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Single photoionization of Be and HF using the multiconfiguration time-dependent
Hartree-Fock method
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A recently developed ab initio implementation of the muticonfiguration time-dependent Hartree Fock
(MCTDHF) method is used to calculate valence and core photoionization cross sections of the Be atom and
HF molecule in the Born-Oppenheimer approximation. The cross sections are extracted from the dynamics
following excitation by a single subfemtosecond laser pulse. We compare with previously published results and
those from time-independent complex Kohn scattering calculations and find that the MCTDHF method calculates
both the magnitude of the cross section and the line shapes of the resonant peaks to good accuracy, particularly for
valence photoionization. These calculations demonstrate a methodology immediately applicable to calculating
multiphoton and ultrafast dynamics.
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I. INTRODUCTION

The muticonfiguration time-dependent Hartree-Fock
(MCTDHF) method [1–18] has received considerable at-
tention as a method for calculating electronically excited
and nonlinear dynamics relevant to ultrafast experiments
using ultraviolet and x-ray pulses. The ansatz of a time-
dependent linear combination of time-dependent basis func-
tions is a straightforward generalization of time-dependent
configuration interaction (CI) and may be applied to any
many-body quantum system. Known as the MCTDH method
for systems without permutation symmetry, it has been
fruitfully applied to problems of nuclear dynamics via the
numerical implementation by Beck and co-workers [19,20],
whose successful efforts include treatments of pyrazine
including a conical intersection and with 24 degrees of
freedom [21,22] as well as a full-dimensional calculation
of the vibrational spectrum of H5O2

+ [23–25] and that of
malonaldehyde including tunneling splitting [26–28]. There
are numerous other examples of successful calculations using
the MCTDH method and MCTDH method version for bosons
(MCTDHB) [29,30].

Despite the success of implementations of this idea for
nuclear dynamics, dating back to the early 1990s [31], the
application of the MCTDHF method to the electronic problem
has proven more difficult. If the ionization continuum can be
ignored, considerable progress can be made using the basis
set methods of quantum chemistry [10–15], but treating the
electronic continuum simultaneously with bound electronic
motion requires considerably more effort. A one-dimensional
treatment of photoionization with the MCTDHF method has
been demonstrated in Refs. [3,4]. The H2 molecule has been
treated in full dimensionality using grid methods in the
MCTDHF method and an absorptive term in the Hamiltonian
to eliminate the outgoing flux [8,9].

Without the ability to treat both the ionization contin-
uum and correlated electron dynamics in full dimensional-
ity for many-electron atoms and molecules, the MCTDHF
idea cannot treat the dynamics of an entire generation of
ultrafast experiments in which the energy distributions of

photoelectrons ejected by probe pulses is the key experi-
mental observable that provides a window on both electronic
and nuclear dynamics on their intrinsic time scales. It has
therefore been essential to develop an implementation of the
MCTDHF method that can treat photoionization accurately—
including resonance phenomena—and that is the subject of this
study.

We have developed an implementation of the MCTDHF
approach for ultrafast and nonlinear dynamics in atoms and
diatomic molecules, designed to overcome the main barriers
to the calculation of an accurate solution of the electronic
nonrelativistic time-dependent Schrödinger equation for a
molecule subject to arbitrary laser pulses. The details of the
method have been described at length previously [32].

(i) It represents the ionization continuum rigorously via the
method of complex coordinate scaling [33–38].

(ii) It is an all-active-electron method in which excitations
are allowed from all orbitals and all orbitals are time depen-
dent.

(iii) It employs a sparse matrix representation of the Hamil-
tonian using a localized interpolating polynomial [discrete
variable representation (DVR)] basis [39–41] implemented in
finite elements [42,43]). In contrast to those among a Gaussian
orbital basis, the two-electron matrix elements are extremely
sparse, a property that is crucial for efficient time propagation.
The DVR basis is built on a product grid of quadrature
points.

(iv) It treats atomic problems in spherical polar coordinates
and diatomics in prolate spheroidal coordinates.

(v) It efficiently and stably integrates the nonlinear, unitary,
and stiff differential equations of motions of the coupled orbital
and configuration coefficients via a generalization of the mean-
field method of Beck et al. [20].

