase space. The nondiagonal or
nonlocal coupling of such a potential-like operator is at the
momentum space. The nonlocality in the momentum repre-
sentation depends on the roughness of the control operator in
position. For smooth functions, for example, a typical dipole
coupling operator (Â ∝ X̂), the momentum nonlocality is very
limited. The operator is semilocal also in momentum. To obtain
a nonlocal momentum control operator, we choose a random
matrix in position, with zero averaged energy. For unbiased
comparison the integrated energy of the control operator∫∫

A2
j dxdy was kept normalized to unity. Localization of

the control operators was obtained by applying a Gaussian
filter in momentum space. This was done by a forward
two-dimensional (2D) discrete Fourier transform leading to

Ãj(px,py). Then the operators are multiplied by the function

F (p) = exp
(−p2/σL2

p

)
, (4)

where Lp is the extent of the grid in momentum space
and σ is the width of the filtering window in fractions of
the total momentum grid. The grid size employed in this
study was 64 × 64, and in position the grid extent used is
LR = 12 bohr, so that Lp = Nh̄/LR = 5 1

3 of momentum
units. Figure 2 plots an example for the localization of the
potential with the decrease of the filtering width. The reduction
of high momentum components leads to smoothing of the
control function, which is quantified by the autocorrelation
function.

The relation between the control operators, the control task,
and the final fitness for a fixed target time will be examined in
the next section. To account for the randomness of the control
operator, each given data point is averaged over ten different
realizations. The averaged fitness values are calculated for each
value of the parameters. The standard deviations are denoted
by error bars. Convergence tests were performed to ensure the
consistency of the procedure. The number of realizations was
doubled for some of the data points, verifying that the results
are indeed converged.

The control tasks were carried out using local control
(LC) [21–23] for a fixed time interval. The method is
unidirectional and ensures a monotonic increase of the fitness
with time. The instantaneous control field(s) is (are) obtained
by the expression

αj (t) ∝ −Im〈P̂Âj 〉ψ(t), (5)

where P̂ is the projection operator into the given target state.
The expectation values are calculated with respect to the
instantaneous wave function ψ(t). Six random operators Âj

were used for each realization. A global optimal-control-
theory-based algorithm was applied with the localized control
as an initial pilot field. With a small number of iterations the
fitness only slightly improved. Significant improvement by
OCT demands a significantly larger computation effort, and
thus was omitted. Note, however, that the use of LCT does
not imply a weak field control, and, as will be demonstrated
below, during the control the amplitude moves back and forth
between the various states extensively.

III. RESULTS

A. Control with nonlocal operators

Control tasks employing nonlocal control operators are
studied first. The target is to transform a displaced CS into
the ground state, also a CS. To reduce the differences between
the chaotic and regular drift Hamiltonians, the initial state was
displaced only on the x axis, where the anharmonicity of the
potential vanishes [see Eq. (2)]. According to our definition in
Ref. [10] this kind of task could be classified as classical-like,
that is, a transition that could be executed without interfer-
ences. However, as will be presented below, for nonlocal
operators which couple the whole phase space this advantage
is not exploited. Figure 3 shows the deviation from maximal
fitness at the final time, for different initial displacements �.
The solid red and dashed blue lines refer to drift dynamics
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FIG. 2. (Color online) Localization of the control potential matrices. Example for a single realization of Â(x,y) under Gaussian filtration.
Values of the filtering parameter σ are assigned below the panels. The amplitude of the control function is kept constant throughout the filtration
process. σ is in atomic units of momentum.

under regular and chaotic drift Hamiltonians, respectively.
The initial state energy is given by E = 1 + �2/2, so that for
� > 3.5 E > 7, and the uncontrolled dynamics are chaotic.
As can be seen from the curves, higher fitness is attainable
under chaotic dynamics, and the difference increases with
the increase of the initial state energy, where the chaotic
character is enhanced. One should note that for very low initial
state energy, where the dynamics are highly regular and the
initial state almost perfectly overlaps the target, the harmonic
dynamics yield better results (see inset).

