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Sublinear and superlinear dependences of average charge and energy loss per ion on particle
number for MeV/atom linear-chained carbon-cluster ions traversing a carbon foil
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The cluster effect in the average charge and the energy loss of swift carbon-cluster ions with kinetic energy
of MeV per atom in a linear-chain structure with equal separation of 0.127 nm, passing through carbon foil,
was theoretically investigated on the basis of the dielectric function formalism together with the wave-packet
model. We assume that inside a foil the dissipated and the conservative forces due to electron polarization are
acting on constituent partially stripped ions as well as the repulsive Coulomb forces. In addition, the reductive
effect of the cluster average charge is incorporated in a self-consistent manner. On the other hand, outside a foil,
only a repulsive Coulomb interaction is assumed to be working. The equation of motion for constituent ions is
numerically solved using the molecular dynamics method under the action of the above forces. The calculated
results are presented as a function of the incident orientation angle θ . By taking the average over θ , the energy
loss per ion of the carbon cluster displays a sublinear dependence on the number of atoms at lower energies,
while at higher energies it shows a superlinear dependence in spite of including the average charge reduction.
These two trends in the energy loss are in good agreement with existing experimental results, in which not only
the spatial correlation but also the reduction of cluster average charge is found to play a significant role.
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I. INTRODUCTION

Recently, cluster or polyatomic projectiles have attracted
intensive interest in the field of investigating the interaction
of high-energy cluster ions with solid materials from both
the basic and applied viewpoints. For example, C60 fullerene
ions and highly charged biomolecules have been accelerated
at high energies (e.g., 10 MeV to 1 GeV) [1]. From the
viewpoint of applications, cluster impact has the following
advantages: one can (1) reduce the kinetic energy per atom at
a given accelerated voltage, (2) suppress the charge-up effect
in ion implantation, and (3) perform high-density particle
irradiation in a narrow area. These properties are utilized in
fabrication and processes, e.g., surface evaporation and surface
etching by using a gas cluster ionized beam (GCIB) [2] with
low kinetic energy (a few 10 eV per atom). From the basic
physics viewpoint, on the other hand, the research subjects
using polyatomic ion beams are widely ranging: fragmentation
[3–5] and Coulomb explosion [6] of the clusters, multiple
ionization [7], emissions of ions and neutrals [8], reduction of
average charge [9–11], secondary electron emission [12–15],
and energy deposition to a target [10,16–21], etc. In most
cases, these subjects include an electron excitation process,
which is correlated in space and time, induced by an ensemble
of dense charged particles. This feature brings new results
that are completely different from a single-ion penetration. In
these excitation phenomena, the resultant effects induced per
ion are sometimes stronger or weaker than those expected by
single-ion incidence at an equivalent speed. Let us denote
by Y (n) a quantity per ion such as energy loss, average
charge, the secondary electron yield, and so on, obtained
under the impact of the cluster ion Cn

+, consisting of n

atoms. In order to compare Y (n) with the corresponding
value Y (1) under single-ion incidence, it is convenient to
define D ≡ Y (n) − Y (1) and R ≡ Y (n)/Y (1). When D > 0
or R > 1, we call this the positive or the superlinear cluster

effect, and in the opposite case we call it the negative or
the sublinear cluster effect. Therefore, one recognizes that
there will be a threshold of the cluster effect in the incidence
energy. This threshold energy mainly depends on the number
of constituent atoms, the spatial structure, the target element,
and the penetration length of the foil. These features originate
from a new character of the cluster ion beam, described by
the number of constituent atoms and the spatial structure, in
addition to the conventional character of the monoatomic ion
beam, described by the ion speed, the ion element (or atomic
number), and the distribution of the bound electrons.