(vi) It includes a rigorous treatment of nonadiabatic
dynamics in diatomics, though this capability is not employed
in the calculations presented here.

In order to demonstrate the capabilities of this imple-
mentation of the MCTDHF method, we should begin by
calculating first-order quantities. Here we apply the method
to the calculation of photoionization cross sections of Be and
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HF. A single subfemtosecond laser pulse is used to calculate
the cross section over the entire range of photon energies. In
the case of the molecular example we perform calculations
at a fixed internuclear distance and thus the autoionizing
resonances in this system result in many features in the cross
section that are not averaged out or modified by nuclear motion.
The results are compared with prior experiment and theory
and to results calculated with the complex Kohn variational
method [44–46], which for HF are also performed at a fixed
internuclear separation and should exhibit the same resonance
features as the MCTDHF calculations.

II. THE MCTDHF METHOD

The MCTDHF ansatz describes the wave function as a
time-dependent linear combination of Slater determinants
comprised of time-dependent orbitals

|�(t)〉 =
∑

a

Aa(t)|�na(t)〉 (1)

in which each determinant a is specified by the vector �na and
is defined by

|�na(t)〉 = A
[|φna1 (t)〉 · · · ∣∣φnaN

(t)〉]. (2)

The time-dependent orbitals |φn(t)〉 are spin restricted and
expanded in the underlying DVR basis defined on an underly-
ing spherical polar or prolate spheroidal grid as described in
Ref. [32].

Calculating photoionization cross sections is a particularly
difficult test of the MCTDHF method. The MCTDHF working
equations are arrived at by application of the Dirac-Frenkel
variational principle to the MCTDHF wave-function ansatz.
The resulting equations minimize the norm of the error in
the time derivative for all time. Because the proportion of the
wave function that is ionized is small, most of the variational
flexibility in the trial wave function is engaged in accurately
describing the time dependence of the initial state. This
argument raises the possibility that the results of a practical
MCTDHF photoionization calculation would depend upon
the nature of the applied pulse. However, as demonstrated
in Ref. [32], the calculated photoionization cross sections
are consistent (graphically indistinguishable) over a range of
laser intensities, from approximately 109 W/cm2 to at least
1013 W/cm2, and over a wide range of pulse frequencies and
durations. They are similarly converged with respect to the
mean-field time step. We report results using only linearly
polarized laser pulses in the length gauge. Results computed in
the velocity gauge are indistinguishable, as expected given the
fact that the stationary quantity in the Dirac-Frenkel variational
principle 〈�|i∂/∂t − H (t)|�〉 is invariant with respect to the
gauge transformation, as long as the calculation is converged
with respect to the primitive basis.

In Ref. [32] we demonstrated a method wherein we solve
only for the change in the wave function due to the pulse
and not the entire wave function including the initial state.
It was very effective in reducing the number of orbitals
required to calculate the photoionization cross section of H2,
but presently suffers from numerical instability. This technique
is not employed presently, but we expect that it would yield
more accurate cross sections for these molecules with fewer

orbitals as well. In particular, our previous calculations on
H2 indicated that the method accurately reproduces ionization
potentials with far fewer orbitals. The current results, however,
permit an evaluation of the unelaborated MCTDHF method.

Full CI is employed within the electronic space and
therefore the description of the calculations requires only
the specification of the primitive basis and the number and
symmetry labels (σ , πu, p, d, etc.) appropriate to the orbitals
before the pulse is applied. For atoms or diatoms oriented
parallel to the polarization direction, there is no loss of
generality in restricting the electronic angular momentum
number M of each orbital. For diatoms not oriented parallel
to the polarization direction, the M quantum number is not
restricted and a sum over all included M values is included in
the representation of each orbital, giving fully time-dependent
three-dimensional orbitals. The representation in terms of the
Slater determinants of these orbitals is periodically projected
onto spin eigenfunctions in order to eliminate numerical
contamination by other spin states.

