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P.O. Box 8580, Douala, Cameroon

2Department of Physics, Ecole Normale Supérieure, Université of Yaoundé I, B.P. 47 Yaoundé, Cameroon
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Box L7.01.07, B-1348 Louvain-la Neuve, Belgium
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We use a L2-discretization technique for solving the time-dependent Schrödinger equation for H+
2 interacting

with a short vuv laser pulse, in the Born-Oppenheimer approximation. The calculations include the electronic
three-dimensional and vibrational one-dimensional motions. In this approach, we use the prolate spheroidal
coordinate system to describe the electronic functions and a basis of Laguerre and Legendre functions [Phys.
Rev. A 71, 053407 (2005)]. The vibrational motion is treated by using a basis of Sturmian functions. We consider
the problem of two-photon dissociation of H+

2 with photons ranging from 0.32 to 0.4 a.u corresponding to
wavelengths from 143 to 114 nm. The initial vibrational wave packet results from a vertical (Franck-Condon)
transition from the H2 ground state towards a superposition of vibrational states in the 1sσg electronic state of
H+

2 . The effects of various types of nuclear interference on the population of the dissociative channels 2sσg and
3dσg are discussed in detail. In addition, we show that for 0.32-a.u. photon energy, the interference effects in the
3dσg channel whose existence has been demonstrated previously [Phys. Rev. Lett. 102, 123001 (2009)] can be
observed in the total kinetic energy release spectrum.
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I. INTRODUCTION

Current laser technology has opened up a new field of study
namely the nonlinear response of matter to short and intense
uv and vuv laser pulses. Sparked by experiments that have
become feasible at intense high harmonics in the femtosecond
regime (see e.g., Refs. [1–3]), theoretical interest for nonlinear
processes at short wavelengths has just exploded. Among these
processes, one of the most fundamental ones is undoubtedly
the three-body Coulomb breakup. In the case of atoms, for
instance, there has been a tremendous activity in predicting
the removal by a few uv photons of two electrons from
He (see Ref. [4] for a recent paper, and references therein).
The study of the highly correlated dynamics of multiphoton
double ionization of atoms poses real difficulties mostly
because of the long-range nature of the Coulomb interaction
between the electrons. In addition, the six-dimensional nature
of the problem involving two-active electron atoms increases
enormously the computing efforts that are required to calculate
the relevant energy spectra and probabilities.

In the molecular context, a great deal of effort is made
to unveil the various mechanisms of complete breakup of
light molecules by a few uv photons. In that case, the main
difficulties result from the complexity in accounting for both
the electronic and nuclear degrees of freedom. Fundamental
issues related to the interaction of light molecules with intense
fields whose intensity exceeds 1012 W/cm2 have been studied
intensively (see Refs. [5,6] for reviews), but most of these
studies were conducted in the near infrared (ir) (wavelength
∼800 nm) or in the visible-uv regime, at the time scale of
several tens of fs. When the laser-molecule interaction is strong

and many photons are emitted and/or absorbed during the
reaction, the electronic structure is strongly perturbed (e.g.,
by the optical Stark shift effect). This leads to computational
difficulties and, in some cases, to serious problems when
extracting the basic mechanisms underlying the laser-molecule
interaction under study. It is noteworthy that, using vuv
fields, only few photons are involved at moderate intensities
(1012–1013 W/cm2), while leaving the electronic structure
much less perturbed than in the ir case.

Molecular processes are of particular interest in the
femtosecond regime because the nuclear motion of light
molecules typically occurs at this time scale. In this context,
H+

2 and H2 (as well as D+
2 and D2) are ideal candidates to

investigate the general mechanisms that govern multiphoton
processes since they are accessible to an accurate theoretical
description. Techniques using high-order harmonic generation
provide laser light at high intensities in the femtosecond
regime and experiments have already been performed in this
domain (see Refs. [3,7] for a more recent publication). Recent
theoretical investigations of laser molecule interactions in the
vuv nonlinear regime have revealed new features occurring in
the femtosecond time domain [8–10].

In this work, using L2-discretization techniques for solving
the four-dimensional (4D) time-dependent Schrödinger
equation (TDSE) of H+

2 , we study the problem of two-photon
dissociation of the molecule in the photon energy range from
0.34 to 0.4 a.u. and laser pulse durations varying from 10 to
18 fs. Both the electronic 3D and vibrational 1D motions are
included in the calculations, within the Born-Oppenheimer
(B-O) approximation. In a precedent work [10], we
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investigated a situation where the population is transferred
coherently, via resonant one- and two-photon absorption, to
the 2pσu and 3dσg potential curves, respectively. The 2pσu

dissociative wave packet then moves rapidly to a large inter-
nuclear distance (R ∼10 a.u.) where a second photon pumps
population to the 3dσg . The two paths leading to populating
3dσg interfere, resulting in a modulation of the kinetic energy
release (KER) spectrum of the protons in the 3dσg dissociative
channel. We show that the modulation of the KER spectrum
of the protons also occurs in the case of the 2sσg channel, but
the origin of the modulation is now different. Based on this
finding, various interference mechanisms in the dissociation
dynamics of H+

2 are discussed in detail. In the case of a
photon energy of 0.32 a.u. investigated in Ref. [10], we show
that the 2sσg channel is much less populated than the 3dσg

one. As a result, the interference effects should be observable
experimentally in the total KER spectrum. Such a study of
the dissociation of H+

2 which is of current interest both from
the methodological and the physical points of view [11,12], is
also a strong test of the reliability of our numerical approach
since it involves dipole couplings at large internuclear
distances.