The cluster effect has been found in the average charge
[9–11], the energy-loss phenomena [10,16,18,21–23], and the
secondary electron yield [12–15]. As for the average charge,
Brunelle et al. [9] found at first a reduction of the cluster
average charge per ion. Recently, Chiba et al. [11] reported the
structure dependence of the cluster average charge using the
Coulomb explosion imaging technique. They have extended
this method to the divergence-angle measurement for various
charge-state combinations [24]. Regarding the energy loss of
a carbon cluster, the threshold energy exists around 1 MeV
per atom. At incident energies larger than the threshold, the
energy loss per ion, �E(n), displays the positive cluster effect,
i.e., D ≡ �E(n) − �E(1) > 0 or R ≡ �E(n)/�E(1) > 1.
In fact, this is experimentally supported by Baudin et al. [21]
and also theoretically predicted [10]. On the other hand, there
have been few data on the energy loss of carbon-cluster ions
with the kinetic energy less than the threshold. In such a
lower-energy region, we predicted that the cluster energy
loss will show a negative effect [10]. As only one example,
Brunelle et al. [18] experimentally obtained D < 0 for the
1.01 MeV/atom C+

n cluster ion penetrating a carbon foil.
On the contrary, Heredia-Avalos et al. [22] insisted that the
cluster effect was still positive in the corresponding case.
Tomaschko et al. [23] reported that D � 0 or R � 1 for a
rather thick (42 nm = 9.45 μg/cm2) carbon target, although
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with large error bars. As far as the author knows, there are few
experimental data that obviously show the negative cluster
effect in the energy loss for carbon incidence with the kinetic
energy below the threshold. Recently, making use of a novel
experimental method, Tomita et al. [25] clearly observed the
negative cluster effect in the energy loss of the 0.5 MeV/atom
carbon cluster C+

n (n = 1−4) penetrating a thin carbon foil.
Under these situations, it is needed to clarify whether those
effects could be predicted or not. To do so in a detailed manner,
we included here the Coulomb explosion, the dissipated force,
the polarization force, and the cluster average charge reduction
in bulk. Thus, the aim of the paper is to show that the present
detailed treatment predicts the negative cluster effect for the
irradiation of carbon-cluster ions with lower (less than the
threshold) kinetic energy and to show that it also leads to the
positive cluster effect for clusters with the higher energies over
the threshold. In Sec. II, the framework of the present analysis
will be described. In Sec. III, numerical results and discussion
will be given together with comparison with the existing data.
Through this paper, m, e, and h̄ denote, respectively, the
electron rest mass, the elementary charge, and the Planck
constant divided by 2π . In addition, the Bohr radius and the
Bohr speed are denoted by a0 = h̄2/(me2) = 0.529 × 10−10 m
and v0 (=e2/h̄) = 2.19 × 106 m/s, respectively.

II. THEORETICAL MODEL

Here we describe the present theoretical model and quanti-
ties to evaluate the energy loss as well as average charge of a
cluster moving in a solid, in order to elucidate the results and
discussion clearly.

A. Cluster average charge

First we briefly describe the theory of the cluster average
charge. The average charge of a single ion with atomic number
Z moving in a foil at speed V is given in the fluid-mechanical
picture by

Q

Z
= 2√

π

∫ y

0
dt exp(−t2), y =

√
3

8

V

Vb

, (1)

where Vb = 1.045Z2/3v0 is the average speed of the electrons
bound on the ion in a statistical model [10]. This expression
was extended to cluster ions by modifying Vb by introducing
the binding effect of surrounding ions via the potential energy.
The resultant expression for the average charge Qi of the ith
ion in the cluster is given by

Qi

Z
= 2√

π

∫ y

0
dt exp(−t2), y =

√
3

8

V

Vb,i

, (2)

with Vb,i = [1.092Z4/3 + ∑
j (�=i) (2/m)Vji(Rji)]

1
2 v0. Here

Vji(Rji) denotes the interaction potential energy per electron
of the ith ion at �Ri with the j th ion at �Rj . If Rji(= | �Rj − �Ri |) is
large enough, Vji(Rji) reduces to the point-charge value Qj

Rji
e2.

As a more general expression, we take in the Thomas-Fermi-

Moliere (TFM) approximation the following expression:

Vji(R)

= Qje
2

R

{
1 −

3∑
m=1

αm exp

(
−βmR

�i

)}

+Nje
2

R

3∑
m=1

3∑
�=1

αmα�

exp(−βmR/�i) − exp(−β�R/�j )