We begin with a representation of the initial ground state
including the most relevant (highest-occupied) natural orbitals.
We propagate this wave function, applying a few-cycle pulse
(0.5 fs in most of the applications here). Subsequent to the pulse
we must propagate for 5–100 fs in order to accumulate the
Fourier transforms for the cross-section calculation. The vast
majority of the computational time is therefore spent after the
pulse is finished. These long propagation times are at present
necessary to resolve sharp features of the photoionization
cross sections. For other applications, such as for transitions
between bound states, these long propagation times would not
be necessary. In practice, the calculations described here take
1–30 days on a single processor computer. The rate limiting
step is the orbital propagation, not the propagation of the CI
coefficients in Eq. (1).

The ionization continuum is represented using exterior
complex scaling (ECS) [33–38]. This is a formally exact
analytic technique that enforces outgoing boundary conditions
on the wave function. It yields a non-Hermitian Hamiltonian
with negative-definite imaginary part that absorbs outgoing
flux in the asymptotic region. It permits a rigorous evaluation
of cross sections via the method described in Ref. [32], which
follows the implementation for complex absorbing potentials
described in Ref. [47]. In the present calculations we include
projection on final states of the cation in order to calculate
partial cross sections (and therefore electron kinetic-energy
distributions). The exact expression for the outgoing flux in
cation channel α at energy E, fα(E), is

fα(E) =
∫ ∞

0
dt

∫ ∞

0
dt ′eiE(t ′−t)

×〈�(t)|ψα][ψα|i(Ĥ − Ĥ †)|ψα][ψα|�(t ′)〉, (3)

where angular brackets denote integration over all N electrons
and square brackets denote N − 1. We employ the approxima-
tion

[ψα|i(Ĥ − Ĥ †)|ψα] ≈ Q̂

≡ 2 Im

[
Tel +

{ 1
2|�rN − �R1| + 1

2|�rN − �R2| (diatom)

1
rN

(atom)

]
, (4)
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where Tel is the kinetic-energy operator for the N th electron.
The non-Hermiticity of the Hamiltonian results only from its
representation on the ECS grid and arises primarily from the
kinetic energy. This approximation provides a small correction
due to the long-range Coulomb potential experienced by the
outgoing electron without involving the coordinates of all the
other electrons.

We therefore calculate the Dyson orbitals χα(t)

χα(t) =
∫

d �q1 · · · d �qN−1ψα(�q1 · · · �qN−1)∗�(t)(�q1 · · · �qN )

(5)

by biorthogonalizing the orbitals as in Ref. [32] and calculate
the flux via

fα(E) =
∫ ∞

0
dt

∫ ∞

0
dt ′eiE(t ′−t)〈χα(t)|Q̂|χα(t ′)〉. (6)

In tests of this method, it compared with the exact result to
within three or four figures and is much faster. Whereas the
flux calculations without approximation (total and projected)
may take over a week on a single processor, the projected
flux calculations using the above approximation require about
an hour at most. The rate limiting step in either case is the
biorthogonalization required to construct matrix elements or
Dyson orbitals.

III. VALENCE AND CORE PHOTOIONIZATION
OF BERYLLIUM

A. Valence photoionization

Valence photoionization of beryllium has been the subject
of many studies, both computational [48–63] and experimental
[64–66]. The threshold for photoionization into the ground
Be+ (1s22s 2S) cation channel is 9.32 eV; the 2p 2P , 3s 2S,
3p 2P , 3d 2D, and 4s 2S channels open at 13.28, 20.26,
21.28, 21.48, and 23.68 eV, respectively, and each supports
a Rydberg series that contributes a dense series of peaks to the
photoionization cross section.

Results are shown as calculated with three, six, and ten
orbitals. We start with three orbitals, all intially s orbitals
before the pulse; for the six-orbital calculations a p shell is
added; for ten an additional s orbital and p shell are added.
These calculations have 9, 81, and 651 Slater determinants
and a singlet configuration space of dimension 6, 37, and 259,
respectively. The pulse waveform is shown in Fig. 1 together
with its spectral density. We use an angular DVR grid of five
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FIG. 1. Pulse used in Be valence photoionization calculations:
left, pulse waveform; right, spectral density. The intensity is
1014 W cm−2.
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FIG. 2. (Color online) Beryllium valence photoionization cross
section below the 2p cation threshold calculated with ten, six, and
three orbitals as described in the text and the experimental results of
Ref. [64], as digitized from that reference. The experimental values
for the 2s and 2p ionization thresholds are marked with arrows.

points in θ and a radial grid with fifteen grid points per finite
element. We use sixteen finite elements, the first of length 1.5a0

providing a dense grid to represent the 1s orbital and orbital
cusps, the subsequent twelve of length 8a0, and three final
elements of length 16a0, 32a0, and 64a0. Exterior complex
scaling is applied starting at the twelfth element, with a scaling
angle of 0.25 rad. To accumulate the Fourier transform the
wave function is propagated for 2000 a.u. after the pulse
(approximately 50 fs), except for the ten-orbital calculation,
for which it is propagated for 1400 a.u.