Our paper is organized as follows. The second section is
devoted to a brief discussion of our theoretical approach. We
first present the general formulation of the problem. Then, we
analyze the electronic and vibrational structures of H+

2 . The
section ends by some considerations over the time propagation
of the vibrational wave packets in the presence of the external
pulsed field. The next section is devoted to the results for the
KER spectrum of the protons in both the 2sσg and the 3dσg

dissociative channels. Unless stated otherwise, atomic units
are used throughout this paper.

II. THEORY

In this section, we describe our numerical approach for
solving, within the Born-Oppenheimer (B-O) approximation,
the four-dimensional TDSE for H+

2 in interaction with a laser
pulse. We treat the electronic motion in its full dimensionality
(3D) and also include the one-dimensional vibrational motion.
Concerning the electronic structure, the problem is treated as in
Ref. [13] (i.e., we use the prolate spheroidal coordinate system
to describe the electronic motion in a basis of Laguerre and
Legendre functions). The latter approach has been shown to
be very efficient. Its pertinence has been thoroughly discussed
in the literature [13] (see other references therein) where it
was used with fixed nuclei. In our opinion it represents an
interesting alternative to B-spline functions, currently used in
a similar context [8,14,15] (see Ref. [16] for a review). The
vibrational motion is treated by using a basis of Coulomb
Sturmian functions. These functions have been shown to be
very efficient in the case of atomic systems [17]. They have
in particular the potential to describe diffuse states (e.g.,
Rydberg states) and their use to treat two-active electron
systems allowed the very accurate calculation of the energy
and width of high-lying doubly excited states in He [18–20].
In the present context, the Sturmian functions are particularly
adapted to describe high-lying vibrational states just below or
above the dissociation threshold.

A. Basic formulation

In the present calculations, we use the B-O approximation
and neglect the mass polarization terms as well as relativistic
effects. Since the time scale associated with the rotational
motion of the molecule is much longer than the duration
of the vuv pulses considered in this contribution, it is a
good approximation to neglect the rotational structure of the
molecule. Under these conditions, the stationary Schrödinger
equation (SSE) for H+

2 writes as follows:(
− 1

2μ
∇2

R + He(�r,R)

)
�n,ν(�r,R) = Wn,ν�n,ν(�r,R). (1)

Here �r is the position vector of the electron with respect to
the center of mass of the two nuclei and R is the internuclear
distance. The first term between the brackets is the operator
associated with the relative kinetic energy of the nucleus while
the second term is the electronic Hamiltonian that contains all
the potential energy terms. Wn,ν is the total energy of the
molecule, the indices n and ν referring to the electronic and
vibrational quantum numbers, respectively. Since within the
B-O approximation, electronic and nuclear motions can be
separated, the stationary wave function, the solution of Eq. (1),
can be written as a product of electronic and vibrational wave
functions:

�n,ν(�r,R) = χn,ν(R)

R
ψn(�r,R). (2)

The electronic wave function is the solution of the equation,

Heψn(�r,R) = Enψn(�r,R), (3)

with the electronic Hamiltonian,

He = −1

2
∇2 + V (r) + Z2

R
. (4)

Z is the charge of each nucleus and V (r) is the attractive
Coulomb potential experienced by the electron. It is given by

V (r) = V1(r) + V2(r) = −Z

r1
− Z

r2
, (5)

where �r1 and �r2 are the position vectors of the electron with
respect to each of the nuclei. The vibrational wave function
satisfies the following equation:

[Hv(R) − Wn,ν]χn,ν(R) = 0. (6)

As mentioned above, Wn,ν is the total energy of the molecule
for the vibrational state ν in the electronic state n. The
Hamiltonian Hv(R) writes

Hv(R) = T (R) + En(R) = − 1

2μ

d2

dR2
+ J (J + 1)

2μR2
+ En(R),

(7)

where T (R) is the operator associated with the kinetic energy
of the nuclei, En(R) is the B-O potential energy curve of the
nth electronic state, μ is the reduced mass of the nuclei, and J

is the total orbital angular momentum (here J = 0).

