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We consider the tunneling ionization of an electron, bound by a zero-range potential and a constant magnetic
field, under the influence of a monochromatic laser beam with elliptical polarization. The exact solution of the
Schrödinger equation and the Green’s function for an electron moving in an arbitrary electromagnetic wave and
crossed constant electric and magnetic fields are obtained. The exact expressions are found for the level shift and
width of the electron in a zero-range force field, a constant magnetic field, and a monochromatic electromagnetic
field. In the case of ionization of neutral atoms and positive ions, we also take into consideration the Coulomb
interaction of the emerging electron with the atomic or ionic core. The first-order contributions from the Stark
and Zeeman effects to the ionization rate are taken into account as well. The paper generalizes the results earlier
obtained by V. M. Rylyuk and J. Ortner [Phys. Rev. A 67, 013414 (2003)].
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I. INTRODUCTION

Over the past three decades, significant progress has been
made in the development of lasers capable of producing strong
pulses. In this regard, of unabated interest are the phenomena
related to interaction of high-intensity laser radiation with
atoms and ions [1,2]. Ionization is one of these effects
which characterizes the interaction of light with matter. The
basic concepts of the theory of ionization were developed
by Keldysh [3], who demonstrated that the tunneling effect
and the multiphoton ionization are two limiting cases of the
common process of nonlinear photoionization. The authors
of Refs. [4–7] developed a consistent quantum-mechanical
theory of ionization of a level bound by short-range forces
based on the replacement of the exact final-state wave function
with the Volkov wave function. The theory [4–7] is valid
for the case of low frequencies ω � |E0|/h̄ (|E0| being the
ionization potential of the level) and not-too-high electric
fields F � F0, where F is the magnitude of the perturbing
field and F0 is that of the inneratomic field. The indicated
authors employed the standard saddle-point method with a
quadratic expansion to calculate the ionization probability in
the tunnel regime, which is equivalent to the quasiclassical
approximation. This approach was further developed by Faisal
[8] and Reiss [9] (the latter author called it the strong-field
approximation). In the paper [10] a more general saddle-point
method was developed which makes it possible to extend the
validity region for the adiabatic approximation. The case of
strong electric fields at high frequencies may be described
within the framework of the high-frequency Floquet theory
(HFFT) [11]. Since the Volkov wave function does not behave
correctly near the origin of the binding potential, the use
of this function as the final-state wave function imposes
an upper limit on the electric-field magnitudes for which
the adiabatic approximation remains valid. The Coulomb
interaction between the emerging electron and the atomic core
was included in consideration in Refs. [12–15]. It was shown
in there that the Coulomb interaction leads to an increase of
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ionization rates. The questions considered above were also
expounded in reviews [16,17].

On the other hand, it is very useful to have exact methods for
calculating the decay rates. Such is the method of zero-range
potential [18], which was developed in parallel with the
adiabatic approach. The zero-range potential is an approximate
model for a negative ion. The effect of the zero-range potential
can be accounted for via the boundary condition on the wave
function at the origin of the force field. In the rest of space
the electron moves freely and its wave function is well known.
In the absence of electric and magnetic fields the boundary
condition yields a continuous energy spectrum for a free
electron motion and a single energy level located below the
continuum and describing the only bound state possible in the
system. In the presence of an electric field the lower boundary
of the continuum moves to minus infinity. As a result, the
bound-state level is located inside the continuum. The level
energy moves away from the real axis in the complex plane,
its imaginary part describing the decay probability of the bound
state [18].

The zero-range potential method was further used to find the
bound-state energy of a charged particle in a zero-range field
and a constant magnetic field [19]. It was also used to calculate
the level shift and width for an electron in a zero-range field
and crossed static electric and magnetic fields [20]. As the
magnetic field is increased, the bound-state energy moves to
the right along the real axis. As a result, the decay of the bound
state becomes less probable. The ionization in crossed electric
and magnetic fields was also considered within the adiabatic
approach [21,22]. There the decrease of the ionization rate
as the magnetic field increases is explained by the elongation
of the electron underbarrier trajectory. The latter is screwlike
in the presence of a magnetic field and, thus, longer than that
without the magnetic field. The generalization of the short-
range potential method to nonstationary problems was pursued
in Refs. [23,24]. Its authors solved a full nonstationary problem
on the decay of a weakly bound level in a monochromatic field
with an arbitrary elliptical polarization.

Up to that moment, one theoretical problem still remained
unsolved: the decay of a weakly bound level in a monochro-

013402-11050-2947/2012/86(1)/013402(11) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.67.013414
http://dx.doi.org/10.1103/PhysRevA.86.013402


V. M. RYLYUK PHYSICAL REVIEW A 86, 013402 (2012)

matic wave and a constant magnetic field. In Ref. [25], the
decay of a weakly bound level in the circularly polarized
wave and a constant magnetic field was considered. The
authors of Ref. [25] gave the exact solution of the Schrödinger
equation for an electron moving in the net electromagnetic
field produced by an electromagnetic plane wave and a
constant magnetic field. However, they neglected the Coulomb
interaction between the emerging electron and the atomic
core. It should be noted that the ionization induced by an
electromagnetic wave is also of great practical importance.
Strong magnetic fields of some mega-Gauss may be observed
in laser-produced plasmas [26]. Weaker magnetic fields may
have a great effect in semiconductors [27].

If an electromagnetic wave is present instead of a static elec-
tric field, then the effect of the magnetic field can no longer be
reduced to a decrease of the decay probability. In quasiclassical
terms, it is the polarization of the monochromatic wave that
determines whether the underbarrier trajectory is elongated or
shortened by the uniform magnetic field. Therefore, in contrast
to the case of crossed static electric and magnetic fields, the
magnetic field may either decrease or increase the ionization
rate in the presence of a nonstationary electric field.