The computed cross sections below the second ionization
threshold, 2p, into the ground 2s channel of the Be+ ion
display the first members of the autoionizing series converging
to that threshold. The results in this energy region are compared
with the experimental results of Ref. [64] in Fig. 2. The
three-orbital results yield effective thresholds significantly
displaced from their proper energies, while the six- and
ten-orbital results reproduce the cation thresholds well. The
first ionization potentials calculated directly by obtaining the
ground and cation ground states via imaginary time relaxation
are 9.21, 9.70, and 8.23 eV for the ten-, six-, and three-orbital
treatments, respectively, compared with the experimental value
of 9.32 eV. The errors in these ionization potentials are
reflected in the apparent thresholds in Fig. 2, but in every
calculation the series of autoionizing resonances is reproduced
with similar widths and line shapes. The convergence of the
photoionization cross section with respect to the total time
of propagation is shown in Fig. 3. As would be expected,
long propagation times are required to resolve higher members
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FIG. 3. (Color online) Convergence of the six-orbital beryllium
valence photoionization cross section with respect to the total time of
propagation, in a.u.
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FIG. 4. (Color online) Excitation photoionization cross sections
of beryllium calculated with six orbitals, compared with the random-
phase approximation and Tamm-Dancoff theoretical results of Refs.
[55,60].

of the Rydberg autoionizing series converging to the second
threshold.

Results are shown for excitation photoionization using six
orbitals in Fig. 4 and for total photoionization using ten orbitals
in Fig. 5. The Rydberg series converging to the thresholds
above the first, 2s 2S, are not reproduced in the MCTDHF
calculations; more orbitals are clearly required within the
conventional MCTDHF framework. However, as shown in
Fig. 4, the results obtained above the 2p 2P threshold agree
well with the multiconfiguration random-phase and Tamm-
Dancoff approximations of Refs. [55,60], respectively. As
shown in Fig. 5, the ten-orbital calculation produces features
between the 3s 2S and 4s 2S thresholds reminiscent of Rydberg
series, but these features are not converged.

B. Core photoionization

Core (1s) photoionization of beryllium has been studied
both computationally [67–71] and experimentally [72–74]. We
study it here using three, six, seven, and ten orbitals, again
performing full configuration interaction in all calculations.
The seven-orbital treatment has an additional s orbital relative
to that with six orbitals, but otherwise is the same as the
valence calculations; the seven-orbital calculation has 171
Slater determinants and a singlet space of dimension 76. We
use an angular grid of five points in θ and a radial grid
with fifteen grid points per finite element. We employ sixteen
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FIG. 5. Beryllium valence photoionization total cross section
calculated with ten orbitals. The experimental values for the cation
thresholds are marked with arrows.
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FIG. 6. Pulse used in Be core photoionization calculations: left,
pulse waveform; right, spectral density. The intensity is 1014 W cm−2.

elements with the first 1.5a0 long, the next twelve 6a0 long,
then one each 12a0, 24a0, and 48a0 long, with complex scaling
starting at the twelfth element at an angle of 0.25 rad. In each
case the cross sections were extracted from the single pulse
shown in Fig. 6. To accumulate the Fourier transform the wave
function was propagated for 1400 a.u. (approximately 35 fs)
and additionally for 4000 a.u. for the six-orbital calculation,
after the pulse.

In Fig. 7 results are shown for core hole photoionization
with three, six, seven, and ten orbitals. It is clear that the
cross section has not converged with ten orbitals, but that
nonetheless the calculation is successful in reproducing the
basic features of the cross section. Literature values for the
locations of the 1s12s22p and 1s12s23p1 P autoionizing states
and of the 1s12s2 2SK edge are marked in the figure and lie at
115.47, 121.40, and 123.63 eV, respectively [75]. These three
features are reproduced in the calculated cross sections, though
their locations are only correct to within a few eV.