B. The electronic structure of H+
2

In order to solve Eq. (3) for the electronic wave function, it is
convenient to use the system of prolate spheroidal coordinates
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(ξ,η,ϕ) in which the electronic Hamiltonian (4) is separable.
ϕ is the rotation angle around the internuclear axis. It varies
between 0 and 2π . The variables ξ and η are defined as

ξ = (r1 + r2)/R, (8)

η = (r1 − r2)/R, (9)

with 1 � ξ � +∞ and −1 � η � 1. In this new system of
coordinates, the electronic Hamiltonian He takes the following
form:

He = − 2

R2(ξ 2 − η2)

[
∂

∂ξ
(ξ 2 − 1)

∂

∂ξ
+ ∂

∂η
(1 − η2)

∂

∂η

+
(

1

ξ 2 − 1
+ 1

1 − η2

)
∂

∂ϕ2
+ 2ZRξ

]
+ Z2

R
. (10)

In order to solve Eq. (3) for a given value of the parameter R,
the electronic wave function is expanded as follows:

ψ(ξ,η,θ ; R) =
∑
m,μ,ν

amμνU
m
ν (ξ )V m

μ (η)
eimθ

√
2π

. (11)

m is the projection of the electronic angular momentum along
the z axis that coincides with the internuclear axis. It takes
the values 0,±1,±2, . . . and it is conserved provided that the
axial symmetry is preserved. The two indices ν and μ give the
number of zeros of the functions Um

ν (ξ ) and V m
μ (η). They take

the values μ = |m|,|m| + 1, . . . and ν = |m|,|m| + 1, . . . .

amμν are the expansion coefficients of the wave function. The
basis functions Um

ν (ξ ) and V m
μ (η) are defined as in Lagmago

et al. [13]:

Um
ν (ξ ) = Nm

ν e−α(ξ−1)(ξ 2 − 1)|m|/2L
2|m|
ν−|m|[2α(ξ − 1)], (12)

and

V m
μ (η) = Mm

μ P m
μ (η), (13)

where L
q
p(x) denotes the Laguerre polynomials and P

q
p (x)

the associated Legendre function of the first kind. Note that
the functions Um

μ (ξ ) depend on a dilation parameter α which
determines their range. The normalization conditions are∫ +∞

1
Um

μ (ξ )

(
ξ − 1

ξ + 1

)|m|
Um

ν (ξ )dξ = 1, (14)

and ∫ +1

−1
V m

μ (η)V m
μ (η)dη = 1, (15)

which lead to the following expressions for the normalization
constants:

Mm
μ =

√(
1

2
+ μ

)
(μ − m)!

(μ + m)!
, (16)

and

Nm
ν =

√
(2α)2|m|+1

(ν − |m|)!
(ν + |m|)! . (17)

By substituting expressions (12) and (13) into Eq. (3) and
projecting on the basis functions on the left, Eq. (3) transforms
into the generalized matrix eigenvalue problem,

He� = ES�, (18)

where � is the vector representation of the wave function,
S is the overlap matrix, and He is the electronic Hamiltonian
matrix. Details on the evaluation in compact form of the matrix
elements of S and H are given in Ref. [13]. In fact, all these
matrix elements can be expressed in terms of product of one-
dimensional integrals. In the present contribution, we evaluate
these integrals numerically by means of a Gauss-Laguerre
quadrature which gives accurate and in principle exact results.

The resolution of the generalized eigenvalue problem (18)
yields both bound states and discretized continuum states.
Their accuracy depends on the number of basis functions as
well as on the value of the dilation parameter α.

Table I gives the values of the potential energy curves
corresponding to the four first electronic molecular states
for m = 0 at various internuclear distances R. The states are
labeled with the quantum number μ and m defined above.
In the case of the united atom limit, the atomic angular
momentum l = μ + m. In all our calculations, the electronic
states of H+

2 have been represented with the following basis
parameters: α = 1.5, μmax = 20, ν = 50, and m = 0 in a box
of radial length of 40 a.u. By changing the number of basis
functions and the value of α (from 0.5 to 1.5), we have checked
that this basis set leads to practically converged energies in the
Franck-Condon region. Figure 1 shows the four first potential
energy curves of σ symmetry for H+

2 as a function of the
internuclear distance.

TABLE I. Energy (in a.u.) of the 1sσg , 2pσu, 3dσg, and 2sσg electronic states of H+
2 for various internuclear distances R (in a.u.).

R 1sσg 2pσu 3dσg 2sσg

1 −0.45178631337844188 0.43518685067772556 0.77734132942080780 0.57712214175170917
2 −0.60263421449494381 −0.16753439220238683 0.26422238152159605 0.13913512466373507
3 −0.57756286404892043 −0.36808500003988742 0.0758290294366485151 0.0144462795334254594
4 −0.54608488371094044 −0.44555063936041733 −0.0357237904797696390 −0.0385148674574864736
5 −0.52442029512349020 −0.47729161322515518 −0.10601307783608663 −0.0655058146771253652
6 −0.51196904791010645 −0.49064389229696509 −0.14582816013612568 −0.0808879228148097762
7 −0.50559400001171040 −0.49627171206834358 −0.16556342053472303 −0.0904222566648646975
8 −0.50257036607306194 −0.49860601447265451 −0.17351164140955100 −0.0967773328649080555
9 −0.50119534649749342 −0.49954381723892127 −0.17500068978131425 −0.10130135619564577
10 −0.50057824313448462 −0.49990091663882358 −0.17311743737431354 −0.10471062557910241
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FIG. 1. (Color online) First four potential energy curves of σ

symmetry for H+
2 as a function of the internuclear distance.