In this paper, we consider the tunneling ionization of atoms
and ions under the influence of an elliptical electromagnetic
wave and a static magnetic field. For this purpose, the exact
solution and the Green’s function of the Schrödinger equation
for an electron moving in these fields are represented in a con-
venient form. On their basis, we solve the ionization problem
with the short-range potential method and, in addition, take
into account the Coulomb interaction between the emerging
electron and the atomic or ion core. Note that the Coulomb
correction in the case of crossed static electric and magnetic
fields was considered in Ref. [28]. Thus, this work generalizes
the results of Ref. [25] and also well-known results obtained
for the ionization in crossed static electric and magnetic
fields and for the ionization induced by a monochromatic
electromagnetic field alone.

II. EXPRESSION FOR THE COMPLEX QUASIENERGY

In the integral form, the Schrödinger equation for the wave
function �̂ε,s(r,t) = exp(−iεt/h̄) �̂ε,s(r,t) of an electron in
the field of potential U(r) reads

�̂ε,s(r,t) =
∫ t

−∞
dt ′e−iε(t−t ′)/h̄

∫
d r ′ Ĝ(r,t ; r ′,t ′,s)U(r ′)

× �̂ε,s(r ′,t ′), (1)

where Ĝ(r,t ; r ′,t ′,s) is the retarded Green’s function of an
electron with the spin s moving under the influence of the
short-range potential, the constant magnetic field H , and the
field of a monochromatic electromagnetic wave. The exact
solution of Eq. (1) was obtained in Ref. [25].

For calculating the decay rate we use the quasistationary-
quasienergy-state formalism [23,24] (see also Refs. [29–33]),
which is a generalization of the usual quasienergy-state
formalism [34]. In this approach, the position and width of
the level are determined in a unified manner as the real and
imaginary parts of the complex quasienergy. In the short-range

potential model [18,24], the boundary condition at r → 0 is

�̂ε,s(r,t) � 1

4π

(
1

r
− 1

a
+ 2i

r Af

ra

)
f̂ε,s(t) + O(r),

(2)

f̂ε,s(t) = f̂ε,s

(
t + 2π

ω

)
,

where a = h̄/
√−2mE0 is the so-called scattering length, E0

is the energy of an electron bound by the short-range potential
alone, and Af is the sum of the vector potentials of an
electromagnetic wave and a constant magnetic field. Equation
(2) is equivalent to the relation

U(r)�̂ε,s(r,t) = −4πδ(r)f̂ε,s(t). (3)

Using Eqs. (2) and (3) and the expression for the Green’s
function obtained in Ref. [25], we get from Eq. (1) the equation
for the unknown complex quasienergy ε = E − i� and the
function f̂ε,s(t):

(
√

ε −
√

|E0|)f̂ε,s(t)

= −
√

h̄

4πi

∫ ∞

0

dt ′

t
′3/2

exp

(
− i

h̄
εt ′

)

×
{

ωH t ′

2 sin(ωH t ′/2)
f̂ε,s(t − t ′)

× exp

(
i

h̄
S(t,t ′) ± i

ωH

2
t ′
)

− f̂ε,s(t)

}
, (4)

where S(t,t ′) is the classical action for an electron (see
Ref. [25]). Equation (4) is the main one in the short-range
potential method. It generalizes Eq. (4) in Ref. [24] for the
case where a static magnetic field is present.

Following Ref. [24], we expand the function f̂ε,s(t) into a
Fourier series (with t measured in the units of ω)

f̂ε,s(t) =
∞∑

k=−∞
f̂ε,s,k exp(2ikt) (5)

and obtain the following homogeneous system of equations
for the unknown coefficients f̂ε,s,k:

[(
β2 + 2kh̄ω

|E0|
)1/2

− 1

]
f̂ε,s,k =

∞∑
n=−∞

M̂s,kn(ε)f̂ε,s,n, (6)

where

M̂s,kn(ε) = − 1√
4πiλ

∫ ∞

0

dt

t3/2
exp(−iλβ2t)

×
{

ω0t

2 sin(ω0t/2)
exp(−2ikt)Îs,kn(t) − δkn

}
(7)

and

Îs,kn(t) = 1

π

∫ π

0
exp

(
iS(τ,t) ± i

ω0

2
t + 2i(k − n)τ

)
dτ,

(8)
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where ω0 = ωH/ω is the ratio of the cyclotron frequency to
the laser frequency, λ = |E0|/h̄ω is the multiphoton parameter
determining the minimal number of photons necessary for
ionization, and β = √

ε/|E0| describes the alteration of the
electron energy by the electric and magnetic fields.

Equations (6)–(8) are closed equations for the determi-
nation of the complex quasienergy ε of an electron moving
under the influence of three fields: (i) that of the short-range
potential, (ii) the constant magnetic field, and (iii) the field of
an arbitrary electromagnetic wave. They are exact for arbitrary
magnitudes of the electric and magnetic fields. Setting in
Eqs. (6)–(8) H = 0, we reproduce the general solution [Eq. (8)
in Ref. [24] and Eq. (9)] for the complex quasienergy of an elec-
tron moving in a short range-potential field and the field of an
elliptically polarized electromagnetic wave. On the other hand,
setting in Eqs. (6)–(8) ω = 0, we get the closed equation [20]
[Eq. (4)] for the energy ε of an electron moving in a short-range
potential field and being perturbed by crossed static electric
and magnetic fields.

