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The Siegert states of atoms and molecules in a static electric field are the solutions of the stationary Schrödinger
equation satisfying the regularity and outgoing-wave boundary conditions. Recently, an efficient method for
calculating Siegert states in the single-active-electron approximation based on the adiabatic expansion in parabolic
coordinates was proposed [P. A Batishchev et al., Phys. Rev. A 82, 023416 (2010); O. I. Tolstikhin et al.,
ibid. 84, 053423 (2011)]. So far, this method has been implemented only for axially symmetric potentials,
which corresponds to atoms and linear molecules aligned along the field. In the present work, we extend its
implementation to a general class of soft-core molecular potentials. This makes it possible to calculate the Siegert
eigenvalue E = E − i�/2 defining the energy E and ionization rate � of the corresponding state as functions
of the electric field for arbitrarily oriented polyatomic molecules. The method is illustrated by calculations for
the 1sσ and 2pπ states of H+

2 . Comparison of the results with the predictions of perturbation theory for E and
weak-field asymptotic theory for � is discussed.
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I. INTRODUCTION

The ionization of atoms and molecules by a static elec-
tric field is one of the fundamental problems in quantum
mechanics. A new wave of interest in this problem over the
past two decades has been motivated by the appearance of
intense low-frequency laser pulses. It is clear that for a fixed
intensity and sufficiently low frequency, the ionization in a
time-dependent laser field F(t) should proceed as that in a static
field F equal to the momentary value of F(t). This corresponds
to the adiabatic regime. The adiabatic theory [1,2] establishes a
condition under which the adiabatic approximation holds and
provides a description of the dynamics of ionization in a laser
field in terms of characteristics of the ionization process in
a static field. We note that, in contrast to a common belief,
the adiabatic regime does not coincide with the tunneling
regime of the Keldysh theory [3,4]; more details are given in
Ref. [2]. The ionization of atoms and molecules by laser pulses
is the first step for a variety of strong-field-induced rescattering
phenomena of current interest, such as the generation of
high-order harmonics [5,6] and high-energy photoelectrons
[6,7]. An accurate quantitative description of this step is
obviously required. The present study continues our previous
work [8,9] on the theory of field ionization in the adiabatic
regime.

Recently, we have initiated the Siegert-state approach to the
theory of ionization of atoms and molecules by a static electric
field [8]. The main object in this approach is the solution to
the stationary Schrödinger equation for the active electron
(we restrict our consideration to the single-active-electron
approximation) satisfying the regularity and outgoing-wave
boundary conditions and coinciding with a given unperturbed
bound state in the absence of a field. Solutions to this
eigenvalue problem are called Siegert states (SSs) in an
electric field. The SS eigenvalue E = E − i�/2 is complex
and defines the energy E and ionization rate � of the state.
The asymptotic behavior of the SS eigenfunction defines
the transverse momentum distribution (TMD) of the ionized
electrons. These are the characteristics of the SS needed for

the adiabatic theory [1,2]. To calculate SSs, we have proposed
the method of adiabatic expansion in parabolic coordinates.
In Ref. [8], this method was formulated and implemented for
axially symmetric potentials, which corresponds to atoms and
linear molecules aligned along the field. The accuracy and
efficiency of this method were demonstrated by calculations
of energies, ionization rates, and TMDs for hydrogen and
rare-gas atoms in a wide range of fields, from tunneling
to the overbarrier regime. In Ref. [9], the formulation of
the method was extended to general potentials, which cor-
responds to molecules arbitrarily oriented with respect to the
field. In addition to its computational efficiency, the method
of adiabatic expansion in parabolic coordinates provides a
theoretical framework suitable for analytical treatment of the
problem in the weak-field limit. In Ref. [9], the weak-field
asymptotic theory of tunneling ionization of atoms (spherically
symmetric potentials) developed in classical studies [10–15]
was generalized to molecules (arbitrary potentials). This
theory was applied to the analysis of tunneling ionization
of a number of the simplest linear molecules [16] and to
the extraction of electron-ion differential scattering cross
sections from experimentally obtained rescattering photoelec-
tron spectra for C2H4 [17]. While the weak-field asymptotic
theory is very useful in the region of its applicability, it fails
quantitatively for stronger fields F approaching a boundary
Fc between tunneling and overbarrier regimes. Meanwhile,
the maximum field amplitude in currently available laser
pulses far exceeds Fc. In this case, an accurate description
of the ionization process can be obtained only by means of
numerical calculations. Therefore in the present study we
return to the computational aspect of the approach initiated
in Ref. [8] and extend the implementation of the method
of adiabatic expansion in parabolic coordinates to general
molecular potentials.

Our computational procedure generalizes the one devel-
oped in Ref. [8] for axially symmetric potentials by coupling
different azimuthal components of the SS eigenfunction. It is
based on the slow-variable discretization (SVD) method [18]
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in combination with the R-matrix propagation technique [19].
In the present implementation, the adiabatic channel functions
are constructed using a global discrete variable representation
(DVR) basis [20–22]. Such an approach encounters difficulties
in treating more than one Coulomb singularity of the potential
at the positions of nuclei but is very efficient for soft-core
potentials obtained by smoothing out these singularities. Apart
from the smoothing, no other restrictions on the shape of
the potential are imposed. Thus our procedure enables one
to consider arbitrarily oriented polyatomic molecules. In the
present work, we discuss only the calculation of the SS
eigenvalues. The field and orientation dependence of the
ionization rates of molecules are of great interest for current
applications. The discussion of TMDs is postponed to future
studies.

The paper is organized as follows. In Sec. II, we summarize
basic equations of the method of adiabatic expansion in
parabolic coordinates. In Sec. III, we describe our compu-
tational procedure. In Sec. IV, we present some illustrative
numerical results for a soft-core model of the simplest
molecule—the hydrogen molecular ion H+

2 . The energies E
and ionization rates � of the 1sσ and 2pπ states of H+

2
are calculated and presented as functions of the electric field
and the angle between the molecular axis and the field. A
comparison of the results with the predictions of perturbation
theory [10] for E and weak-field asymptotic theory [9] for
� is discussed. The results are also compared with other
accurate time-independent calculations for H+

2 available in the
literature [23–25]. Section V concludes the paper, indicating a
direction for future studies.