C. The vibrational structure of H+
2

Once the electronic energy curves have been obtained, the
vibrational levels can be determined with a view to computing
the KER spectrum of the protons. In order to solve Eq. (6), we
expand the functions χn,ν(R) in a basis of Sturmian functions,

χn,ν(R) =
vmax∑
v=1

cv
n,νS

κ
vl(R), (19)

cv
n,ν being the expansion coefficients. Furthermore, the Stur-

mian function Sκ
vl(R) is given by

Sκ
vl(R) = Nκ

vl Rl+1e−κR L2l+1
v−l−1(2κR), (20)

L2l+1
v−l−1(2κR) denoting a Laguerre polynomial. These Sturmian

functions form a complete and discrete set of functions. The
normalization factor Nκ

vl is given by

Nκ
vl =

√
k

v
(2κ)l+1

[
(n − l − 1)!

(n + l)!

] 1
2

. (21)

It results from the condition,∫ ∞

0
Sκ

vl(R)Sκ
vl(R)dR = 1. (22)

In order to calculate the vibrational wave functions we have to
solve the following generalized eigenvalue problem,

HvX = WnBX, (23)

where Hv is the matrix associated with the Hamiltonian (7),
and B is the overlap matrix. X is the vector representation of a
vibrational eigenstate in the potential well associated with the
nth electronic state and Wn is the total energy of the molecule
in the corresponding vibrational eigenstate. In the following,
we have calculated the vibrational levels (i.e., the total energy
Wn,ν) of H+

2 by means of a basis of 200 Sturmian functions
for each electronic state in a radial box the size of which is of
the order of 40 a.u. The value of κ is set equal to 10. Results
converge well for values of κ running from 5 to 15 for the
vibrational states and for values of α running from 0.4 to 1.5
for the electronic states. It is worth stressing that since κ and
α represent dilation parameters, choosing κ � α means that
the vibrational states are defined in a much smaller box than
the electronic ones. Table II shows vibrational levels for some
electronic states of interest.

Note that the discrete nature of the continuum states (2pσu,
3dσg , and 2sσg) is a consequence of the finite box size. The
eigenvalues that are above the dissociating limit correspond to
vibrational continuum states. The wave function associated
with these continuum states are normalized to unity. The
calculation of probability densities requires the evaluation of
the density of these vibrational continuum states that is given
by

ρn,ν =
∣∣∣∣ 2

Wn,ν−1 − Wn,ν+1

∣∣∣∣. (24)

D. Time propagation

In this contribution, we want to calculate the KER spectrum
of H+

2 in the two dissociative channels 3dσg and 2sσg . The

TABLE II. Vibrational energy levels Wn,ν (in a.u.) with n referring to the electronic states 1sσg , 2pσu, 3dσg , and 2sσg .

ν W1sσg,ν W2pσu,ν W3dσg,ν W2sσg,ν

0 −0.59739590504034934 −0.49995157541876278 −0.17405758494098561 −0.12085739630007920
1 −0.58740832106458885 −0.49973323999886343 −0.17211168004231550 −0.12049750167315978
2 −0.57800090770993884 −0.49947966349092193 −0.17021215208430321 −0.12010502133287969
3 −0.56915441225629193 −0.49919980968814204 −0.16835807408306036 −0.11969333761121072
4 −0.56085258512797931 −0.49889840328164703 −0.16654857545729765 −0.11926845469016549
5 −0.55308210091594778 −0.49857855816151120 −0.16478284147348360 −0.11883307436845167
6 −0.54583252393195236 −0.49824252637509103 −0.16306011289728967 −0.11838838692697330
7 −0.53909631986400242 −0.49789203430923201 −0.16137968585547222 −0.11793484463134410
8 −0.53286891683376758 −0.49752845947388680 −0.15974091190310702 −0.11747253604411174
9 −0.52714882119138329 −0.49676640819062162 −0.15814319830775259 −0.11700138551253317
10 −0.52193779581514843 −0.49636969643233075 −0.15658600855574339 −0.11652126452553363
11 −0.51724111148589125 −0.49596350443057241 −0.15658600855574339 −0.11603205282582872
12 −0.51306788460879382 −0.49554845214201909 −0.15506886306621456 −0.11553366882124047
13 −0.50943151497903627 −0.49512508945548278 −0.15359134013338335 −0.11502608115397200
14 −0.50635022688110110 −0.49469390829131415 −0.15215307708316989 −0.11450930922719098
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KER spectrum is obtained by solving numerically the TDSE
governing the laser-molecule interactions,

i
∂

∂t
�(�r,R,t) = [H + V (t)]�(�r,R,t), (25)

where H is the Hamiltonian given by the term between paren-
theses in Eq. (1), and V (t) is the laser-molecule interaction
potential which can be written as

V (t) = �E(t) · �r, (26)

in the length gauge, and

V (t) = �A(t) · �p, (27)

in the velocity gauge. Here �E(t) is the electric field that is
assumed to be polarized along the internuclear axis, and �A(t)
is the corresponding vector potential. It is defined as follows:

�A(t) = A0f (t) cos(ωt)�ez, (28)

where ω is the photon energy in a.u., A0 is the amplitude, and
the pulse envelope f (t) is given by

f (t) =
{

cos2
(

π
T
t
)
, |t | < T

2 ,

0, |t | � T
2 .