The closed equation for ε follows from Eq. (6),

det||
[(

β2
± + 2kh̄ω

|E0|
)1/2

− 1

]
δk,n − M̂s,kn(ε)|| = 0, (9)

where the two signs ± correspond to the two electron spin
directions: parallel and antiparallel to the constant magnetic
field H . To derive basic analytical results for H �= 0 and ω �=
0, we will consider some simplifications of the general case. In
what follows we analyze the low-frequency limit λ 	 1 and
then Eq. (9) is simplified as follows:

β± � 1 + M̂s,00(ε) + O(1/λ) (10)

or

β � 1 − 1√
4πiλ

1

π

∫ π

0
dτ

∫ ∞

0

dt

t3/2
exp(−iλβ2t)

×
{

ω0t

2 sin(ω0t/2)
exp [iλS0(τ,t)] − 1

}
, (11)

where the spin term ±ω0/2, giving a contribution of the order
∼1/λ, was neglected. Equation (11) is an integral equation
for the determination of the desired complex quasienergy
ε = E − i�. We note that the approximation (11) corresponds
to setting f̂ε,s,n = const and averaging the right-hand side in
Eq. (4) with respect to t over the period π . Equation (11)
generalizes Eq. (16 b) in Ref. [24] for the case where a static
magnetic field is present.

Thus far, all the expressions have been valid for a monochro-
matic wave with an arbitrary direction of propagation. In the
next section, we restrict our consideration to the case of an el-
liptically polarized wave propagating along the magnetic field.

III. ANALYTICAL RESULTS FOR THE CASE OF AN
ELLIPTICALLY POLARIZED WAVE PROPAGATING

ALONG THE MAGNETIC FIELD

We now consider a monochromatic wave, of frequency
ω, which propagates along the constant magnetic field H
(i.e., along the z axis) and has an elliptical polarization. The
components of its vector potential are

Ax(t) = −F

ω
sin ωt, Ay(t) = g

F

ω
cos ωt, Az(t) = 0, (12)

where F is the amplitude of the electromagnetic field.
Far from the resonance frequency ω = ωH , the action S0 in

Eq. (11) can be represented in the form

S0(τ,t) = − 1

2γ 2

1 + g2 + 2gω0

1 − ω2
0

t + 1

2γ 2

1 − g2

1 − ω2
0

sin(t) cos(2τ − t) + 1

γ 2

ω0

(1 − ω2
0)2

sin2

(
t

2

)
cot

(
ω0t

2

)

×[
(1 + g2)

(
1 + ω2

0

) + 4gω0 − (1 − g2)
(
1 − ω2

0

)
cos(2τ − t)

] − 1

γ 2

ω0

(1 − ω2
0)2

(1 + gω0)(g + ω0) sin(t), (13)

where γ = √
2|E0|ω/F is the adiabatic Keldysh parameter.

Here and above we use the following atomic units: e = m =
c = h̄ = 1.

Transforming the integral over t in Eq. (11) into one in
the complex plane z and applying the standard saddle-point
method, we obtain a system of equations for the width and the
shift of the bound electron level,

Imβ = − ωH

4|E0|
√

2z0 sinh(ω0z0)

(
1

|F ′′(z0)|
)1/2

× Re{exp[−2λF (z0)]},
Reβ = 1 − 1

2
√

2πλ
Re

{ ∫
C

dz

z3/2

[
ω0z

sinh(ω0z)

× exp[−2λF (z)] − exp(−2λβ2z)

]}
, (14)

where F (z) = i
2 [−S0(τ = t/2,t) + β2t]t=−2iz and the contour

C in Eq. (14) goes from the point z = 0 to the saddle point z0

determined by the condition F ′(z0) = 0, i.e., by the equation

sinh2 z0 − (g + ω0)2(
1 − ω2

0

)2 [cosh z0 − ω0 sinh z0 coth(ω0z0)]2 =γ 2.

(15)

It is seen from Figs. 1 and 2 that for an elliptically polarized
wave the left-hand side of Eq. (15) monotonously increases
as a function of z for all ω0. Therefore, there exists a unique
saddle point z0 for each γ (for a rigorous proof of this fact, see
the Appendix).

For further simplifications, consider the case of weak
electric and magnetic fields. Since their influence on the
electron energy is small, we can put β � 1 in the right-hand
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FIG. 1. The left-hand side equ(z) of Eq. (15) as a function of z at
g = +0.5; ω0A = 0.1, ω0B = 0.9, ω0C = 2, ω0D = 5, ω0E = 10.

side of Eq. (14) to obtain

� = ωH

2
√

2z0 sinh(ω0z0)

(
1

|F ′′(z0)|
)1/2

exp[−2λF (z0)], (16)

E = |E0|
{

− 1 − 1

4

(
F

F0

)2 [
1 − 7

48λ2
(g2 − 3) − 7

12

g

λ

H

H0

+ 13

2

(
F

F0

)2 ]
+ 1

12

(
H

H0

)2

− 5

144

(
H

H0

)4

+ 1

2

(
HF

H0F0

)2 [
1 + 1

2λ2

(
221

96
− 541

576
g2

)] }
, (17)

where H0 = F
2/3
0 = 2|E0| is the magnetic field with the

Landau energy having the order of the level binding energy
(H0 = 2.35 × 105 T for the H atom) and the function F (z0) is

F (z0) =
(

1 + 1 + g2 + 2gω0

2γ 2
(
1 − ω2

0

)
)

z0

− 1 − 3ω2
0 − g(g + 2ω0)

(
1 + ω2

0

)
4γ 2

(
1 − ω2

0

)2 sinh(2z0)

− ω0(g + ω0)2

γ 2
(
1 − ω2

0

)2 sinh2 z0 coth(ω0z0). (18)
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FIG. 2. The left-hand side equ(z) of Eq. (15) as a function of z at
g = −0.5; ω0A = 0.1, ω0B = 0.9, ω0C = 2, ω0D = 5, ω0E = 10.
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FIG. 3. The saddle point z0 as a function of γ at ω0 = 0.5;
gA = −1 and gB = +1. (Solid line) exact saddle-point equation (15);
(dashed line) asymptote (19).