II. THEORY: ADIABATIC EXPANSION IN
PARABOLIC COORDINATES

A detailed account of the method of adiabatic expansion in
parabolic coordinates for calculating SSs in an electric field
is given in Ref. [8], for potentials that are axially symmetric
about the direction of the field, and in [9], for the general
case of potentials without any symmetry. Here we summarize
basic equations needed for the present study. The Schrödinger
equation for an active electron interacting with a molecular
potential V (r) and a static electric field F = F ez, F � 0, in
the laboratory frame reads (atomic units are used throughout
the paper)

[− 1
2� + V (r) + Fz − E

]
ψ(r) = 0. (1)

The electronic coordinate r is measured from the center of
mass of the molecule [9]. The potential V (r) describes the
interaction with nuclei and other electrons in the single-active-
electron approximation. It is assumed that this interaction is
originally represented by a potential in a molecular frame
VMF(r′), where r′ is the coordinate in the molecular frame.
Then V (r) = VMF(R̂ r), where R̂ is a rotation from the
laboratory to the molecular frame. Thus the potential in Eq. (1)
implicitly depends on the orientation of the molecule; a change
in the orientation is implemented by rotating the molecular
frame with respect to the laboratory frame, while the direction
of the electric field F is kept fixed. We solve Eq. (1) using

parabolic coordinates defined by [10]:

ξ = r + z, 0 � ξ < ∞, (2a)

η = r − z, 0 � η < ∞, (2b)

ϕ = arctan
y

x
, 0 � ϕ < 2π. (2c)

In these coordinates, Eq. (1) can be presented in the form[
∂

∂η
η

∂

∂η
+ B(η) + Eη

2
+ Fη2

4

]
ψ(ξ,η,ϕ) = 0, (3)

where

B(η) = ∂

∂ξ
ξ

∂

∂ξ
+ 1

4

(
1

ξ
+ 1

η

)
∂2

∂ϕ2
− ξ + η

2
V (ξ,η,ϕ)

+ Eξ

2
− Fξ 2

4
(4)

is an operator acting on functions of ξ and ϕ and depending
on η as a parameter. The eigenvalues βν(η) and eigenfunctions
ν(ξ,ϕ; η) ofB(η) are the solutions of the adiabatic eigenvalue
problem,

[B(η) − βν(η)] ν(ξ,ϕ; η) = 0, (5a)

ν(ξ = 0,ϕ; η) < ∞, ν(ξ → ∞,ϕ; η) = 0, (5b)

ν(ξ,ϕ + 2π ; η) = ν(ξ,ϕ; η). (5c)

They also depend on η as a parameter. For any η, the
eigenfunctions are orthogonal and normalized by

〈ν |μ〉 ≡
∫ ∞

0

∫ 2π

0
ν(ξ,ϕ; η)μ(ξ,ϕ; η) dξ dϕ = δνμ.

(6)

For the numerical treatment, it is convenient to introduce a
cutoff parameter ηc and divide the whole space into an inner,
η < ηc, and an outer, η > ηc, region. We assume that

V (ξ,η,ϕ)|η>ηc
= −Z

r
, r = ξ + η

2
, (7)

thus retaining only the monopole Coulomb tail of the
potential in the outer region. We note that the dipole term in
the asymptotics of V (r) can always be eliminated by shifting
the coordinate origin in Eq. (1) and appropriately changing the
energy [9]; the effect of higher multipoles should be reduced
by increasing ηc. Substituting Eq. (7) into Eq. (4), one can see
that the eigenfunctions ν(ξ,ϕ; η) cease to depend on η for
η > ηc. Let us introduce the asymptotic basis defined by

ν(ξ,ϕ; η)|η>ηc
= ν(ξ,ϕ). (8)

Equation (5a) allows the separation of variables in the outer
region, so the functions ν(ξ,ϕ) can be constructed more
explicitly. Let βnξ |m|, φnξ |m|(ξ ), and nξ m(ξ,ϕ) be defined by[

d

dξ
ξ

d

dξ
− m2

4ξ
+ Z + Eξ

2
− Fξ 2

4
− βnξ |m|

]
φnξ |m|(ξ ) = 0,

(9a)

φnξ |m|(ξ )|ξ→0 ∝ ξ |m|/2, φnξ |m|(ξ )|ξ→∞ = 0, (9b)∫ ∞

0
φnξ |m|(ξ )φn′

ξ |m|(ξ ) dξ = δnξ n
′
ξ
, (9c)
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and

nξ m(ξ,ϕ) = φnξ |m|(ξ )
eimϕ

√
2π

. (10)

Here m = 0,±1,±2, . . . is the azimuthal quantum number and
nξ = 0,1,2, . . . enumerates the different solutions to Eq. (9a)
for a given value of |m|. Then the asymptotic basis is given by

ν(ξ,ϕ) =
{
nξ 0(ξ,ϕ), m = 0,

c|m|λnξ |m|(ξ,ϕ) + c∗
|m|λnξ − |m|(ξ,ϕ), m �= 0.

(11)

The coefficients c|m|λ can be obtained by diagonalizing the
matrix of rV (r) in the subspace of two degenerate states
nξ ±m(ξ,ϕ) at η = ηc, and λ = 1,2 enumerates the eigenvec-
tors of this matrix. The adiabatic eigenvalues in the outer region
are given by

βν(η)|η>ηc
= βnξ |m| − m2

4η
. (12)

Equations (11) and (12) show that in the outer region the
adiabatic channels can be enumerated by the multi-index

ν = (nξ ,|m|,λ). (13)

By continuity, this classification of the solutions to Eqs. (5) by
asymptotic quantum numbers can be applied to all values of
η.

Having thus defined the adiabatic basis, we seek the solution
of Eq. (3) in the form of the adiabatic expansion,

ψ(ξ,η,ϕ) =
∑

ν

fν(η)ν(ξ,ϕ; η). (14)

Substituting this into Eq. (3), one obtains a set of coupled or-
dinary differential equations defining the coefficient functions
fν(η),[

d

dη
η

d

dη
+ βν(η) + Eη

2
+ Fη2

4

]
fν(η)

+
∑

μ

[
Pνμ(η)

(
2η

d

dη
+ 1

)
+ ηQνμ(η)

]
fμ(η) = 0,

(15)

where the matrices

Pνμ(η) =
〈
ν

∣∣∣∣ ∂μ

∂η

〉
, Qνμ(η) =

〈
ν

∣∣∣∣ ∂2μ

∂η2

〉
(16)

represent nonadiabatic couplings. As follows from Eq. (8),
these matrices vanish in the outer region, so the different
channels become decoupled for η > ηc and Eq. (15) takes
the form[

d2

dη2
+ 1 − m2

4η2
+ βnξ |m|

η
+ E

2
+ Fη

4

]
η1/2fν(η) = 0.

(17)

For a nonzero electric field, F > 0, the outgoing-wave solution
to this equation satisfies

fν(η)|η→∞ = 21/2fν

F 1/4η3/4
exp

[
iF 1/2η3/2

3
+ iEη1/2

F 1/2

]
. (18)

Equations (15) must be solved subject to the regularity
boundary conditions at η = 0 and the outgoing-wave boundary
conditions, (18), at η → ∞. This is an eigenvalue problem;
its solutions are called SSs in an electric field [8,9]. For any
potential V (r), there exist infinitely many SSs. In the present
work, we are interested only in tunneling states which originate
from bound states in the absence of the field. Let E0 and ψ0(r)
be the energy and wave function of a selected bound state. We
discuss the solution to Eq. (1) satisfying

E|F→0 = E0, ψ(r)|F→0 = ψ0(r). (19)

It should be noted that there exists another type of SSs called
static-field-induced states, which do not have counterparts
for F = 0 [1,26]. The eigenvalue E is generally complex.
Presented in the form

E = E − i

2
�, (20)

it defines the energy E and ionization rate � of the selected
state. In this paper, we restrict ourselves to the description of a
method for calculating the SS eigenvalue E. The coefficients
fν in Eq. (18) determine the TMD of the ionized electrons
[8,9]. Their calculation requires knowledge of the properly
normalized SS eigenfunction ψ(r). The discussion of TMDs
for molecules is postponed to future studies.