(29)

T is the total duration of the pulse. In order to calculate the
electric field, we use the usual relation,

�E(t) = − ∂

∂t
�A(t). (30)

Equation (25) is integrated over the whole pulse duration T

in the basis of the eigenstates of the Hamiltonian H . Note
that in order to facilitate the time propagation, it is convenient
to use the interaction picture. In this picture, the Schrödinger
equation [Eq. (25)] writes

i
∂

∂t
�I (�r,R,t) = [eiH (t−t0)V (t)e−iH (t−t0)]�I (�r,R,t), (31)

where the index “I” refers to the interaction picture, and

�I (�r,R,t) = eiH (t−t0)�(�r,R,t). (32)

In the present context, the solution �(�r,R,t) is written as
a superposition of four products of electronic and nuclear
wave functions. More precisely, we model the nuclear dis-
sociation dynamics by writing the complete wave function
as a superposition of the four electronic eigenfunctions 1sσg ,
2pσu, 3dσg , and 2sσg , weighted by the corresponding nuclear
amplitudes [14],

�(�r,R,t) =
Nvib∑
ν=1

a1sσg,ν(t)φ1sσg
(�r,R)

χ1sσg,ν(R)

R

+
Nvib∑
ν ′=1

a2pσu,ν ′ (t)φ2pσu
(�r,R)

χ2pσu,ν ′ (R)

R

+
Nvib∑
ν ′′=1

a3dσg,ν ′′ (t)φ3dσg
(�r,R)

χ3dσg,ν ′′ (R)

R

+
Nvib∑

ν ′′′=1

a2sσg,ν ′′′ (t)φ2sσg
(�r,R)

χ2sσg,ν ′′′ (R)

R
, (33)

where a1sσg,ν(t), a2pσu,ν ′ (t), a3dσg,ν ′′ (t), and a2sσg,ν ′′′ (t) are the
probability amplitudes of the vibrational states corresponding
to the first four potential curves in the m = 0 symmetry. ν,
ν ′, ν ′′, and ν ′′′ label both bound and continuum vibrational
states for each potential curve. In this basis, the elements of
the matrix associated with the interaction V (t) write

V (t)n,ν,n′,ν ′ = E(t)
∫ +∞

0
χn,ν(R)χn′,ν ′(R)Dn,n′ (R)dR, (34)

where Dn,n′ (R) represents the dipole coupling between the
electronic states n and n′. It is important to note that the
eigenvectors of the electronic Hamiltonian are defined within
an arbitrary phase factor and there is no guarantee that
this phase factor will stay constant when the electronic
Hamiltonian is diagonalized at various internuclear distances.
Obviously, this has important consequences for the calculation
of the dipole coupling term Dn,n′ (R). An additional difficulty
is that the sign of the coupling term Dn,n′ (R) may change
“naturally.” In order to overcome this difficulty, we proceed
as follows. Assuming that the value of Dn,n′ (R) is known and
that we want to calculate Dn,n′ (R + �R), we first consider the
following quantity:

Sn(R,R + �R) =
∫

d�r ψn(�r,R) ψn(�r,R + �R). (35)

For �R sufficiently small, we expect that Sn(R,R + �R) 	
±1. If Sn(R,R + �R) is approximately equal to 1, it is
assumed that the phase does not change. On the contrary,
if Sn(R,R + �R) is approximately equal to −1, the phase of
ψn has changed. Similarly, we also evaluate Sn′ (R,R + �R)
to check whether the phase of ψn′ has changed. In this way, it
is possible to check where a change of sign occurs and, after
a careful analysis of the dipole couplings in that region, if it is
artificial or not.

By inserting the time-dependent wave function (33) in
the TDSE (25), we obtain a system of coupled first-order
differential equations for the probability amplitudes which can
be solved by using standard numerical techniques. The initial
wave packet �(�r,R,t = 0) of H+

2 is obtained by assuming that
a direct vertical Franck-Condon transition from the vibrational
ground state of H2 takes place at t = 0, in such a way that this
ground vibrational state can be projected onto a complete set
of B-O vibrational states of H+

2 in its ground electronic state
1sσg . Consequently, we have

�(�r,R,t = 0) =
Nvib∑
ν=1

a1sσg,ν(t = 0)φ1sσg
(�r,R)

χ1sσg,ν(R)

R
, (36)

where the coefficients a1sσg,ν(t = 0) are given by

a1sσg,ν(t = 0) =
∫

χ1sσg,ν(R)χH2
ν=0(R)dR, (37)

and χ
H2
ν=0(R) is the wave function associated with the vibra-

tional ground state of H2. Note that the modulus square of
the above coefficient is nothing else than the Franck-Condon
factor.