The expressions (16) and (17) are the quasiclassical
ionization rate and the level shift for an electron in a short-
range potential under the influence of an elliptically polarized
wave and a static magnetic field. They generalize the results
[5,20,35] for the decay probability and the level shift in the
case of an elliptical wave and crossed fields. In the case
of a circular electromagnetic wave (g = ±1), the ionization
rate (16), with the function F (z0) from Eq. (18), and the
level shift (17) coincide with the corresponding results in
Ref. [25].

The real part of the quasienergy contains the contributions
from the Stark effect, the Zeeman effect (both are written
down here up to the fourth order), the cross terms starting
with the biquadratic order, and the terms depending on the
frequency of the electromagnetic wave. One sees from Eq. (17)
that the term in the quadratic brackets, which is proportional
to g(H/H0), increases the energy in the case of a right-
polarized wave and decreases it in the case of a left-polarized
wave.

In the adiabatic limit, where the inequality γ � 1 holds,
the saddle point z0 in Eq. (15) can be written in the following
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F
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FIG. 4. The exact function F (z0) (18) (solid line) and the function
f0(γ,g,ω0) (22) (dashed line) vs. γ at ω0 = 0.9; gA = −0.3 and
gB = +0.3.
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analytical form:

z0 � γ

{
1−γ 2

6

(
1 − g2

3

)
+ 3

40

[
1 − 58

81
g2

(
1 − 35

174
g2

)]
γ 4

+ g
γ 2

9

[
1 − 29

30
γ 2

(
1 − 35

87
g2

)]
ω0

+ γ 2

18

[
1 − 29

30
γ 2

(
1 − 31

29
g2

)]
ω2

0

}
. (19)

From Eq. (16) we then obtain

�0 = |E0| F

2F0
P0(γ,g,H ) exp

{
−2

3

F0

F
f0(γ,g,ω0)

}
, (20)

where

P0(γ,g,H ) � 1 − γ 2
H

6

[
1 − 8

45

(
1 + 3

8
g2

)
γ 2

]

− 7

135
gγH

(
1 − 10

21
g2

)
γ 3

+ γ 4

30

[
1 − 7

9
g2

(
1 − 5

21
g2

)]
(21)

and

f0(γ,g,ω0) � 1 − 1

10

(
1 − g2

3

)
γ 2

+ 3

8

[
3

35
− 2

27
g2

(
29

35
− g2

6

)]
γ 4

+ g
γ 2

3

[
1

5
− 1

2

(
29

105
− g2

9

)
γ 2

]
ω0

+ γ 2

30

[
1 − 1

42

(
29 − 31g2) γ 2

]
ω2

0. (22)

In Eq. (21), γH = √
2|E0|ωH/F is the magnetic Keldysh

parameter, the ratio of the cyclotron frequency to the inverse
tunnel time. In the limit H → 0, Eqs. (20)–(22) coincide with
the corresponding results in Ref. [36]. Note that in the case of

a linearly polarized electromagnetic wave (g = 0), the term in
the function f0(γ,g,ω0) (22) which is proportional to ω0 (the
magnetic field H ) vanishes. It follows from Eqs. (20)–(22)
that in the case of a low-frequency monochromatic wave, the
magnetic field causes the reduction or enhancement of the
ionization probability. This effect can be explained by
the distortion of the underbarrier trajectory due to the screwlike
electron motion.

Some results of numerical calculations for the saddle point
and the function F (z0) are shown in Figs. 3 and 4. Note that
z0 has a simple physical interpretation: t0 = −iz0/ω is the
time of the underbarrier motion of the electron. One sees from
Figs. 3 and 4 that the asymptotes of expressions (19)–(22)
have a remarkable property: They can be extended to the
region where γ ∼ 1.

In order to take into account the influence of the Stark and
Zeeman effects on the ionization rate, we take into account in
the right-hand side of Eq. (14) the level shift for an electron
under the influence of an elliptically polarized wave and a
static magnetic field [see Eq. (17)]. Then, in the first order,we
obtain

� = |E0| F

2F0
P (γ,g,F,H ) exp

{
−2

3

F0

F
f (γ,g,F,H,ω0)

}
,

(23)

where

P (γ,g,F,H ) � 1 + δ(F,H )

− γ 2
H

6

[
1 − 8

45

(
1 + 3

8
g2

)
[1 − δ(F,H )] γ 2

]

− 7

135
gγH

(
1 − 10

21
g2

)
[1 − δ(F,H )] γ 3

+ γ 4

30

[
1 − 7

9
g2

(
1 − 5

21
g2

)]
[1 − δ(F,H )]

(24)

and

f (γ,g,F,H,ω0) � 1 − 3

2
δ(F,H ) − γ 2

10

(
1 − g2

3

) [
1 − 5

2
δ(F,H )

]
+ 3

8

{
3

35
− 2

27
g2

(
29

35
− g2

6

)

− 3

10

[
1 − 58

81
g2

(
1 − 35

174
g2

)]
δ(F,H )

}
γ 4 + γ 2

3

{
g

[
1

5
− 1

2

(
29

105
− g2

9

)
γ 2

]

− g

2

[
1 − 29

30

(
1 − 35

87
g2

)
γ 2

]
δ(F,H )

}
ω0 + γ 2

6

{
1

5
− 1

2
δ(F,H ) − 1

210
(29 − 31g2)

[
1 − 7

2
δ(F,H )

]
γ 2

}
ω2

0 ,

(25)

where δ(F,H ) = [F 2/F 2
0 − H 2/(3H 2

0 )]/4 takes into account
the Stark and Zeeman effects.

The following two subsections deal with the cases of small
and large cyclotron frequencies as compared to the frequency
of the elliptical electromagnetic wave.