All the calculations shown in Fig. 7 reproduce the promi-
nent peak corresponding to the 1s → 2p autoionizing state,
with the larger calculations obtaining its location to within
approximately 1 eV; the calculations yield a K edge at
approximately 127 eV, more than 3.5 eV above the physical
threshold. For the three- and six-orbital calculations, the cross
section otherwise consists of a sharp edge and monotonically
decreasing and featureless result above it. The seven- and
ten-orbital calculations include enough variational flexibility
to reproduce the 1s−13p peak below the K edge, though
its energy is similarly approximately 3.5 eV too high. The
inclusion of another initial s orbital, in the seven-orbital
calculation, alters the result above the edge dramatically,
building in a minimum in the cross section around 132 eV.
Results from an eleven-orbital calculation with an additional
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FIG. 7. (Color online) Beryllium core hole photoionization result
for three, six, seven, and ten orbitals as described in the text.
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s orbital are not shown and were very close to the ten-orbital
results.

The results with ten orbitals are compared with the
experiment of Jannitti et al. [72] and the calculation of VoKy
et al. [67] in Fig. 8. In the left panel the calculation is compared
with the experiment. There is a fortuitous exact agreement
in the location of the prominent 1s12s22p 1P autoionizing
resonance. Otherwise there is little agreement between the
calculation and the experiment, except in the magnitude in the
featureless region, which is reproduced accurately. In the right
panel, the calculation is shown relative to the prior theory,
shifted such that the K edge agrees with the literature value.
Shifting the MCTDHF result makes the agreement in the
1s−12p peak location worse, but shows the correspondence
between the prominent minimum calculated presently and
the thick forest of resonance peaks in the prior calculation in the
region of 126–129 eV and accurately reproduces the position
of 1s−13p. The experiment of Jannitti et al. [72] does indicate
that there is a drop in the cross section at approximately
125–126 eV.

C. Auger decay

The resonance peaks in the core hole photoionization
spectrum below the 1s−1 edge, seen for instance in Fig. 8,
correspond to metastable electronic states of the neutral
that emit the photoelectron via Auger decay, a two-electron
transition in which the 1s orbital is filled. It is not immediately
obvious that the MCTDHF wave function can accurately
describe this decay. Nonetheless, a Breit-Wigner fit of the
1s−12p resonance yields a width of 35.6 meV for the six-
orbital calculation (which was propagated to 100 fs, enabling
the fit). This result compares well with a prior theoretical result
of 37 meV [76] and to an experimental result of 33–38 meV
(1.2 or 1.4 mhartree) [77], confirming that the MCTDHF
method accurately describes this process.

IV. PHOTOIONIZATION OF THE HF MOLECULE

We calculate photoionization of the HF molecule using
a bond length of 1.733a0. To assess the accuracy of these
fixed-nuclei calculations, the details of which are not directly
comparable to experiment due to nuclear motion, the cal-
culated MCTDHF cross sections are compared with those
calculated using the complex Kohn method [44–46]. These
are two completely different approaches to the calculation of
photoionization cross sections. The complex Kohn method
employs a variational principle for the T matrix and a
single-particle basis of Gaussians and numerical continuum
functions, in which the N -electron scattering wave function
is expanded via close coupling among explicit (approximate)
(N − 1)-electron cation states. The MCTDHF method treats
both the N - and (N − 1)-electron states implicitly in the
expansion in Eq. (1).

Agreement between these two approaches is strong evi-
dence of the accuracy of both. The reproduction of narrow
autoionizing features in the photoionization cross section is
a particularly stringent test of the MCTDHF method since
those features must be computed via the Fourier transform of

TABLE I. Gaussian exponents of the scattering orbital basis used
for complex Kohn scattering calculations obtained via the method
of Ref. [78], which are capable of describing He Rydberg states to
within a few wave numbers up to n = 4.