III. COMPUTATIONAL PROCEDURE

To use SSs as a theoretical tool for various applications
in strong-field physics, one must be able to efficiently solve
Eq. (3) for general molecular potentials. We are not aware
of any other approaches to this challenging problem, so we
believe that it is worthwhile to give some details of the present
computational procedure implementing the approach summa-
rized in the previous section. This procedure generalizes the
one developed in Ref. [8] for axially symmetric potentials by
accounting for a coupling between the components of the wave
function corresponding to different values of the azimuthal
quantum number m. It is based on the SVD method [18] in
combination with the R-matrix propagation technique [19]
and, in this respect, is similar to a procedure used earlier
in the theory of atom-diatom chemical reactions [27,28] and
the three-body Coulomb problem [29–34]. Another essential
technical element of this procedure is the DVR [20–22].
All necessary details on constructing DVRs associated with
different types of classical orthogonal polynomials can be
found in Ref. [32].

A. Adiabatic eigenvalue problem

We first discuss the solution of the adiabatic eigenvalue
problem (5). For axially symmetric potentials, the azimuthal
quantum number m is conserved. Then, for a given m, the
adiabatic channel functions behave as ν(ξ,ϕ; η) ∝ ξ |m|/2 at
ξ → 0. Such functions can be expanded in the DVR basis con-
structed from the generalized Laguerre polynomials L

(|m|)
n (sξ )

[8]. In the general case, however, ν(ξ,ϕ; η) contains integer
as well as half-integer powers of ξ for ξ → 0, which cannot be
represented by a single DVR basis with a fixed m. To resolve
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this difficulty we introduce a new variable x, defined by

x = (sξ )1/2. (21)

The scaling factor s serves to adjust our basis in x to the region
of localization of the main adiabatic channels contributing to
Eq. (14) and thus accelerate convergence. Its optimal value
for each potential and state is to be chosen empirically; in the
present calculations we used s ∼ √

2|E|. In terms of the new
variable Eq. (5a) reads{

s
∂

∂x
x

∂

∂x
+

(
s

x
+ x

η

)
∂2

∂ϕ2
− x[2(ξ + η)V (ξ,η,ϕ)

− 2Eξ + Fξ 2 + 4βν(η)]

}
ν(ξ,ϕ; η) = 0. (22)

The solutions to this equation contain only integer powers of
x at x → 0, which was the goal of transformation (21). They
can be expanded in the direct product of two independent basis
sets in x and ϕ,

ν(ξ,ϕ; η) =
∑
ii i2

aν
i1i2

(η)π (ξ )
i1

(x)π (ϕ)
i2

(ϕ). (23)

Here π
(ξ )
i (x) is the DVR basis constructed from ordinary

Laguerre polynomials Ln(x) = L(0)
n (x) [32] satisfying the reg-

ularity and asymptotic boundary conditions (5b), and π
(ϕ)
i (ϕ)

is that based on the Chebyshev quadrature and constructed
from sine and cosine functions [35] satisfying the periodic
boundary conditions (5c). Substituting Eq. (23) into Eq. (22),
we obtain the algebraic eigenvalue problem∑

j1j2

[
sK

(ξ )
i1j1

δi2j2 +
(

s

xi1

+ xi1

η

)
δi1j1K

(ϕ)
i2j2

]
aν

j1j2
(η)

+ xi1

[
2
(
ξi1 + η

)
V

(
ξi1,η,ϕi2

) − 2Eξi1 + Fξ 2
i1

+ 4βν(η)
]
aν

i1i2
(η) = 0, (24)

where xi and ϕi are the Laguerre and Chebyshev quadrature
points, respectively, and ξi = x2

i /s. The kinetic energy matri-
ces for the motion in x and ϕ are given by

K
(ξ )
ij =

∫ ∞

0

dπ
(ξ )
i (x)

dx
x

dπ
(ξ )
j (x)

dx
dx, (25a)

K
(ϕ)
ij =

∫ 2π

0

dπ
(ϕ)
i (ϕ)

dϕ

dπ
(ϕ)
j (ϕ)

dϕ
dϕ. (25b)

They can be calculated analytically by the methods described
in Refs. [32,35]. Equation (24) is solved by standard linear al-
gebra routines. Thus the eigenvalues βν(η) and the coefficients
aν

i1i2
(η) in Eq. (23) can be obtained for the different adiabatic

channels at any point η. Substituting Eq. (23) into Eq. (6), the
orthonormalization condition takes the form

2

s

∑
i1i2

xi1a
ν
i1i2

(η)aμ

i1i2
(η) = δνμ, (26)

which follows from the orthogonality and normalization of the
DVR basis functions [32,35].

The approach to solving a two-dimensional eigenvalue
problem (5) described above uses a global DVR basis and
therefore works well only for sufficiently smooth potentials.
This is the case for soft-core molecular potentials obtained

by smoothing out Coulomb singularities at the nuclei. In this
case, the DVR basis indeed ensures rapid convergence and high
accuracy of the results. In principle, it is possible to account
for the Coulomb singularities by switching to some local
basis, like finite elements. Such an approach, however, would
require a very flexible numerical grid, since the positions of
the nuclei in terms of the coordinates ξ and ϕ depend on the
internuclear configuration and orientation of the molecule, and
its implementation for arbitrary molecules does not seem to be
straightforward.

B. Slow-variable discretization and R-matrix propagation

Here we discuss the solution of Eq. (3) in the inner region
0 � η � ηc. This region is divided into N sectors,

0 = η̄0 < η̄1 < · · · < η̄N = ηc. (27)

Consider the kth sector, η̄− ≡ η̄k−1 � η � η̄k ≡ η̄+. The R-
matrix basis in this sector is defined by[

∂

∂η
η

∂

∂η
− L + B(η) + Ēnη

2
+ Fη2

4

]
ψ̄n(ξ,η,ϕ) = 0,

(28)
where L is the Bloch operator [36],

L = η [δ(η − η̄+) − δ(η − η̄−)]
∂

∂η
. (29)

The different solutions of Eq. (28) are orthonormal with weight
η, ∫ η̄+

η̄−
〈ψ̄n(ξ,η,ϕ)|ψ̄m(ξ,η,ϕ)〉η dη = δnm. (30)

We solve Eq. (28) by the SVD method [18]. To this end, we
introduce a new variable y by substituting

η = η(y), η(±1) = η̄±. (31)

The function η(y) should be monotonic, so that its inverse maps
the sector under consideration onto the interval −1 � y � 1;
the explicit form of η(y) is given below. The solutions to
Eq. (28) are sought in the form of the SVD expansion [18],

ψ̄n(ξ,η,ϕ) =
∑
iν

cn
iνπ

(η)
i (y)ν(ξ,ϕ; ηi). (32)

Here π
(η)
i (y) is the DVR basis constructed from the Legendre

polynomials [32] and ηi = η(yi), where yi are the Legendre
quadrature points. Substituting Eq. (32) into Eq. (28), we
obtain the SVD eigenvalue problem

∑
jμ

K
(η)
ij Oiν,jμcn

jμ − η′
i

[
βν(ηi) + Ēnηi

2
+ Fη2

i

4

]
cn
iν = 0,

(33)
where K

(η)
ij is the kinetic energy matrix,

K
(η)
ij =

∫ 1

−1

dπ
(η)
i (y)

dy

η(y)

η′(y)

dπ
(η)
j (y)

dy
dy, (34)

Oiν,jμ is the overlap matrix of the adiabatic bases at the
different quadrature points,

Oiν,jμ = 〈ν(ξ,ϕ; ηi)|μ(ξ,ϕ; ηj )〉, (35)
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and η′
i = η′(yi). Comparing the approaches based on ex-

pansions (14) and (32), it is seen that the SVD method
enables one to avoid solving tedious differential equations with
nonadiabatic couplings (15) and calculating the matrices (16).
Instead, one needs to calculate the overlap matrix (35), which
can be easily done using the quadrature associated with the
DVR expansion (23), and to solve an algebraic eigenvalue
problem (33). Thus we obtain the R-matrix eigenvalues Ēn and
eigenfunctions ψ̄n(ξ,η,ϕ) for the sector. Substituting Eq. (32)
into Eq. (30), the orthonormalization condition takes the form∑

iν

η′
iηic

n
iνc

m
iν = δnm, (36)

which follows from the properties of the DVR basis functions
[32] and Eq. (6).