To understand the mechanism of the process, several typical
single realization examples for the purity vs time are shown in
Fig. 4. In all cases, the solid lines refer to the dynamics under
chaos and the dashed lines to regular dynamics. The initial
displacement is assigned to each of the curves. For all cases,
the purity which measures the spread of the wave function in
phase space begins with a minimal spread that characterizes
the CS. At early times, the control and the drift shuffle the
system remotely from a single CS to a superposition state with
low purity values. Then the control dynamics proceeds by a
rearrangement step which localized back the wave function
into a coherent ground state with a minimal spread. It is
notable, however, that both nonlocal operators and chaotic
dynamics contribute to the mechanism of the two steps (i.e,
the shuffling and the rearrangement). Under regular dynamics
both steps are less efficient, thus in spite of low purity at inter-
mediate times under regular drift dynamics, the final inefficient

rearrangement step results in an inferior approach to the target.
Note that for extremely low initial energies the purity remains
high along the trajectory. As a result, the harmonic potential
achieves higher fidelity than the HH. Very similar results
were obtained for quantum tasks, that is, transformations that
demand interferences by construction, such as the merging
of two CSs into the single ground CS. Nonlocal operators
encompass the ability to create and control the spreading of
the wave function. In this case the dynamics evolves through
many states and low generalized purity, so that the difference
between classical and quantum tasks is insignificant.

B. Local control operators

In this study, the control operators were filtered and
localized in momentum space (σ was taken as 0.05). The
achievement measure of the control (i.e., the fidelity) was
calculated for classical tasks. Examining Fig. 5 shows the
opposite behavior of the nonlocal control dynamics. Regular
dynamics lead to better fitness. Control under HH potential
becomes inefficient with the onset of chaos, while the increase
of energy is almost insignificant for control tasks in the
harmonic regime. This phenomenon is expected since there is
a closed form solution for the control function in the harmonic
task.

An examination of the temporal purity shows that the
mechanism of the control process is to follow closely a CS
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FIG. 3. (Color online) Control with nonlocal operators. The
control task is the transformation of a displaced CS to the ground
state. Deviation from unity of fitness vs the displacement of the initial
CS. Solid red lines represent dynamics under harmonic potentials and
dashed blue lines the HH potential. Inset: Data of the first two points
in larger scale. The trend is inverted for these values. Results were
obtained by averaging over ten realizations. Standard deviations are
denoted by the error bars.

thus maintaining a high purity value. This enables the limited
localized operators to control the system. Under increasingly
growing chaos in the system such a mechanism ceases to
operate. Note also the increase of the variance of the fitness
for higher initial energies. This could be explained by the fact
that the difference between poorly featured control operators
could be very large, leading to large deviations between
different realizations.

Figure 6 shows the fitness for the quantum task of merging
a superposition of two CSs into the ground state. For such
tasks interferences are necessary, and the localized operators
could not achieve the control targets. The actual deviations
from the target are larger by more than an order of magnitude
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FIG. 4. (Color online) Control with nonlocal operators: Mecha-
nism. Typical single-realization examples for the instantaneous purity
vs time for different initially displaced CS and drift Hamiltonians. The
conditions for each of the curves are assigned explicitly.
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FIG. 5. (Color online) Control with localized operators: Classical
tasks. Same as Fig. 3. The control operators are Gaussian filtered with
σ = 0.05.

compared to the values obtained by nonlocal control operators.
The necessity for interferences favors the chaotic dynamics
to the regular one even for this case of poor controllability.
Note, however, that in these cases the fidelity has a large
variance depending on different random operator realization.
As a result, the determination of the points in this graph is
therefore inaccurate, and the nonmonotonic behavior of the
fidelity as a function of � should be attributed to this artifact
rather then to real physical mechanism.

C. Localization of control operator

The ability to control depends on the localization parameter.
This aspect is examined in the current subsection. Figure 7
displays the deviation from maximum fitness vs the localiza-
tion parameter σ for classical-like tasks. The red and black
lines represent results under the harmonic oscillators drift
Hamiltonian with different initial displacements, while the
blue and green lines are for the chaotic drift Hamiltonian.
As can be seen from the curves, under regular dynamics the
localization improves the ability to control classical tasks,
while under chaotic conditions there is almost no influence
of the localization on the ability to control.
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FIG. 6. (Color online) Control with localized operators: Quantum
tasks. Same as Fig. 5. The control task is to merge two displaced
coherent states into the ground state.
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FIG. 7. (Color online) Localization: Classical tasks. Deviation of
unity of fitness for the task of taking a displaced CS to the ground
state vs the locality of the control operators. Displacements and drifts
are assigned in the legend. σ is the operators smoothing parameter
parametrized in units of parts of the momentum grid length (see
details in the text).