αs αp αd

1.05355602 1.58024691 0.500000000
0.341506727 0.266825024 0.098765432
0.098765432 0.098765432 0.031250000
0.031250000 0.044582625 0.012800000
0.012800000 0.022549196 0.006172839
0.006172839 0.012800000 0.002528395
0.002528395 0.006172839 0.002528395

the results of long propagations of the time-dependent wave
function.

A. Computational methodology

1. Complex Kohn scattering calculations

In order to reproduce the Rydberg series converging to
excited cation thresholds in the complex Kohn calculation,
we include a scattering orbital basis that was constructed
with the method of Ref. [78] to accurately represent Rydberg
states of helium to within a few wave numbers up to n = 4.
The exponents used for the uncontracted functions are listed
in Table I. Partial wave scattering channels up to l = 2 are
included.

The scattering basis specified above is combined with
Dunning’s aug-cc-pVTZ basis [79] to make the single-particle
Gaussian basis of the complex Kohn calculation. The Dunning
basis is modified by removing the d and f orbitals from the
hydrogen and fluorine centers, uncontracting the hydrogen
s functions, and adding to fluorine two s functions with
exponents 24 and 8 and two sets of p functions with exponents
25 and 9. This gives basis sets of size [6s,3p] and [7s,6p,3d]
for hydrogen and fluorine, respectively.

The apparent channel thresholds calculated within the
MCTDHF method are in error by fractions of an eV. The
complex Kohn scattering calculation requires careful bal-
ancing of the molecular orbital basis, which must represent
both the neutral initial state and the cation final states, to
produce accurate channel thresholds. To facilitate comparison,
the orbital basis used in the complex Kohn calculation is
tuned such that the channel thresholds agree with those in the
MCTDHF calculation. This task is performed by using a state-
averaged multiconfiguration self-consistent field (MCSCF)
calculation in which the molecular orbitals minimize the
weighted average energy of the ground neutral initial state
and the N -included cation states. The N -independent weight
fractions are determined by requiring the N channel thresholds
to match. For the MCSCF we employ the Columbus quantum
chemistry suite [80–84].

2. The finite-element DVR basis in prolate spheroidal coordinates
for MCTDHF calculations

The primitive interpolating polynomial bases employed in
the MCTDHF calculations are quite widely spaced. We find
that the photoionization results are converged to graphical
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FIG. 8. (Color online) Comparison of the calculated beryllium core hole photoionization cross section with ten orbitals with the theoretical
results of Ref. [67] (right) and the experimental results of Ref. [72] (left). The comparison with theory is shown shifted by 4 eV to make the
apparent K edge correspond to the literature value of 123.35 eV.

accuracy with a primitive basis for which the energy of the
ground state is not converged (but for which the excitation
energies are converged). The product DVR basis is imple-
mented in finite elements in the prolate spheroidal coordinates,
1 � ξ � ξmax and −1 � η � 1 multiplied by exp(iMφ) for
the dependence on the azimuthal angle. The calculations on
HF use a DVR basis with eight points in a single element in η.
We use 15 finite elements in ξ , the first of size 2, twelve of 8,
and one each of 16 and 32 with 15 DVR grid points per element
and with exterior complex scaling starting at the ninth element
(at ξ = 59). The first five elements are used in the calculation
of the ground state. The maximum value of |M|, Mmax, is 1
and 2 for parallel and perpendicular polarization calculations,
respectively. This basis gives an eight-orbital ground-state
energy of −99.778 hartree. In comparison, with 15 points
in η and 21 per element in ξ the energy of the eight-orbital
ground state is −100.172 hartree.

B. The MCTDHF calculations of valence photoionization

We performed MCTDHF calculations on valence photoion-
ization of HF using nine orbitals including one π and two σ

in addition to the five occupied Hartree-Fock orbitals, with
a full CI among the orbitals, giving 15 876 Slater determi-
nants representing 5292 singlet spin adapted configurations
in perpendicular polarization or 824 representing 296 with
parallel polarization. We employ the pulse in Fig. 9. The wave

-0.025

 0

 0.025

 0  5  10  15  20

E
(t

) 
(a

.u
.)

 

Time (a.u.)

 5  10  15  20  25  30

Energy (eV)

FIG. 9. Pulse used in HF valence photoionization calculations:
left, pulse waveform; right, spectral density. The intensity is
1013 W cm−2.

function is propagated for 2000 a.u. subsequent to the pulse to
accumulate the Fourier transform.