A. The limit of small magnetic fields, ω0 � 1

When the applied constant magnetic field is small, i.e.,
ω0 � 1 (γH � γ ), Eq. (15) for the saddle point z0 reduces to

sinh2 z0 − g(g + 2ω0)

[
cosh z0 − sinh z0

z0

]2

+ 2

3
gzK sinh zK

√
sinh2 zK − γ 2 ω2

0

− (1 + 2g2)

[
cosh zK − sinh zK

zK

]2

ω2
0 = γ 2, (26)

whence

z0 = zK + aω0 + bω2
0,
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FIG. 5. The ionization rates � for a linearly polarized electro-
magnetic wave vs. γ at λ = 7. The weakly bound level (dashed line)
and the 1s state of the H atom (solid line); ω0A = 0.5 and ω0B = 5.

where

a = g
sinh(2z0)/z0 − cosh2 z0 − sinh2 z0/z

2
0

γ 2/z0 − (1 + g2) sinh2 z0/z0 − (1 − g2) sinh(2z0)/2

and zK can be determined from the saddle-point equation (see,
e.g., Eq. (5) in Ref. [36]) for zero magnetic field,

sinh2 zK − g2

[
cosh zK − sinh zK

zK

]2

= γ 2. (27)

We then find the ionization probability to be

� = P (z0) exp [−2λF (z0)] , (28)

where

F (z0) = f (zK ) + F1ω0 + F2ω
2
0

and

f (zK ) =
(

1 + 1 + g2

2γ 2

)
zK − g2

γ 2zK

sinh2 zK

− 1 − g2

4γ 2
sinh 2zK (29)

is the so-called Keldysh function and

F1 = 3g

2γ 3

(
zK + 1

2
sinh 2zK − 2

sinh2 zK

zK

)
,

F2 = 3

2γ 3

[
1 + g2

2
zK + 1 + 3g2

4
sinh 2zK

−
(

1 + 2g2

zK

+ g2

3
zK

)
sinh2 zK

]
+ 3a

gγ

(
sinh2 zK

γ 2
− 1

)

− 3a2

2γ 3

{(
1 − g2

2
− g2

z2
K

)
sinh 2zK

+ g2

[
1 +

(
2 + 1

z2
K

)
sinh2 zK

zK

]}
. (30)

The preexponential function P (z0) and the constant b will not
be given here. For γ � 1 the saddle point is

z0 � γ

{
1 − 1

6

(
1 − g2

3

)
γ 2 + γH

9

(
gγ + γH

2

)}
(31)

4 5 6
ω0

10 13

10 10

10 7

10 4

0.1

S

A

A

B

B

FIG. 6. The function S vs. ω0 at λ = 7. The weakly bound level
(dashed line) and the 1s state of the H atom (solid line); gA = +1,
γA = 0.6 and gB = +0.8, γB = 2.1.

and the level width and the level shift become

� = |E0| F

2F0

[
1 + γ 3

30

(
γ − 14

9
gγH

)]

× exp

{
− 2

3

F0

F

[
1 − 1

10

(
1 − g2

3

)
γ 2

+ γH

15

(
gγ + γH

2

) ]}
,

E = |E0|
{

−1 − 1

4

(
F

F0

)2 [
1 + 7

48
ω̃2(3 − g2 − 2gω0)

]}
,

(32)

where ω̃ = ω/|E0|. Equations (32) generalize the results of
[see Eq. (8) in Ref. [35]], where the motion of an electron in
a circularly polarized electromagnetic wave was considered,
to the case where the wave is elliptically polarized and an
additional constant magnetic field pointing along the direction
of the wave propagation is present.

We see from the first of Eqs. (32) that if the electromagnetic
wave is right polarized, then the magnetic field causes
the ionization rate to decrease, and, if left polarized, then
the ionization rate increases as the magnetic field increases.

1 2 3 4 5
0

1

2

3

S

A

A

B

B

ω

FIG. 7. The function S for vs. ω0 at λ = 7 and g = −0.8. The
weakly bound level (dashed line) and the 1s state of the H atom (solid
line); γA = 2.1 and γB = 5.1.
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FIG. 8. The ionization rates � vs. γ at λ = 7 and ω0 = 1.1. The
weakly bound level (dashed line) and the 1s state of the H atom (solid
line); gA = −1 and gB = +1.

The motion of the electron in a magnetic field and a
right-polarized electromagnetic wave propagating along the
magnetic field is screwlike. As a result, the underbarrier
motion of the electron becomes longer and the ionization
rates decreases. However, if the electromagnetic wave is left
polarized, then the magnetic field and the electromagnetic
wave field rotate the electron into opposite directions. As a
result, the underbarrier screwlike electron trajectory becomes
shorter and the ionization probability increases.

B. The limit of low frequencies, ω0 � 1

In the limit where the frequency of the electromagnetic
wave is small, i.e., ω0 = 1/ω0 = ω/ωH � 1, we recover the
case of static crossed electric and magnetic fields, with a small
frequency-dependent correction due to the electromagnetic
wave. The equation for the saddle point takes the form

(1 − x0 coth x0)2
{
1 + 2g ω0 + (2 + g2)ω2

0

}
= −γ 2

H + x2
0

{
1 −

[
1 + x0

3

(
x0

sinh2 x0
− 4 coth x0

)]
ω2

0

}
.

(33)
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100
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γ

FIG. 9. The ionization rates � vs. γ at λ = 7 and ω0 = 2.5. The
weakly bound level (dashed line), the 1s state of the H atom (solid
line); gA = −0.8 and gB = +0.8.
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ω

FIG. 10. The function S vs. ω0 at λ = 7 and g = −1. The weakly
bound level (dashed line) and the 1s state of the H atom (solid line);
γA = 2.1 and γB = 5.1.