Let us return to the function η(y) defining the variable
transformation (31). This transformation has different forms
in the first and further sectors. For axially symmetric potentials,
solutions to Eq. (28) with a given azimuthal quantum number
m behave as ψ̄n(ξ,η,ϕ) ∝ η|m|/2 at η → 0. Substituting η(y) =
η̄1(1 + y)/2, such functions can be expanded in terms of the
DVR basis constructed from the Jacobi polynomials P

(0,|m|)
n (y)

[8]. In the general case, however, ψ̄n(ξ,η,ϕ) contains integer
as well as half-integer powers of η for η → 0. This difficulty is
similar to that discussed in Sec. III A, so its remedy is known.
The function η(y) in the first sector 0 � η � η̄1 is defined by

η(y) = η̄1

4
(1 + y)2. (37)

The solutions to Eq. (28) contain only integer powers of (1 +
y) at y → −1, which corresponds to η → 0, and hence can
be expanded in the DVR basis constructed from the Legendre
polynomials Pn(y) = P (0,0)

n (y), as in Eq. (32). We note that
nonlinear variable transformations similar to Eqs. (21) and (31)
with η(y) given by Eq. (37), whose goal is to get rid of half-
integer powers of the corresponding variables when there is a
coupling between different azimuthal components of the wave
function, have recently been used in calculations of elastic
scattering on two-center Coulomb potentials [37]. In sectors
with k � 2, the difficulty discussed above does not arise, and
we use a linear transformation defined by

η(y) = 1
2 [(η̄+ + η̄−) + (η̄+ − η̄−)y] . (38)

For both functions (37) and (38), matrix (34) can be calculated
analytically using the formulas given in Ref. [32].

The R matrix R(η; E) for the solutions to Eq. (3) with
respect to the adiabatic channels is defined by [38]

〈ν(ξ,ϕ; η)|ψ(ξ,η,ϕ)〉
=

∑
μ

Rνμ(η; E)

〈
ν(ξ,ϕ; η)

∣∣∣∣∂ψ(ξ,η,ϕ)

∂η

〉
. (39)

Having the solutions to Eq. (28), the matrix R(η; E) can be
propagated through the sector. The propagation is accom-
plished by means of the equation [19]

R(η̄±; E) = ±R(±,±) − R(±,∓)[R(η̄∓; E) ± R(∓,∓)]−1R(∓,±),

(40)

where the matrices R(±,±) are given by

R(±,±)
νμ = 2

∑
n

f̄ n
ν (η̄±)f̄ n

μ (η̄±)

Ēn − E
. (41)

Here

f̄ n
ν (η̄±) = η̄

1/2
± 〈ν(ξ,ϕ; η̄±)|ψ̄n(ξ,η̄±,ϕ)〉

= η̄
1/2
±

∑
jμ

cn
jμπ

(η)
j (±1)O±

ν,jμ (42)

are the surface amplitudes of the R-matrix eigenfunctions, and

O±
ν,jμ = 〈ν(ξ,ϕ; η̄±)|μ(ξ,ϕ; ηj )〉 (43)

are the surface overlap matrices. Solving Eq. (28) for each
sector in the inner region and applying Eq. (40), one can
propagate R(η,E) between any two boundary points η̄k . The
procedure described above enables one to do this for any given
energy E and field F .

C. Outgoing-wave boundary conditions

In the outer region η > ηc, we need to solve Eq. (17) subject
to the outgoing-wave boundary condition (18). The solution
fν(η) rapidly oscillates with an exponentially growing ampli-
tude as η → ∞ along the real axis. In addition, it approaches
its asymptotic form very slowly; the relative error of Eq. (18)
decays as 1/η. These two circumstances make it very difficult
to achieve a high accuracy in the calculations staying on the
real η axis. An efficient solution of this problem was proposed
in Ref. [8]. The idea is to deform the real interval [ηc,∞)
into a contour in the complex η plane along which the solution
decays. This is possible because the coefficients in Eq. (17) are
known analytically. We solve Eq. (17) along a semiclassical
steepest descent contour C (a Stokes line) defined by [8]

Re
∫ η

ηc

[
1 − m2

4η′2 + βnξ |m|
η′ + E

2
+ Fη′

4

]1/2

dη′ = 0 → η ∈ C.

(44)

This contour begins at η = ηc and runs to infinity in the upper
half of the complex η plane parallel to the ray arg η = π/3.
The outgoing-wave solution to Eq. (17) exponentially decays
as η goes to infinity along this contour, thus Eq. (18) amounts
to zero asymptotic boundary condition for fν(η) on C. We start
from a point η∞ ∈ C, for which the integral in Eq. (44) has a
sufficiently large value, and propagate the solution of Eq. (17)
along C inward to ηc by the fourth-order Runge-Kutta method
[39]. Because of a well-known numerical instability caused
by the finite accuracy of the calculations, independently of the
initial conditions for fν(η), only the exponentially growing so-
lution survives in the propagation. This is the solution we need,
the one satisfying the outgoing-wave boundary condition (18).
We note that this procedure works also for F = 0, even though
the asymptotic form of the solution in this case differs from
Eq. (18). Thus one can obtain fν(η) up to a constant factor,
which is sufficient to find the SS eigenvalue E. The result of
the calculations in the outer region is a set of the ratios

rν(E) = fν(η)

f ′
ν(η)

∣∣∣∣
η=ηc

(45)

for all adiabatic channels included in Eq. (32).
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D. The matching condition

For the solutions to Eq. (3) regular at η = 0, we have

Rνμ(0; E) = 0. (46)

For the solutions satisfying outgoing-wave boundary condi-
tions at η → ∞, we have

Rνμ(ηc; E) = rν(E)δνμ, (47)

where rν(E) is given by Eq. (45). Equations (46) and (47)
provide the boundary conditions for R-matrix propagation.
Starting from Eq. (46) and propagating R(η; E) through k

sectors to the right, we obtain Rleft(η̄k; E). On the other hand,
starting from Eq. (47) and propagating R(η; E) through N − k

sectors to the left, we obtain Rright(η̄k; E). The requirement of
continuity of the solution to Eq. (3) and its derivative with
respect to η at η = η̄k leads to the matching condition,

det[Rleft(η̄k; E) − Rright(η̄k; E)] = 0. (48)

The values of E for which this equation is satisfied are the SS
eigenvalues. We solve Eq. (48) iteratively, starting from F = 0
and incrementing F by sufficiently small steps. For F = 0, we
find the solution E = E0 corresponding to the selected bound
state; see Eqs. (19). The initial guess in this case is provided
by the calculations discussed in Sec. IV A. At each next step
in F , we seek the 0 of the smallest eigenvalue of the matrix in
Eq. (48) closest to the solution E found at the previous step
using the Newton method [39]. In this way, E can be continued
to any generally complex value of F . We note that, apart from
numerical errors and finiteness of the step in F , this procedure
yields E as an analytic function of F . The corresponding SS
is thus obtained as the analytic continuation of the selected
bound state in F , which is essential for applications of SSs in
the adiabatic theory [1,2].