In Fig. 10 the present results are compared with those from
a complex Kohn scattering calculation with nine orbitals. For
this calculation we define a reference space in which the
1σ and 2σ orbitals are doubly occupied and the remaining
electrons are distributed among six orbitals. This yields 175
and 210 configurations for the ground and cation electronic
states (spatial symmetry is not used to reduce the number of
configurations). To obtain the orbitals MCSCF weights of 14
and 1 are used for the ground neutral and the 2 cation states,
respectively. In the combined aug-cc-pVTZ and scattering
orbital Gaussian basis, this yields corresponding energies of
−100.1581, −99.5636, and −99.4089 hartree and ionization
potentials of 16.177 and 20.385 eV, which are the channel
thresholds in the complex Kohn calculation. These may be
compared with experimental thresholds of 16.12 and 19.89 eV
[85]. The complex Kohn calculation is not converged with
respect to the primitive basis below approximately 17.5 eV.

In Fig. 10 we see that below the 2 cation threshold, the
agreement between the calculations is remarkable, especially
with parallel polarization. The Fano line shapes of the reso-
nances and the magnitude of the cross section are in very close
agreement. Above the 2 threshold, the magnitude of the 2�

cross section is larger in the MCTDHF calculation in parallel
polarization and that of the 2 is larger in perpendicular
polarization, but otherwise the magnitudes agree.

We also performed an eight-orbital MCTDHF calculation
(one fewer than above) and a nine-orbital complex Kohn
scattering calculation including fewer configurations than in
the eight-orbital complex Kohn calculation above, which are
not shown. The agreement in the line shapes of the 2� Rydberg
series (seen with perpendicular polarization) are better using
the nine-orbital MCTDHF calculation above than that with
eight orbitals. In contrast, the 2 resonance line shapes are
converged with eight MCTDHF orbitals. The ninth MCTDHF
orbital also has the effect of lowering the apparent threshold
of the 2 channel in the MCTDHF calculation. With eight
orbitals it is approximately 0.4 eV higher. The nine-orbital
complex Kohn calculation with fewer configurations than
the eight-orbital one produced a parallel polarization cross
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using MCTDHF eigenfunctions for neutral and cation states with the same orbital basis are marked with downward pointing arrows.

section below the 2 threshold significantly lower than that
obtained from the other calculations. Of all these calculations
the closest comparison between MCTDHF and complex Kohn
calculations of the photoionization cross sections is that shown
in Fig. 10.

C. The 2σ photoionization

Inner-shell photoionization of the HF 2σ orbital has been
studied previously both theoretically [86,87] and experimen-
tally [88]. To calculate photoionization in the vicinity of
the 2σ−1 (B 2) state the same primitive basis as for the
valence photoionization calculations above was used, with
nine orbitals, and the pulse shown in Fig. 11. For the complex
Kohn scattering calculation the reference space includes all
single, double, and triple excitations from the Hartree-Fock
reference, with nine orbitals, yielding 470 configurations for
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FIG. 11. Pulse used in the HF 2σ photoionization calculations:
left, pulse waveform; right, spectral density. The intensity is
1013 W cm−2.

the cation and 466 for the neutral. The orbitals are optimized in
a MCSCF calculation in which the neutral and the cation 1π−1

(X 2�), 3σ−1 (A 2), and 2σ−1 (B 2) states have weights
100, 1, 1, 7, and 2. This calculation yields channel thresholds of
16.18, 20.03, and 41.2 eV, the latter of which may be compared
with a prior theoretical result of approximately 39 eV [86].
We were not able to adjust the orbitals of the complex Kohn
calculation to match the apparent threshold in the MCTDHF
calculation, which is too high, located at 42 eV and therefore,
in this case only, adjust the complex Kohn results by shifting
them 0.54 eV upward in energy.

The MCTDHF and complex Kohn scattering results are
compared in Fig. 12. The locations of the resonance peaks
are generally very well reproduced, as are some of the line
shapes. The partial cross sections into the 3σ−1 state are
in very good agreement, while for the 1π−1 state there are
significant but offsetting differences between the calculations
in the perpendicular and parallel photoionization cross sections
such that the total cross section averaged over orientations is
in good agreement. The cross sections to the 2σ−1 final state
are in very good agreement, considering the small branching
ratio into this channel.