In order to evaluate the KER spectrum in various dis-
sociation channels, we calculate the following probability
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density:

dP

dWn,ν

= 2

∣∣an,ν

(
T
2

)∣∣2

|Wn,ν+1 − Wn,ν−1| . (38)

The vibrational energy Wn,ν is the center-of-mass kinetic
energy of the outgoing protons. An important technical aspect
of our SSE and TDSE calculations is the choice of the box
size that has to be compatible with the physical boundary,
namely the internuclear distance of the diatomic molecule.
We use the following empirical formula R = X

2κ
where X

is a Gauss-Laguerre quadrature abscissa, κ is the Sturmian
nonlinear parameter [see Eq. (20)], and R the internuclear
distance. If we increase the basis size or the number of
Sturmian functions, X takes increasingly large values. This
leads to out-of-range internuclear distances R. We then lose
precision on vibrational functions and problems of divergence
occur. To overcome this, κ must take relatively big values with
a view to keeping reasonable internuclear distances R. Big
values of κ also lead to the very high density of continuum
states necessary to correctly describe the continuum spectrum.
In fact, the separation between discretized vibrational states
must be smaller than the spectral width �ω ≈ 4π/T . In
other words, the size of the box must be chosen so that the
condition �Wn,ν � �ω is fulfilled. This condition ensures
that the vibrational wave packet does not reach the limit of
the vibrational box before the end of the pulse. In the case of
the 2pσu dissociative channel, κ is equal to 15, the number of
vibrational states taken into account is 150 and the box size is
18.5 a.u. In the case of the 3dσg channel, κ is equal to 21, the
number of vibrational states is 225 and the box size is 20 a.u.
Finally, for the 2sσg channel, the value of κ is equal to 23, the
number of vibrational states is 300 and the box size is 24.3 a.u.

III. RESULTS AND DISCUSSION

Our objective in this contribution is twofold. First, we
want to revisit the problem of the vibrational wave-packet
interferences (VWPI) in the 3dσg dissociative channel of H+

2 ,
treated in Ref. [10] and extend our analysis to the 2sσg channel.
In parallel, we want to check the accuracy of our spectral
approach based on Sturmian functions. As mentioned before,
this accuracy relies on the appropriate choice of the nonlinear
parameter κ which in turn determines the number and the
density of vibrational states in the continuum. Comparing the
results of our present calculations with those obtained with B
splines should give a clear indication of this accuracy.

A. 3dσg dissociative channel

Let us start by describing the mechanism that leads to
the VWPI process in the 3dσg dissociative channel. It is
sketched in Fig. 2. A wave packet created at time t = 0 on
the 1sσg electronic potential curve interacts with a short,
soft uv femtosecond laser pulse. At R1 ≈ 2.4 a.u. and R2 ≈
3.1 a.u., population is transferred coherently via resonant one-
and two-photon absorption to the 2pσu and 3dσg curves,
respectively. If the pulse duration is sufficiently long, the
vibrational wave packet that moves on the 2pσu curve will
reach R = R3 ≈ 8.6 a.u. where a second photon may be
absorbed leading to a transition towards the 3dσg and to a
VWPI in this channel.
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FIG. 2. (Color online) Sketch of a vibrational wave-packet inter-
ference process in the 3dσg dissociation channel of H+

2 . A wave packet
created at time t = 0 on the 1sσg electronic potential curve interacts
with a short, soft uv femtosecond laser pulse. At R1 ∼ 2.4 a.u.
and R2 ∼ 3.1 a.u. population is transferred coherently via one- and
two-photon absorption, to the 2pσu and the 3dσg curves, respectively.
In the dissociative channel 2pσu, a wave packet moves rapidly to
R3 ∼ 8.6 a.u. where a second photon pumps population to the 3dσg

energy curve leading to a vibrational wave-packet interference.

In Fig. 3, we show the KER spectrum of the protons in
the 3dσg dissociative channel. We use a femtosecond laser
pulse of central frequency ω = 0.32 a.u. (corresponding to a
wavelength of 142 nm) and peak intensity I = 1012 W/cm2.
Six different total pulse durations ranging from 10 to 16 fs are
considered. We assume that the initial vibrational wave packet
at t = 0 is of the Franck-Condon type. The calculations have
been performed by means of our spectral approach based on
Sturmian functions. About 250 vibrational states are included.
The results are stable for values of the nonlinear parameter
κ ranging from 17 to 23 and are in perfect agreement with
those obtained with a spectral method based on B splines
as in Ref. [10]. The interference of wave packets leads to a
double peak structure except for the shortest pulse duration
where it disappears. In this latter case, the wave packet that

0.15 0.2 0.25 0.3

0.005

0.01

0.015

0.02

Proton energy (a.u.)

P
ro

b
ab

ili
ty

 d
en

si
ty

 (
a.

u
.)

T=16 fs

T=14 fs
T=15 fs

T=13 fs
T=12 fs
T=10 fs

ω=0.32 a.u.