The result for the ionization probability is

� = Ps(x0) exp [−2λH Fs(x0)] , (34)

where λH = |E0|/ωH and

Fs(x0) =
(

1 + 1

γ 2
H

)
x0 − x2

0

γ 2
H

coth x0

+ 2gx0

γ 2
H

(
1 + x2

0

3
− x0 coth x0

)
ω0

+ x0

γ 2
H

[
2 + g2 + x2

0

(
1 + g2

3

)

− x0

(
2 + g2 + x2

0

3

)
coth x0

]
ω2

0. (35)

For γH � 1 the saddle point is

x0 � γH

{
1 + γ 2

H

18

[
1 + 2gω0 − (3 − g2) ω2

0

]}
(36)

10 20 30 40
0

0.5

1.0

S

A

A

B

B

C

C

ω

FIG. 11. The function S for the 1s state of the H atom vs. ω0 at
λ = 7: g = +0.3 (solid line) and g = −0.3 (dashed line); γA = 0.1,
γB = 0.2, γC = 0.6.
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and the level width and the level shift are

� = |E0| F

2F0

[
1 − γH

6

(
γH + 14

45
gγ 3

)]

× exp

(
−2

3

F0

F

{
1 + γ 2

H

30

[
1 + 2gω0 − (3 − g2)ω2

0

]})
,

E = |E0|
[

− 1 − 1

4

(
F

F0

)2

+ 1

12

(
H

H0

)2

− 13

8

(
F

F0

)4

− 5

144

(
H

H0

)4

+ 1

2

(
HF

H0F0

)2(
1 + g

7

12
ω0

)]
. (37)

Equations (37) generalize the expression for the complex
energy obtained in Ref. [20] for an electron moving in crossed
static electric and magnetic fields. Our result (37) additionally
takes into account the frequency-dependent corrections due to
an elliptically polarized electromagnetic wave.

IV. THE COULOMB CORRECTION

In the case of ionization of neutral atoms and positive
ions, the Coulomb interaction of the emerging electron with
an atomic or ionic core has to be taken into consideration,
especially if F � F0. For this purpose, we can employ the
quasiclassical perturbation theory to calculate the correction to
the classical action, δS = Z

∫
dt/r(t). But since this integral

diverges at r → 0, we use the procedure of sewing with
the asymptote of the wave function of a free atom, χk(r) �
exp {− [(kr) − ηln(kr) + O(1)]} (see Ref. [12] for details).
This approach gives the Coulomb factor Q(z0,H ),

Q(z0,H ) = 2λz0 exp {J (z0)} ,

J (z0) =
∫ 1

0

[
γ z0

|r([1 − s]z0)| − 1

s

]
ds (38)

in the expression for the probability of the tunneling ionization
�,

� = ωH C2
κlQ

2η(z0,H )

2
√

2z0 sinh(ω0z0)

(
1

|F ′′(z0)|
)1/2

exp[−2λF (z0)],

(39)

where η = Z/(|E|/|IH |)−1/2 is the Zommerfeld parameter (Z
is the charge of the atomic core, and |IH | = 13.6 eV). The
parameter η is usually close to unity (for the H atom η = 1).
Moreover, Cκl is the asymptotic coefficient in the atomic wave
function at infinity. In particular, Cκl = 2 for the 1s state of
the H atom [5].

Equations (38) and (39) generalize the corresponding
expressions in Refs. [12,28] for the case where an arbitrary
electromagnetic wave and a static magnetic field are present
simultaneously. Here we note that the condition of applicabil-
ity of the expression (38) for the Coulomb factor Q(z0,H ) is
γ � 2E/

√
ZF . In Eq. (38),

|r(z)| =
√

r2
x (z) + r2

y (z),

where (rx,ry) is the sub-barrier trajectory of the electron in
the atom. To find this trajectory, we use the “imaginary-time”
method, originally proposed in Refs. [5,37] in order to solve
the problem of ionization of nonrelativistic bound systems in
the field of an intensive light wave. Being a generalization
of the quasiclassical WKB approximation to the case of time-
dependent fields, this method describes the tunneling transition
of an electron from a bound state to the continuum by using the
classical equations of motion but with an imaginary time. In-
tegrating the equation of motion subject to the initial condition

r(z0) = 0

and taking into account that at t = 0 the electron overcomes
the barrier (leaves the atom) and changes the imaginary values
of the coordinate and momentum into real ones,

Im r(0) = Im ṙ(0) = 0,

we obtain the following result for the extremal trajectory:

rx(z) = 1

1 − ω2
0

{
(1 + gω0) (cosh z − cosh z0) − (g + ω0)

sinh z0

sinh(ω0z0)
[cosh(ω0z) − cosh(ω0z0)]

}
,

(40)

ry(z) = i
g + ω0

1 − ω2
0

{
sinh z − sinh z0

sinh(ω0z)

sinh(ω0z0)

}
.