Let us conclude this discussion of the computational
procedure by specifying the typical values of the numerical
parameters used in the calculations for H+

2 reported below. We
use 30 and 15 DVR basis functions in Eq. (23) for x and ϕ,
respectively. The cutoff parameter is ηc = 75. The inner region
is divided into N = 150 equal sectors, (27). In each sector, we
use six DVR basis functions and 60 adiabatic channels in
Eq. (32). The matching condition (48) is applied at η̄k ∼ 10,
where the unperturbed bound-state wave function ψ0(r) still
has a large amplitude.

IV. WEAK-FIELD APPROXIMATIONS

For sufficiently small values of F , the energy E and
ionization rate � of a tunneling SS defined by Eqs. (19)
and (20) can be found using perturbation theory [10] and
the recently developed weak-field asymptotic theory [9],
respectively. It is instructive to compare the exact results
obtained by solving Eq. (1) with the predictions of these weak-
field approximations, to test the consistency and accuracy
of the former and clarify the region of applicability of the
latter. In this section, we give necessary details on the present
implementation of the weak-field approximations.

Since in the illustrative calculations reported in Sec. V we
consider H+

2 , here we restrict our treatment to nonpolar linear
molecules. We choose a geometry in which the molecular axis
z′ lies in the xz plane of the laboratory frame. The orientation

FIG. 1. (Color online) Illustration of the unperturbed wave
functions of H+

2 oriented under an angle β with respect to the direction
of the field in even 2pπ+ and odd 2pπ− states. Different colors
correspond to different signs of the wave function.

of the molecule is described by an angle β between its axis
and the direction of the electric field coinciding with that of
the laboratory z axis (see Fig. 1). Thus E and � for a given
state are functions of F and β. The unperturbed bound-state
wave function ψ0(r) is characterized by the projection of the
electronic angular momentum onto the molecular axis, which
is denoted M . We consider only states with M = 0 (σ states)
and |M| = 1 (π states). The unperturbed energy E0 for states
with M �= 0 does not depend on the sign of M . This degeneracy
is removed by an arbitrarily weak field, provided that β �= 0.
The correct bound-state wave functions of the zeroth order are
certain linear combinations of the two degenerate states [10].
One of them is even and the other is odd with respect to the
reflection y → −y. The even and odd states are indicated by
superscripts + and −, respectively. Nondegenerate σ states
belong to the class of even states. The wave functions for even
and odd π states are illustrated in Fig. 1.

A. Perturbation theory

As follows from the above discussion, the molecular frame
is obtained by rotating the laboratory frame around its y

axis by an angle β. Let (x ′,y ′,z′) ≡ (x ′
1,x

′
2,x

′
3) and (r ′,θ ′,ϕ′)

denote the Cartesian and spherical coordinates in the molecular
frame, respectively, where y ′ = y and r ′ = r . The static
dipole polarizability tensor in the molecular frame is diagonal,
αx ′

i x
′
j
= αx ′

i
δij , where αx ′

i
is the polarizability in the direction

of the axis x ′
i . Then the energy of the state satisfying Eqs. (19)

in the second order of perturbation theory is given by [10]

E = E0 − F 2

2
(αx ′ sin2 β + αz′ cos2 β). (49)

The polarizabilities αx ′
i

can be expressed in terms of the
eigenvalues En|M| and eigenfunctions ψnM of the unperturbed
Hamiltonian [10],

αx ′
i
= 2

∑
nM �=0

〈ψ0|x ′
i |ψnM〉〈ψnM |x ′

i |ψ0〉
En|M| − E0

, (50)

where n is a set of quantum numbers which, together with M ,
identify the state and the summation runs over the complete
set of states excluding the unperturbed one indicated by the
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subscript 0. The eigenfunctions ψnM in the molecular frame
have the form

ψnM (r ′,θ ′,ϕ′) = f |M|
n (r ′,θ ′)

eiMϕ′

√
2π

. (51)

The matrix elements needed are then given by

〈ψn′M ′ |x ′|ψnM〉 = 1
2

〈
f

|M ′|
n′

∣∣r ′ sin θ ′∣∣f |M|
n

〉
(δM ′ M+1 + δM ′ M−1),

(52a)

〈ψn′M ′ |z′|ψnM〉 = 〈
f

|M ′|
n′

∣∣r ′ cos θ ′∣∣f |M|
n

〉
δM ′M. (52b)

If the unperturbed state is a σ state ψn0, we obtain

αx ′ =
∑
n′

∣∣〈f 1
n′
∣∣r ′ sin θ ′∣∣f 0

n

〉∣∣2

En′1 − En0
, (53a)

αz′ = 2
∑
n′ �=n

∣∣〈f 0
n′
∣∣r ′ cos θ ′∣∣f 0

n

〉∣∣2

En′0 − En0
. (53b)

For unperturbed states with M �= 0, the even ψ+
n|M| and odd

ψ−
n|M| correct wave functions of the zeroth order are given by

ψ+
n|M| = 1√

2
(ψn|M| + ψn −|M|) = f |M|

n (r ′,θ ′)
cos |M|ϕ′

√
π

,

(54a)

ψ−
n|M| = 1

i
√

2
(ψn|M| − ψn−|M|) = f |M|

n (r ′,θ ′)
sin |M|ϕ′

√
π

.

(54b)

For these states, the matrix elements needed are

〈ψn′M ′ |x ′|ψ±
n|M|〉 = 1

2
√

2

〈
f

|M ′|
n′

∣∣r ′ sin θ ′∣∣f |M|
n

〉
(δM ′ M+1

+ δM ′ M−1 ± δM ′ −M+1 ± δM ′ −M−1),

(55a)

〈ψn′M ′ |z′|ψ±
n|M|〉 = 1√

2

〈
f

|M ′|
n′

∣∣r ′ cos θ ′∣∣f |M|
n

〉
(δM ′ M ± δM ′ −M ).