FIG. 3. (Color online) Kinetic energy release spectrum of the
protons in the 3dσg dissociative channel obtained with a femtosecond
laser pulse of central frequency ω = 0.32 a.u. and peak intensity
I = 1012 W/cm2. Six different pulse durations are considered. The
initial vibrational wave packet at t = 0 is assumed to be of the Franck-
Condon type.
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FIG. 4. (Color online) Kinetic energy release spectrum of the
protons obtained with a femtosecond laser pulse of central frequency
ω = 0.32 a.u. and peak intensity I = 1012 W/cm2. The total pulse
duration is 18 fs and the initial vibrational wave packet at t = 0 is
assumed to be of the Franck-Condon type. The red curve corresponds
to a calculation including the contribution of the 2sσg channel only.
The black curve is obtained by including the contribution of the 3dσg

channel only, while the blue curve is the sum of both contributions.

moves on the 2pσu curve does not have the time to reach
the interatomic distance R3 during the interaction with the
pulse. At this stage, we can argue that in the presence of the
field, the wave packet that oscillates (with a period close to
15 fs [21]) in the 1sσg channel can lead to the production at
a later time of a second wave packet in the 3dσg dissociative
channel. Subsequently, the two wave packets will interfere
in this 3dσg channel. In principle, this second mechanism
of VWPI should also contribute to the interference pattern
observed in the KER spectrum of the protons. However, by
artificially suppressing the 2pσu-3dσg coupling around R =
R3, the interference pattern we observe in the KER of the
protons disappears. This rules out this second mechanism at
least in the case of the 3dσg channel provided the pulses are
not too long.
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FIG. 5. (Color online) Kinetic energy release spectrum of the
protons in the 2sσg dissociative channel obtained with a femtosecond
laser pulse of central frequency ω = 0.38 a.u. and peak intensity
I = 1012 W/cm2. The pulse duration is 18 fs. The initial vibrational
wave packet at t = 0 is assumed to be of the Franck-Condon type.
Two calculations have been performed: the green dashed curve is our
results obtained with Sturmian functions and the blue curve is our
results obtained with B splines.

From the experimental point of view, it is impossible
to separate the contributions from the various dissociative
channels by only observing the KER of the protons. In
addition, it is not clear whether the interference pattern will
subsist when, in the present case, the contributions of the
2sσg and 3dσg are taken into account in the calculation of the
KER spectrum of the protons. The results are shown in Fig. 4
for the same frequency (ω = 0.32 a.u.) and peak intensity
(I = 1012 W/cm2) as in Fig. 3. The total duration of the pulse
is 18 fs and the initial vibrational wave packet is of the Franck-
Condon type. We clearly see that the interference pattern
subsists. It should therefore be observable experimentally.

B. 2sσg dissociative channel

In this subsection, we analyze in detail the contribution of
the 2sσg channel to the KER of the protons, and examine
more in depth the validity of our spectral method based
on the Sturmian functions. In Fig. 5, we depict the KER
spectrum of the protons in the 2sσg dissociation channel. The
central frequency ω of the laser pulse is equal to 0.38 a.u.
(corresponding to a wavelength of 120 nm) and the peak
intensity 1012 W/cm2. The duration T of the pulse is 18 fs,
and the initial wave packet is of the Franck-Condon type. The
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FIG. 6. (Color online) Kinetic energy release spectra of the
protons in the 2sσg dissociative channel obtained with a femtosecond
laser pulse of peak intensity I = 1012 W/cm2 and a central frequency
(a) ω = 0.38 a.u. and (b) ω = 0.40 a.u. The pulse duration is equal to
18 fs. The initial vibrational wave packet at t = 0 is assumed to be of
the Franck-Condon type. The calculations have been performed with
Sturmian functions in the velocity gauge (blue curves) and the length
gauge (red dashed curves).
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green dashed curve has been obtained with Sturmian functions.
More precisely, 310 Sturmians have been used to describe
the vibrational states in each electronic state. The nonlinear
parameter κ is in that case equal to 23 and the size of the
nuclear box is about 25 a.u. In fact, for values of κ ranging
from 21 to 27, the results are stable. The blue curve has been
obtained by using, for each electronic state, 350 B splines of
order 7 in a nuclear box of 30.5 a.u. The agreement between
both curves is very good except for a very tiny shift of the
main peak. Note that for κ = 23, the range of the Sturmian
functions is in general rather short unless the index of the
function becomes large. It is also worth mentioning that when
the calculations are performed in a well-defined box, as is
the case for the B splines, there is no well defined energy
threshold. In Fig. 6, we analyze the gauge dependence of our
results obtained with the Sturmian functions for a 18 fs pulse
of 1012 W/cm2 peak intensity. Two different frequencies are
considered: (a) ω = 0.38 a.u. and (b) ω = 0.4 a.u. As before,
the initial vibrational wave packet at t = 0 is assumed to be
of Franck-Condon type. The blue curves have been obtained
within the velocity gauge and the red dashed ones within the
length gauge. Except for small differences (more pronounced

for ω = 0.4 a.u.) around the maxima, the agreement between
the blue and red dashed curves is rather good. Note that a
perfect agreement is not expected since the problem is solved
within the B-O approximation.