Similarly to the previous sections, the regular dynamics
exceeds the chaotic dynamics for localized control operators.
The trend is inverted around σ = 0.1. Figure 8 shows the
same quantities, now for the quantum task of converting a cat
state into the ground state. For this case there is a monotonic
decrease of the controllability for more local control operators,
in all cases. Note, however, that chaotic and regular drift
Hamiltonians have opposing fitness characteristics. This is
obtained for lower values of σ , as the contribution of the
nonlocality of the operators and the drift are more crucial than
in classical tasks.

D. Approach to the classical limit

Quantum interference is responsible for the control of the
difficult tasks of generating superpositions of CS. Enhanced
controllability was found in the previous section to be
associated with classical chaotic systems. This is in contrast
to classical intuition where chaos is associated with reduced
control. To study the approach of the quantum dynamics that
were demonstrated at the previous sections to the classical
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FIG. 8. (Color online) Localization: Quantum tasks. Same as
Fig. 7, now for the task of taking two coherent states to the ground
state.
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FIG. 9. (Color online) The onset of classical chaos: Classical
tasks. Deviation from unity of fitness for the task of translating a
displaced CS to the ground state vs h̄. Displacement is set to � = 3.
The rest of the parameters are as in Fig. 7. The various curves refer to
different values of localization of the control operators. Missing data
points for σ = 0.01 and σ = 0.05 indicates practically zero fitness
of the control task.

limit, the control Hamiltonian is maintained, but the effective
value of Plank’s constant is varied from h̄ finite to the
classical limit h̄ → 0. Figure 9 presents the deviation from
perfect fitness vs h̄, for a different localization of the control
operators. The task in this example is the classical task of
translating a displaced coherent state with � = 3 back to the
ground state. As can be seen from the figure, for nonlocalized
control operators (σ = 1) the controllability is reduced with
decreasing h̄. Some residual controllability is maintained due
to the pathways generated by the nonlocality.

For the localized control operators, there is a very rapid
degradation of the ability to control with the approach of the
onset of classical chaos. The lack of data points for the curves
for σ = 0.05 and σ = 0.01 is due to the fact that no control
could be achieved. We can interpret this finding as a quantum
manifestation of a transition to classical chaos, which leads to
loss of controllability.

Figure 10 exhibits the deviation from perfect fitness as a
function of the locality of the control operators for a quantum
task of driving a symmetric superposition of coherent states
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FIG. 10. (Color online) The onset of classical chaos: Quantum
tasks. Deviation from unity of fitness for the task of merging two
displaced CS to the ground state vs the locality parameter σ .
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with � = 3 to the ground state. Three curves for three values
of h̄ are shown. For quantum tasks interferences are required
by construction and a decrease of control is obtained for the
decrease of the locality parameter. As expected, for nonlocal
operators (σ → 1), an increase of h̄ leads to better control,
which results from both the increase of the quantum character
of the dynamics and the reduction of the number of states. For
localized control operators the inability to control interferences
leads to the opposite trend, that larger values of h̄ lead to poor
control despite the decrease in the number of states in the
Hilbert space.

IV. CONCLUSION AND FUTURE OUTLOOK

A control task depends on three components: the drift,
the control, and the classical or quantum character of the
task. The character of the task determines the extent of the
interferences required to achieve the desired transformation.
The form of the drift Hamiltonian governs the rate of the
uncontrolled spread of the wave function, which leads to
interferences. The form of the control operator(s) regulate the
possible rate of rearrangement of the system that leads it to the
goal. For quantum control tasks the environment and control
operators that generate superpositions of the GCS interference
are highly required. A comprehensive mix of nonlocal control
operators and a drift Hamiltonian that produces sufficient
disorder is necessary. Classical-like task of GCS to GCS
are best obtained by localized control operators and regular

drift Hamiltonians. These classical-like tasks do not require
significant interferences.

Within quantum control dynamics, classical single path
or multiple quantum interfering paths could be handled
adequately. However, the onset of classical chaos means that
control trajectories that maintain high purity along the path
cannot be found. Under these conditions, even a minor devi-
ation from high purity drives the system into uncontrollable
disorder, and the inability to perform classical tasks sharply
depends on the parameters. The degradation of quantum
control quality under the same conditions is also monotonic
but continuous.

An additional consideration is decoherence, which is
generated either by noise in the controls and/or from the
environment. Intuitively, and probably in the most general
cases, additional noise serves mainly as a limiting agent on
the ability to control. In some cases, however, like cooling
and one-photon control, decoherence is strictly a necessity by
which the control is attainable. A future study will try to map
the relations between noise and the fundamental factors that
were considered in the present study.
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