(55b)

In particular, for an even π state ψ+
n1, we obtain

αx ′ =
∑
n′

∣∣〈f 0
n′
∣∣r ′ sin θ ′∣∣f 1

n

〉∣∣2

En′0 − En1
+ 1

2

∑
n′

∣∣〈f 2
n′
∣∣r ′ sin θ ′∣∣f 1

n

〉∣∣2

En′2 − En1
,

(56a)

αz′ = 2
∑
n′ �=n

∣∣〈f 1
n′
∣∣r ′ cos θ ′∣∣f 1

n

〉∣∣2

En′1 − En1
. (56b)

Similarly, for an odd π state ψ−
n1, we find

αx ′ = 1

2

∑
n′

∣∣〈f 2
n′
∣∣r ′ sin θ ′∣∣f 1

n

〉∣∣2

En′2 − En1
, (57a)

αz′ = 2
∑
n′ �=n

∣∣〈f 1
n′
∣∣r ′ cos θ ′∣∣f 1

n

〉∣∣2

En′1 − En1
. (57b)

In the calculations for H+
2 reported below, a complete set

of the eigenvalues En|M| and eigenfunctions f
|M|
n (r ′,θ ′) is

obtained by solving Eq. (1) for F = 0 with zero-derivative

boundary conditions on a sphere of sufficiently large radius.
We use a single-center expansion in the molecular frame
and diagonalize the unperturbed Hamiltonian in the direct
product of two DVR basis sets in r ′ and θ ′ constructed from
the Legendre polynomials [32]. All the matrix elements are
calculated using the Legendre quadrature. The polarizabilities
αx ′ and αz′ are evaluated by summing over all states in
Eqs. (53), (56), and (57), including discretized continuum
states for which En|M| > 0. The radius of the sphere used
in the calculations is 20, which is found to be large enough to
obtain converged results in all the cases considered.

B. Asymptotic theory

The weak-field asymptotic theory of tunneling ionization
of molecules was developed in Ref. [9]. Recently, it was
applied to the analysis of tunneling ionization of a number
of the simplest polar and nonpolar linear molecules [16,17].
According to this theory, the asymptotics of the ionization rate
� for F → 0 is given by a sum of partial rates for ionization
into different channels defined by Eqs. (9) and (10) and labeled
by parabolic quantum numbers (nξ ,m). The leading-order term
in the asymptotics is determined by the dominant channel with
the minimum values of nξ and |m|. For linear molecules, the
dominant channel is (nξ = 0,m), where m = 0 and 1 for even
and odd unperturbed states, respectively. For a nonpolar linear
molecule in a state satisfying Eqs. (19), the ionization rate is
given by

�as = (2 − δm0)|g0m(β)|2W0m(F )[1 + O(F )], (58)

where

g0m(β) =
√

κ
|m|+1

|m|! η1+|m|/2−Z/κeκη/2

×
∫ ∞

0

∫ 2π

0
ξ |m|/2 e−κξ/2−imϕψ0(r)

dξdϕ√
2π

∣∣∣∣
η→∞

(59)

and

W0m(F ) = κ

2

(
4κ

2

F

)2Z/κ−|m|−1

exp

(
−2κ

3

3F

)
. (60)

Here κ = √
2|E0| and Z is the asymptotic charge defined by

Eq. (7). The condition of applicability of Eq. (58) is [9]

F � Fc = κ
4

8|2Z − κ(m + 1)| , (61)

where the critical field Fc indicates a boundary between
tunneling and overbarrier regimes of ionization estimated as
the field for which the two turning points in Eq. (17) coalesce.
This condition ensures that the correction term in Eq. (58)
that is linear in F is much smaller than unity and, hence, the
leading-order term dominates.

As follows from Eq. (58), in the leading-order approxi-
mation the ionization rate factorizes into two factors, one of
which depends only on the orientation angle β and the other
depends only on the field F . The dependence on the orientation
is determined by a structure factor [16] which, for nonpolar
molecules, coincides with g0m(β). According to Eq. (59),
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this characteristic should be extracted from the asymptotic
tail of the unperturbed wave function ψ0(r) at η → ∞; in
the present calculations we used a procedure described in
Ref. [16]. The field-dependent factor is given by a simple
analytic function (60) which depends on the molecule and
state only via the parameters κ and Z.

As stated above, the azimuthal quantum number of the
dominant ionization channel for even and odd unperturbed
states is m = 0 and 1, respectively. This is true for all values
of β except for some special orientations, if any, for which
the integral in Eq. (59) for the dominant channel turns 0. For
example, for the even 1sσ state of H+

2 to be considered below,
the dominant channel is m = 0 for all orientation angles β,
because g00(β) never turns 0. Similarly for the odd 2pπ− state,
the dominant channel is m = 1 for all values of β, because
g01(β) never goes through 0. But for the even 2pπ+ state,
g00(β) vanishes at β = 0. For this state at not too small values
of β, the dominant channel is m = 0. However, as β decreases,
the contributions to the ionization rate from channels with
m = 0 and m = 1 become comparable at β ∼ βc and then the
channel m = 1 becomes dominant. According to the weak-
field asymptotic theory [9], for β � βc the contributions from
both channels must be retained. The ionization rate in this case
is given by [16],

�β�βc
=

(
|g00(β)|2 + F

2κ
2

|g01(β)|2
)

W00(F )[1 + O(F )].

(62)

The boundary βc between the two regimes depends on F .
Taking into account that for even π states g00(β → 0) ∝
β, while g01(β → 0) �= 0, one can see that βc ∝ F 1/2 as
F → 0. The interplay between the contributions to � from
channels with m = 0 and m = 1 for even π states near
β = 0 was discussed in Ref. [16]. For simplicity, in the
present calculations we retain only the channel m = 0 in
the asymptotic results for the 2pπ+ state at β �= 0, which is
the dominant channel for F → 0.

V. ILLUSTRATIVE RESULTS AND DISCUSSION

We have implemented the computational procedure de-
scribed in Sec. III in a computer program. This program
enables one to find the energy eigenvalue E for a selected SS by
solving Eq. (1) for any sufficiently smooth molecular potential
V (r) and any orientation of the molecule. In this section
we report some illustrative numerical results. We consider a
soft-core model of the hydrogen molecular ion H+

2 with the
potential given by

V (r) = − 1√∣∣r − R
2

∣∣2 + ε

− 1√∣∣r + R
2

∣∣2 + ε

. (63)

Here R = (R sin β,0,R cos β), R is the internuclear distance,
β is the angle between the internuclear axis and the electric
field (see Fig. 1), and ε is a softening parameter. Equation (63)
complies with the definition of the potential in the laboratory
frame given after Eq. (1) and implies that the laboratory and
molecular frames coincide for β = 0. Most of the calculations
discussed below were done with R = 2 and ε = 0.09, but
we also present some results for larger R and smaller ε.

To illustrate the different symmetry cases, we consider SSs
originating from the unperturbed ground state 1sσ with
M = 0 and unperturbed even 2pπ+ and odd 2pπ− excited
states with |M| = 1. In Ref. [9], results for several model
diatomic polar molecules described by a similar soft-core
potential were reported. These results were obtained using the
program developed in Ref. [8], and hence were restricted to
the orientations with β = 0◦ and 180◦, when the molecule
is aligned along the field. In the present calculations, we
examine the dependence of the energy E and ionization
rate � on both the field F and the orientation angle β.
The results obtained by solving Eq. (1), which for brevity
are referred to as “exact” results, are compared with the
weak-field approximations discussed in Sec. IV, namely, with
the predictions of perturbation theory for E obtained from
Eq. (49) and asymptotic theory for � obtained from Eq. (58).