We examine the resonance at 36 eV, 2σ−14σ 1, which
is well isolated and broad. The peak total cross section is
6.82 and 6.61 Mb and the resonance widths are 0.170 and
0.244 eV for the MCTDHF and complex Kohn calculations,
respectively. The background cross section is higher in the
MCTDHF calculation. The MCTDHF resonance peak is
nearly symmetric while the complex Kohn calculation has
a Fano asymmetry parameter of −7.07. For the MCTDHF
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calculation we obtain partial widths for the decay into
the 1π−1 (X 2�) and 3σ−1 (A 2) cation channels in the
ratio 1:0.437, while the ratio of the continuum background in
the two channels is 1:0.523. The complex Kohn calculation
gives the ratios 1:0.361 and 1:0.530, respectively, for those
quantities. Thus we see that while there is significant
disagreement in the widths, the magnitude of the cross
sections, and the resonance branching ratio, the ratio of the
continuum background in the two channels produced by the
two calculations is in close agreement.

D. Comparison to experiment

In Fig. 13 the total cross sections (averaged over ori-
entations, perpendicular and parallel polarization) for HF
photoionization calculated with the MCTDHF method and the
complex Kohn scattering method are presented and compared
with the experiment of Ref. [89]. The comparison with
experiment is quite favorable. The top left panel shows the total
photoionization cross section. Both complex Kohn and MCT-
DHF calculations are in good agreement with experiment,
but at higher energy it appears that the MCTDHF calculation
agrees better with the experiment, the complex Kohn result
being slightly too large. At low energy, the Born-Oppenheimer
results differ qualitatively from the experimental result due
to the thick series of Rydberg resonance peaks. In addition,
the 1π−1 and 3σ−1 experimental cross sections are higher
just above the latter threshold. However, the overall step in
the cross section due to the opening of the 3σ−1 channel is
well reproduced. The magnitudes of the cross sections into
the minor 2σ−1 channel calculated by the two methods are in
good agreement with each other and significantly above the
experimental result.

V. CONCLUSION

The calculations presented here demonstrate that the im-
plementation of the MCTDHF method originally described
in Ref. [32] can be used to calculate photoionization cross
sections for many-electron systems accurately. The calcu-
lations on hydrogen fluoride, with 30 quantum mechanical
electronic degrees of freedom, indicate that the MCTDHF
method for electrons may live up to the expectations following
the success of the MCTDH method [19] for vibrational degrees
of freedom. Details of the cross sections are reproduced

including the precise locations of and many if not all of the
line shapes of autoionizing resonances.

These developments open the door for the application of
this methodology to the accurate description of the coming
generation of nonlinear ultrafast experiments, for instance,
those using short UV and x-ray pulses as both a pump
and probe. In such experiments all the valence electrons
are active and may be excited or ionized, so simplified
single-active-electron approximations are simply insufficient
to describe the physics. The MCTDHF method provides an
all-electrons-active description. A critical part of the capability
demonstrated here is the projected flux formalism described
in Eqs. (3)–(6) that allows the calculation of the photoelectron
spectrum produced by a particular pulse sequence. Such
quantities are the direct observable in ultrafast experiments
and there is a crucial need for for ab initio predictions with
which to interpret those experiments.

There is still considerable room for improving the nu-
merical robustness of MCTDHF calculations that include
ionization. We anticipate that the convergence will improve
with a numerically stable implementation of the method for
calculating only the change in the wave function due to
a radiation pulse that we described and demonstrated for
photoionization of H2 in Ref. [32]. Other improvements would
aim to increase the number of orbitals that may be tractably
included in a MCTDHF calculation via the implementation
of frozen orbitals and restricted configuration spaces or alter-
natively via methods used in nuclear shell model calculations
[90] and recently developed for the MCTDH, MCTDHB, and
MCTDHF methods [91–93] that may handle large numbers of
configurations with full configuration interaction. The results
presented here also open the way for the calculation of
photoionization including nuclear motion in the MCTDHF
method as previously described [32].
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