In the general case the integral in Eq. (38) can be calculated only numerically. In the adiabatic limit γ � 1 the function Q(z0,H )
has the asymptote

Q(z0,H ) � 2F0

F

{
1 − g2

3

[
γ 2

6
− 1

15

(
1 − 25

72
g2

)
γ 4

]
+ γH

9

[
γH + g

γ

2

]}
, (41)

which at H = 0 coincides with the corresponding result in Ref. [1].
At γ � 1, the ionization rate (39) can be represented in the form

� = |E0|C2
κl

(
2F0

F

)2η−1

Pη(γ,g,F,H ) exp

{
−2

3

F0

F
fη(γ,g,F,H,ω0)

}
, (42)

013402-8



TUNNELING IONIZATION OF ATOMS AND IONS IN AN . . . PHYSICAL REVIEW A 86, 013402 (2012)

where

fη(γ,g,F,H,ω0) � 1 − 3

2
δ(F,H ) − γ 2

10

{
1 − 5

2
δ(F,H ) − g2

3

[
1 + 10η

F

F0
− 5

2
δ(F,H )

]}

+ 3

8

{
3

35
− 2

27
g2

(
29

35
− g2

6

)
− 3

10

[
1 − 58

81
g2

(
1 − 35

174
g2

)]
δ(F,H ) − 8

15
η

F

F0
g2

(
1 − 5

18
g2

)}
γ 4

+ γ 2

3

{
g

[
1

5
− 1

2

(
29

105
− g2

9

)
γ 2

]
+ 1

2
ηg

F

F0
− g

2

[
1 − 29

30

(
1 − 35

87
g2

)
γ 2

]
δ(F,H )

}
ω0

+ γ 2

6

{
1

5
− η

F

F0
− 1

2
δ(F,H ) − 29

210

(
1 − 31

29
g2

) [
1 − 7

2
δ(F,H )

]
γ 2

}
ω2

0. (43)

For the 1s state of the H atom the preexponential factor Pη(γ,g,F,H ) (η = 1) is

P1(γ,g,F,H ) � 1 + δ(F,H ) − γH

18
(γH − 4gγ ) + γ 2

9

[
g2 − 11

30
γ 2

H

(
1 − 11

34
g2

)
s(F,H )

]

− 41

135
gγH

(
1 − 50

123
g2

)
s(F,H )γ 3 + γ 4

30

[
1 − 41

9
g2

(
1 − 25

123
g2

)]
s(F,H ), (44)

where s(F,H ) = [1 − δ(F,H )]. In Eqs. (43) and (44) we took into account the first-order contributions from the Stark and
Zeeman effects for an electron being acted on by the laser beam and the static magnetic field.

The case of the H atom in crossed fields is of special interest. In view of Eqs. (42)–(44), the ionization probability is

� = 8|IH |FH

F
P (F,H ) exp

{
−2FH

3F

[
1 − 3

2
δ(F,H ) + γ 2

H

6

(
1

5
− F

FH

− 1

2
δ(F,H )

)]}
, (45)

where

P (F,H ) � 1 + δ(F,H ) − γ 2
H

18
(46)

and FH = 5.142 × 109 V/cm is the magnitude of the electric
field at the first Bohr orbit. As can be seen from Eqs. (42)–(45),
taking into account the Coulomb interaction increases the
ionization rates of a neutral atom in comparison with those
for a negative ion. This can be explained by the fact that
the electron density at the “merge” of the atom increases. In
the limit H → 0 from Eqs. (45) and (46) we obtain

� = 8|IH |
[
FH

F
+ F

4FH

]
exp

{
−2FH

3F
+ F

4FH

}
. (47)

Neglecting the Stark effect contribution in Eq. (47), we arrive
at the well-known Landau-Lifshitz formula (see in Ref. [38])
for the ionization probability from the ground state of the H
atom due to a constant electric field,

� = 8|IH |FH

F
exp

{
−2FH

3F

}
. (48)

The results of numerical calculations for the ionization rates
are shown in Figs. 5–7.

It is seen from Figs. 5–7 that taking into account the
Coulomb interaction increases the ionization rates of a neutral
atom as compared to those of a negative ion.

Let us define the “stabilization factor” S (see in Ref. [28]):
S = �/�0, �0 being here the ionization probability at H = 0.

It is seen from Fig. 8 that if the electromagnetic wave is right
polarized, then the magnetic field causes the ionization rate to
decrease, i.e., it stabilizes the bound level. This stabilization
effect is greater for the short-range potential than for the
Coulomb one, which can be explained by the fact that the

Coulomb interaction tends to increase the ionization rates. On
the other hand, Figs. 9 and 10 show that if the electromagnetic
wave is left polarized, then the ionization rate can grow with
the magnetic field. As can be seen from Figs. 9 and 10, the
ionization probability grows at a greater rate if the Coulomb
interaction is taken into account. Figures 11 and 12 show the
so-called effect of the “plateau,” which occurs for the electro-
magnetic wave with an arbitrary elliptical polarization at small
γ only if the Coulomb interaction of the emerging electron
with the atomic core is taken into consideration. Figures 11
and 12 show that the “plateau” shortens as the parameter γ

increases. The cause of the appearance of the “plateau” is that
the Coulomb interaction tends to prevent the suppression of the
ionization of the bound level by the constant magnetic field.

10 20 30 40
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FIG. 12. The function S for the 1s state of the H atom vs. ω0 at
λ = 7: g = +0.9 (solid line) and g = −0.9 (dashed line); γA = 0.1,
γB = 0.2, γC = 0.6.
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V. CONCLUSIONS

We have considered the tunneling ionization of atoms
and ions under the influence of an elliptical monochromatic
electromagnetic wave and a static uniform magnetic field.
In doing so, we found the exact wave function and Green’s
function for a charged particle in these fields. We then used
the boundary condition in the short-range potential method to
obtain a transcendental equation for the complex quasienergy.
The real and imaginary parts of the latter gave the level shift
and the decay probability.

The general solution was analyzed for the case where the
wave propagates along the magnetic field. Simple analytical
expressions were obtained for the tunnel regime and compared
with the results known in the literature. The limits of weak
magnetic fields and low-frequency waves were considered in
detail. It was shown that in the presence of a static electric field
the magnetic field stabilizes the bound level. In the presence of
a nonstationary electromagnetic wave, the constant magnetic
field can cause the level decay rate to either decrease or in-
crease. This dynamic effect was shown to depend on the polar-
ization direction of the wave: The level decay slows down in the
case where the wave and the magnetic field rotate the electron
in the same direction and speeds up in the opposite case.