A. The ground 1sσ state

We begin with the ground 1sσ state of the soft-core H+
2

with R = 2 and ε = 0.09. Our result for the field-free energy
of this state is E0 = −0.962 36, which is slightly higher than
the corresponding energy −1.102 634 for the pure Coulomb
potential with ε = 0. Figure 2 presents the energy E and
ionization rate � as functions of the electric field F for several
representative orientation angles β. The exact results are
compared with the results of the weak-field approximations.
The static dipole polarizabilities in Eq. (49) in the present
case are αx ′ = 1.44 and αz′ = 2.95. The azimuthal quantum
number of the dominant channel in Eq. (58) is m = 0. The
critical field defined by Eq. (61) is Fc ≈ 0.18

The top panels in Fig. 2 present the energy E of the state. For
all orientations of the molecule, E decreases monotonically as
the field F grows. In the tunneling regime, F < Fc, the energy
decreases quadratically with F and its behavior agrees well
with the predictions of perturbation theory. In the overbarrier
regime, F > Fc, the energy continues to decrease almost
linearly in the interval of F considered. A large deviation
from the results of perturbation theory is seen in this region.
The middle panels present the ionization rate �. For all
orientations, � exponentially grows in the tunneling regime
and continues to grow, but less rapidly, in the overbarrier
regime. The asymptotic theory reproduces the behavior of
� in the tunneling regime but overestimates its values at
larger fields. The bottom panels present the ratio of the exact
and asymptotic results for �. The usefulness of this ratio
for gauging the performance of the weak-field asymptotic
theory at a quantitative level was pointed out in Ref. [9]. It
can be clearly seen that for all orientations the ratio �/�as

approaches unity linearly as the field F decreases, as it should
in accordance with Eq. (58). The curves are not continued to
smaller F because of a fundamental limitation of the present
numerical procedure in calculating very low ionization rates:
the procedure yields a complex number E, and � is obtained
from its imaginary part, so our calculations with double
precision fail if �/|E0| � 10−10. The linear dependence of
�/�as on F holds up to the onset Fc of the overbarrier regime.
This dependence results from the correction term in square
brackets in Eq. (58) that is linear in F . We note that the
deviation of � from �as is small only under condition (61); for
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FIG. 2. (Color online) Energy E and ionization rate � for the 1sσ state of the soft-core H+
2 with R = 2 and ε = 0.09 as functions of

the electric field F for four representative orientation angles β. Solid (black) lines for E and �: exact results. Dashed (red) lines: results of
perturbation theory and asymptotic theory, respectively. Bottom panels: ratio of the exact to the asymptotic results for �. Dash-dotted (blue)
lines for β = 0◦: exact results for a sharper potential with ε = 0.0009.

stronger fields, but still in the tunneling regime, the deviation
becomes large. For example, for F = 0.1 the leading-order
term in Eq. (58) overestimates the ionization rate by a factor
of 2. The major part of this difference could be accounted for
in the next order of the weak-field asymptotic theory [9] by
calculating the correction term in Eq. (58). So far, this cor-
rection is available only for the hydrogen atom in an arbitrary
state [15].

To illustrate the dependence of the results on the softening
parameter in Eq. (63), we have performed calculations for the
same state 1sσ and internuclear distance R = 2 as above, but
for a sharper potential with ε = 0.0009. The field-free energy
in this case is E0 = −1.0963, which is closer to the pure
Coulomb case. To obtain the converged SS eigenvalue E for
such a sharp potential, the density of DVR quadrature points
near the nuclei in our numerical scheme must be essentially
increased, so the calculations become more time-consuming.
We restrict our calculations to the parallel geometry with β =
0◦. The results are shown in the top and middle panels in the
left column in Fig. 2. They look similar to the corresponding
results for ε = 0.09; the main difference is a shift of the energy
E that is almost uniform in F which reproduces the shift
of E0.

Some accurate results for the energy and ionization rate of
the 1sσ state of the pure Coulomb H+

2 in a static electric field
obtained by different methods are available in the literature

[23–25]. Unfortunately, most of them are available only in
graphical form; only several numerical values are given in
Ref. [23]. To compare with these results, we have done calcu-
lations for R = 6 with ε = 0.0009. Our value of the ionization
rate for F = 0.0533 and β = 0◦ is � = 7.12 × 10−6, which
is slightly larger than the result � = 5.69 × 10−6 reported
in [23]. Given the very rapid variation of � as a function
of F in the tunneling regime, the two results essentially
agree with each other. Their difference can be explained by
a smaller value of the binding energy |E0| resulting from
a nonzero value of the softening parameter ε in the present
calculations.

Figure 3 presents the energy and ionization rate for
the 1sσ state calculated with R = 2 and ε = 0.09, as in
Fig. 2, now as functions of the orientation angle β for two
representative values of the field in tunneling (F = 0.06) and
overbarrier (F = 0.2) regimes. In the left panel, the orientation
dependence of the energy E is shown. Perturbation theory
perfectly reproduces the exact results for the weaker field,
which is expectable. But even for the stronger field in the
overbarrier regime, the dependence of the exact E on β follows
the prediction of Eq. (49), with a shift that is almost uniform
in β. Thus perturbation theory works better than would be
expected. Since in the present case αx ′ < αz′ , the energy
monotonically grows as β grows from 0◦ to 90◦ for a fixed
F . In the right panel in Fig. 3, we plot the ionization rate �
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FIG. 3. (Color online) Energy E and normalized ionization rate
�/W00(F ) for the 1sσ state of H+

2 with R = 2 and ε = 0.09 as
functions of the orientation angle β for two representative values of
the field in tunneling (F = 0.06) and overbarrier (F = 0.2) regimes.
Solid (black) lines: exact results. Note that for F = 0.2 the results
in the right panel are multiplied by 4. Dashed (red) lines for E and
�: results of perturbation theory and asymptotic theory, respectively.
For F = 0.06, dashed and solid lines in the left panel cannot be
distinguished at the scale of the figure.

divided by the field-dependent factor W00(F ) for the dominant
ionization channel defined by Eq. (60). According to the
asymptotic theory, in the weak-field limit this ratio is given by
the structure factor |g00(β)|2 plotted by the dashed (red) line.
We note that this factor for the present soft-core model with
ε = 0.09 is about 50% smaller than that for the pure Coulomb
case [16]. For the weaker field, the shape of the orientation
dependence of the exact results is indeed close to that of
|g00(β)|2, although the magnitude differs by a factor of 0.7,
which complies with the values of �/�as for F = 0.06 shown
in Fig. 2. This confirms the factorization of the leading-order
term in Eq. (58) and indicates that the correction term only
weakly depends on β. For the stronger field, the dependence
of the ratio �/W00(F ) on β becomes flatter and its magnitude
essentially differs from the predictions of Eq. (58). In both
cases, the ionization rate has a maximum at β = 0◦; i.e., it
is easier to ionize the molecule when it is parallel to the
field.