In Fig. 7, we analyze the kinetic energy release spectra
of the protons in the 2sσg dissociative channel for different
frequencies and pulse durations. All pulses have a peak
intensity of 1012 W/cm2. We consider four different values
of the frequency: 0.32 a.u., 0.34 a.u., 0.36 a.u., and 0.38 a.u.,
as well as three pulse durations, 10 fs, 14 fs, and 18 fs.
As before, the initial vibrational wave packet at time t = 0
is of the Franck-Condon type. The results clearly show that
interferences characterized by a double peak structure, occur
for a broad range of frequencies provided that the pulse is
sufficiently long. For the shortest pulse duration, namely 10 fs,
the interferences disappear at all frequencies. By contrast with
the 3dσg dissociative channel, the mechanism that leads to the
interference pattern is not so clear in the 2sσg channel case.
By switching off the 2pσu-2sσg coupling at larger internuclear
distances, where the resonant one-photon transition from the
2pσu to the 2sσg may occur, the interference pattern still sub-
sists. This seems to indicate that the second VWPI mechanism
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FIG. 7. (Color online) Kinetic energy release spectra of the protons in the 2sσg dissociative channel obtained with a femtosecond laser
pulse of peak intensity I = 1012 W/cm2. Four central frequencies are considered: (a) 0.32 a.u., (b) 0.34 a.u., (c) 0.36 a.u., and (d) 0.38 a.u. In
each case, three total pulse durations are considered: 10 fs, 14 fs, and 18 fs. The initial vibrational wave packet at t = 0 is assumed to be of the
Franck-Condon type.
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FIG. 8. (Color online) KER of the protons in the dissociative
channels 2sσg (red curve), 3dσg (black curve), and the sum of both
contributions (blue curve), obtained from the dissociation of the
stationary state (vibrational ground state) 1sσg(ν = 0) in H+

2 . The
results are obtained with a 27-fs laser pulse of central frequency
ω = 0.389 a.u. and peak intensity I = 1012 W/cm2.

mentioned above, which results from the oscillation of the
vibrational Franck-Condon wave packet on the 1sσg potential
curve, is now the dominant one. Moreover, the KER spectrum
in the 2pσu exhibits a similar interference pattern confirming
the predominance of this second mechanism.

Figure 8 depicts the KER of the protons after the two-
photon dissociation of the vibrational ground state (ν = 0)
in H+

2 . Again, a clear interference pattern is exhibited in
the 2sσg channel. The modulation is a manifestation of an
interference effect similar to the one sketched in Fig. 2, but
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FIG. 9. (Color online) Sketch of a vibrational wave-packet inter-
ference process in the 2sσg dissociation channel of H+

2 . A wave packet
is created at time t = 0 on the 2pσu electronic potential curve by
absorption of one photon. Then, as this wave packet moves outwards,
to larger values of R, two new wave packets are created on the 2sσg as
the result of two subsequent one-photon transitions at R2 ∼ 3.2 a.u.
and R3 ∼ 12.8 a.u. It is the interference between these two wave
packets that gives rise to the oscillatory pattern in the kinetic energy
distribution of the nuclei shown in Fig. 8.

there is an important difference. In the present context, a
wave packet is first launched on the 2pσu potential curve
by the absorption of one photon. Then, as this wave packet
moves outwards to larger values of R, two new wave packets
are created on the 2sσg electronic potential curve in two
subsequent one-photon (resonant) transitions, occurring at
R ∼ 3.2 a.u. and R ∼ 12.8 a.u., respectively (see Fig. 9). It is
the interference between these two wave packets that gives rise
to the oscillatory pattern in the kinetic energy distribution of
the nuclei. Finally we note in Fig. 8 that the contribution of the
3dσg dissociative channel strongly dominates the contribution
of the 2sσg channel, therefore the total KER does not show the
double peak structure.

IV. CONCLUSION

In this contribution, we study the interaction of a single
femtosecond pulse with H+

2 initially in a superposition of
vibrational states resulting from a vertical (Franck-Condon)
transition from the H2 ground state. The objective is twofold:
to validate our spectral approach based on Sturmian functions
and to analyze the effect of nuclear interferences on the
population of the dissociative channels 2sσg and 3dσg in
the two-photon dissociation of the molecule. In our spectral
approach, we use the prolate spheroidal coordinate system to
describe the electronic wave functions in a basis of Laguerre
and Legendre functions. We treat the vibrational motion by
using a basis of Sturmian functions. Kinetic energy release
spectra are calculated and compared with the results obtained
with another spectral method based on B splines. Both methods
give results that are in very good agreement. We confirm that
the vibrational wave packet produced in the 3dσg dissociative
channel by a two-photon resonant transition from the 1sσg

interferes with the wave packet produced in the 3dσg channel
by two resonant one-photon transitions via the 2pσu channel.
This interference leads to a double peak structure in the
KER spectrum of the protons. On the other hand, various
indications suggest that the similar structure observed in the
KER spectrum of the protons in the 2sσg channel results from
other mechanisms. For photon energies ranging from 0.32 to
0.38 a.u., the oscillations of the initial vibrational wave packet
in the 1sσg channel lead to the sequential creation of two wave
packets in the 2sσg channels that will eventually interfere. At
ω = 0.389 a.u. we have identified a third mechanism leading to
interferences; it involves one-photon resonances between the
2pσu and 2sσg potential curves at two different internuclear
distances. Finally, we also show that, in the case of a photon
energy of 0.32 a.u. and pulse duration of 18 fs, the double peak
structure subsists in the KER spectrum of the protons when the
contributions from the 2sσg and 3dσg dissociative channels
are added together. This is indeed very interesting from the
experimental point of view since it is extremely difficult to
separate both contributions.
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Universitaire pour le développement de la Communauté
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