In the case of ionization of neutral atoms and positive
ions, we took into account the Coulomb interaction of the
emerging electron with the atomic or ionic core and exploited
the quasiclassical perturbation theory, complemented by the
“imaginary-time” method. Within this approach, we calculated
the ionization rate for the ground state of the H atom in an ellip-
tical electromagnetic wave and a static magnetic field. Passing
to the static limit, we obtained the formulas for the ionization
probability of the H atom in crossed constant electric and mag-
netic fields and that in a constant electric field. It was shown
that taking into account the Coulomb interaction results in the
ionization rates of a neutral atom being greater than those of
a negative ion. In addition, we took into account the contribu-
tions from the Stark and Zeeman effects to the ionization rate.

To support the above statements, we performed numerical
calculations of the ionization rate and the “stabilization factor,”
S. These calculations show that if the electromagnetic wave
is right polarized, than the constant magnetic field suppresses
the ionization of a bound level. In contrast, the left-polarized
electromagnetic wave counteracts the constant magnetic field;
as a result, the ionization rate can grow. Since the Coulomb
interaction increases the ionization of a bound level, in
the adiabatic limit where the inequality γ � 1 holds, the
ratio �/�0 may remain almost constant up to rather large
magnitudes of ωH/ω (effect of the “plateau”), as shown in
Figs. 11 and 12.

The formulas obtained in this paper allow one to obtain
simple estimates for the ionization rate for not only negative
ions but also for neutral atoms and positive ions in an
elliptically polarized laser beam and an additional constant
magnetic field present.
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APPENDIX: PROOF OF THE EXISTENCE AND
UNIQUENESS OF A SADDLE POINT

Under conditions −1 � g < +1, ω0 > 0 there exists a
unique root z0 of Eq. (15) for each γ > 0.

In order to prove this assertion we rewrite the left-hand side
of Eq. (15) as

equ(z,ω0)

≡ sinh2 z − (g + ω0)2(
1 − ω2

0

)2 [cosh z − ω0 sinh z coth(ω0z)]2

= sinh2(z) [(1 + |α|L(z,ω0)] [1 − |α|L(z,ω0)] , (A1)

where

L(z,ω0) = coth(z) − ω0 coth(ω0z)

1 − ω0
,

(A2)
α = g + ω0

1 + ω0
, 0 < |α| < 1.

The existence of the root follows from the limits equ(0,ω0) = 0
and equ(∞,ω0) = ∞ of the continuous function equ(z,ω0).

Since

L′
z(z,ω0) = 1

1 − ω0

[
ω2

0

sinh2(ω0z)
− 1

sinh2(z)

]
> 0, (A3)

the function L(z,ω0) monotonously increases from L(0,ω0) =
0 to L(∞,ω0) = 1. Our goal is to demonstrate that equ(z,ω0)
is also a monotone increasing function of z. It is sufficient to
prove this for the function

equ−(z,ω0) ≡ sinh2(z) [1 − |α|L(z,ω0)] . (A4)

We have

[equ−(z,ω0)]′z = sinh(z) cosh(z)[2 − |α| K(z,ω0)], (A5)

where

K(z,ω0) = 2 L(z,ω0) + tanh(z) L′
z(z,ω0). (A6)

After some algebra one can rewrite the last expression as

K(z,ω0) = tanh(z)[1 + ω0 + (1 − ω0) L2(z,ω0)]. (A7)

If ω0 < 1 then K(z,ω0) is a monotone increasing
function of z, and 0 < K(z,ω0) < K(∞,ω0) = 2. Hence,
[equ−(z,ω0)]′z > 0, so both equ−(z,ω0) and equ(z,ω0) are
monotone increasing with z.

Now consider the case ω0 > 1.

[K(z,ω0)]′z = ({(1 + ω0) tanh(z)[1 − βL2(z,ω0)]})′z
= (1 + ω0){sech2(z) [1 − βL2(z,ω0)]

− 2β tanh(z) L(z,ω0)L′(z,ω0)}
= (1 + ω0) sech2(z){1 − βL(z,ω0)[L(z,ω0)

+ sinh(2z) L′(z,ω0)]}, (A8)

where
β = ω0 − 1

ω0 + 1
, 0 < β < 1.
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In this case L′(z,ω0) < sech2(z)/(ω0 − 1), so we have

[K(z,ω0)]′z > (1 + ω0) sech2(z)

{
1 − βL(z,ω0)

[
L(z,ω0) + sinh(2z) sech2(z)

(ω0 − 1)

]}

= (1 + ω0) sech2(z)

[
1 − ω2

0 coth2(ω0z) − coth2(z)

ω2
0 − 1

]
. (A9)

It can be seen that the derivative[
ω2

0 coth2(ω0z) − coth2(z)

ω2
0 − 1

]′

z

> 0, (A10)

so the expression in parentheses is bounded from above by
its limit value as z → ∞, which is 1. Hence, [K(z,ω0)]′z > 0,
and, as in the previous case, 0 < K(z,ω0) < 2. We conclude
that equ(z,ω0) is a monotone increasing function of z for each
value ω0 > 0.

For g = +1 and 0 < ω0 < 1 the function equ(z,ω0)
monotonously increases from equ(0,ω0) = 0 to equ(∞,ω0) =
∞ and Eq. (15) also has a unique root. But the case g = +1 and
ω0 > 1 is the peculiar one. In this case the function equ(z,ω0)
has the limits: equ(0,ω0) = 0 and equ(∞,ω0) = 1/(ω0 − 1).
Therefore, if g = +1 and ω0 > 1, a unique root z0 of Eq. (15)
exists only for γ < γcr, where γcr = 1/

√
ω0 − 1. For γ � γcr

Eq. (15) has no roots.
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