B. Excited 2 pπ± states

We now consider 2pπ states of the soft-core H+
2 with R = 2

and ε = 0.09. As discussed in Sec. IV, for F = 0 there are two
degenerate 2pπ states, one of which, 2pπ+, is even and the
other, 2pπ−, is odd with respect to the reflection y → −y.
The wave functions of these states are illustrated in Fig. 1. Our
result for the field-free energy of these states is E0 = −0.4238,
which is, again, slightly higher than the corresponding energy
−0.428 772 for the pure Coulomb potential with ε = 0. The
static dipole polarizability in the direction of the x ′ axis for
the even and odd states is αx ′ = 46.83 and 9.61, respectively;
in both cases αz′ = 11.70. For the even state at β �= 0◦, the
azimuthal quantum number of the dominant ionization channel
is m = 0 and the critical field is Fc ≈ 0.029. For the even state
at β = 0◦ and odd state at any β, the dominant channel is
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FIG. 4. (Color online) Energy E and ionization rate � for the
2pπ± states of H+

2 with R = 2 and ε = 0.09 as functions of
the electric field F for β = 0◦. Solid (black) lines for E and �:
exact results. Dashed (red) lines: results of perturbation theory and
asymptotic theory, respectively. Bottom panel: ratio of the exact to
the asymptotic results for �.

m = 1, since the integral in Eq. (59) vanishes for m = 0, and
the critical field is Fc ≈ 0.042.

Let us first discuss the parallel geometry with β = 0◦. In
this case, the states 2pπ+ and 2pπ− are related by a rotation
of 90◦ about the direction of the field (see Fig. 1). Since the
SS eigenvalue is not affected by such a rotation, the states
2pπ± remain degenerate for all values of F . The energy and
ionization rate of these states as functions of F for β = 0◦ are
shown in Fig. 4. The exact results are again compared with
the weak-field approximations. The dominant channel in the
present case is m = 1 and the critical field is Fc ≈ 0.042. The
situation is similar to that for the 1sσ state discussed above. In
the tunneling regime, F < Fc, perturbation theory works well
and the ratio �/�as approaches unity linearly as F decreases.
The curve in the bottom panel is not continued to smaller
F for the reason explained above. In the overbarrier regime,
F > Fc, we observe a large deviation of the exact results from
the weak-field approximations, which is to be expected.

Figure 5 presents the results for the even 2pπ+ state. The
dependence of E and � on F for three representative nonzero
values of β is shown. The dominant channel in this case is
m = 0 and the critical field is Fc ≈ 0.029. The results for
β = 60◦ and 90◦ are similar to those shown in Figs. 2 and 4.
The ratio �/�as exhibits a typical behavior: it approaches unity
from below linearly as F decreases. However, the situation
for β = 30◦ in the bottom panel is different. In this case,
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FIG. 5. (Color online) Energy E and ionization rate � for the even 2pπ+ state of H+
2 with R = 2 and ε = 0.09 as functions of the electric

field F for three representative orientation angles β. Solid (black) lines for E and �: exact results. Dashed (red) lines: results of perturbation
theory and asymptotic theory, respectively. Bottom panels: ratio of the exact to the asymptotic results for �.

the ratio �/�as apparently crosses unity somewhere near
F = 0.01. Such a difference in the behavior of �/�as is
explained by the contribution from the channel with m = 1,
which is not included in the present results for �as. According
to Eq. (62), the ratio �/�as should reach a maximum and then
approach unity, now from above, linearly in F as F decreases
further. Unfortunately, we cannot check this prediction of the
asymptotic theory because we cannot continue the curve to
smaller F . The difference in the behavior of �/�as should
reveal itself for sufficiently small β, smaller than the maximum
value of βc in the tunneling regime. A similar behavior was
found for the excited 2pσ state of HeH2+ (see Fig. 6 in
Ref. [9]), although the reason in this case is different.

Figure 6 presents the energy and ionization rate for the same
state 2pπ+ as in Fig. 5, now as functions of the orientation
angle β for several representative values of the field. In the
left panel, we observe a good agreement with the results of
perturbation theory. In contrast to the 1sσ state (see Fig. 3), the
energy goes down as β grows for a fixed F , since in the present
case αx ′ < αz′ . A general trend shown in the right panel is that
the ionization rate for β = 90◦ is higher than that for β = 0◦
for the same F . This agrees with the fact that the structure
factor |g00(β)|2 shown by the dashed (black) line turns 0 at
β = 0◦. The exact ionization rates are not 0 at β = 0◦, but
their values are suppressed by an additional power of F in the
field-dependent factor (60) for the dominant ionization channel
m = 1 at β = 0◦. A more careful inspection of Fig. 6 shows
that the ionization rate has a maximum at some intermediate
value of β. For example, for F = 0.03 the maximum is located

at β = 30◦. Its position moves toward larger β as F decreases
and approaches 90◦ in the limit F → 0, and simultaneously the
value of �/W00(F ) at the maximum grows, so the exact results
approach the prediction of the asymptotic theory. We note that
a maximum in the orientation dependence of � at smaller
angles was also observed in the ionization yield produced
by an intense short laser pulse obtained by solving the time-
dependent Schrödinger equation [40].
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FIG. 6. (Color online) Energy E and normalized ionization rate
�/W00(F ) for the even 2pπ+ state of H+

2 with R = 2 and ε = 0.09
as functions of the orientation angle β for four representative values
of the field F . Solid lines: exact results. Dashed lines in left and
right panels: results of perturbation theory and asymptotic theory,
respectively.
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FIG. 7. (Color online) Same as Fig. 5, but for the odd 2pπ− state.

Figures 7 and 8 present similar results for the odd 2pπ−
state. The dominant channel in this case is m = 1 and the
critical field is Fc ≈ 0.042. In the tunneling regime, F < Fc,
the weak-field approximations work well again. The ratio
�/�as approaches unity linearly as F decreases, since the
channel m = 1 remains dominant for all values of β, including
β = 0◦. We note that both the energy and the ionization rate
only weakly depend on β for a fixed F , indicating that this
state is almost axially symmetric about the y ′ axis.

Summarizing the discussion of these illustrative calcula-
tions, a good agreement between the exact and the approximate
results in the deep tunneling regime F � Fc confirms the
consistency and accuracy of our method for solving Eq. (1). On
the other hand, comparison of the results for F ∼ Fc clarifies
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FIG. 8. (Color online) Same as Fig. 6, but for the odd 2pπ− state.

the regions of applicability of perturbation theory for E and
the weak-field asymptotic theory [9] for �.

VI. CONCLUSION

The present study continues our previous work on the SS
approach to the theory of ionization of atoms and molecules by
a static electric field [8,9]. The implementation of the method
of adiabatic expansion in parabolic coordinates is extended to
a general class of soft-core potentials without any symmetry.
This opens the possibility of calculating SSs in the single-
active-electron approximation for polyatomic molecules that
are arbitrarily oriented with respect to the field. The method is
illustrated by calculations of energies and ionization rates of
the 1sσ and 2pπ states of H+

2 . While for weak fields in the
deep tunneling regime F � Fc the accurate results for E and
� obtained by solving Eq. (1) agree well with the predictions
of perturbation theory [10] and weak-field asymptotic theory
[9], respectively, for stronger fields F � Fc the weak-field
approximations fail and the present computational approach
becomes indispensable. Since accurate field- and orientation-
dependent ionization rates of molecules are of great interest
for the analysis of current experiments, we believe that the
present approach will find applications.

In this paper we have discussed only the calculation of
the complex Siegert eigenvalue (20). For implementing the
adiabatic theory [1,2] one also needs the properly normalized
Siegert eigenfunction and the coefficients fν in Eq. (18)
defining the amplitude of the TMD of the ionized electrons
[8,9]. TheTMDs for atoms were calculated and discussed in
Ref. [8]. An extension of the present computational method in
this direction for molecules is a subject for future studies.
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