(�i/βm)2(β�/�j )2 − 1
,

(3)

with �t = 0.6269N
2/3
t a0/(Z − Nt/7) and Nt = Z − Qt (t =

i,j ). In addition, we have α1 = 0.10, α2 = 0.55, α3 = 0.35,
and β1 = 6.0, β2 = 1.20, β3 = 0.30. It is well known that the
average charge of a single ion moving in a material depends
very weakly on the target material and it enables us to describe
the charge well by only the ion speed and the atomic number.
As for the cluster incidence, on the other hand, not only speeds
of constituent ions but also the spatial structure of the cluster
becomes important. At the same time, the average binding
energy per electron reflects the structure-dependent effect of
surrounding ions. The average charge of a given ion in the
cluster depends on both the charges and the positions of other
ions. I summarize that the surrounding ions strengthen the
binding force of electrons and that the average charges of
constituent ions have to be determined in a self-consistent
manner.

B. Forces acting on individual ions

Let us assume that the cluster projectile moves in a target
material with velocity �V , where the cluster is composed of
homoatoms and contains n atoms of atomic number Z. We
regard the cluster as an ensemble of partially stripped ions
(PSIs), which are composed of a pointlike nucleus surrounded
by the electron cloud. For convenience, the electron cloud of
the j th ion is given by the TFM statistical distribution. Then
the charge density of the j th ion located at the origin is given by

ρj (�r) = Z e δ(�r) − eρje(�r),

ρje(�r) = Nj

4πr

3∑
s=1

αs

(
βs

�j

)2

exp

(
−βsr

�j

)
. (4)

Here Nj and �j are the number of bound electrons and the
size parameter of the electron cloud, respectively. The values
of αs , βs (s = 1,2,3), and �j are already given in the TFM
distribution in Eq. (3). This function becomes infinite at r =
0 so that the statistical distribution of electrons in real space
tend to be invalid near the nucleus. However, the form factor,
i.e., the Fourier transform of the charge density in real space,
derived from the above TFM distribution, is a rather nicely
approximate function of that derived from the Hartree-Fock
wave functions, in spite of its simple form.

Let us find the force �Fj acting on the j th PSI, whose
charge distribution is expressed by ρj (�r,t) = Zeδ(�r − �V t) −
eρje(�r − �V t), moving at velocity �V in a dielectric medium.
Here the electric excitation is described by the dynamical
dielectric function ε(�k,ω). First we obtain the force due to
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polarization as follows:

�Fj = −
∫

d3r ρj (�r,t)∇ϕind(�r,t). (5)

Here the induced scalar potential is decomposed using the
induced charge density ρind(�k,ω) in Fourier space as follows:

ϕind(�r,t) = 1

(2π )4

∫
d3k

∫ +∞

−∞
dω

4π

k2
ρind(�k,ω)

× exp{i(�k · �r − ωt)}. (6)

The induced charge density is expressed by the dynamical
dielectric function

ρind(�k,ω) =
[

1

ε(�k,ω)
− 1

]
ρext(�k,ω). (7)

The external charge density for the incident cluster ions in
Fourier space is given by

ρext(�k,ω) = 2π
∑

s

ρs(�k) exp(−i�k �·Rs)δ(ω − �k · �V ), (8)

where ρs(�k) denotes the charge density in Fourier space of
the sth ion located at position vector �Rs with respect to the
center-of-mass (c.m.) of the cluster, moving at velocity �V in
a dielectric media. Here we assume the adiabatic condition
under which the variation of speeds of constituent ions in the
c.m. frame is much smaller than the c.m. speed of the cluster.

Under the above condition, we express the force acting on
the j th ion in a simple form:

�Fj = − 1

2π2

∫
d3k

∫ +ω

−∞
dω

i�k
k2

[
1

ε(�k,ω)
− 1

]
ρj (−�k)

×
∑

s

ρs(�k) exp(i�k �·Rjs)δ(ω − �k �·V ), (9)

with �Rjs = �Rj − �Rs . In order to proceed further, the above
force is decomposed in the perpendicular and the parallel
components, �Fj⊥ and �Fjz, to the z direction of beam injection.
After some algebra, we finally obtain

�Fj = �Fj⊥ + �Fjz, (10a)

�Fj ⊥ = 2

πV

∫ ∞

0
dk⊥k2

⊥

∫ ∞

0
dωρj (−�k)

∑
s

ρs(�k)

× J1(k⊥Rjs⊥)

k2
⊥ + (ω/V )2

�njs⊥

[
cos

(
ω

v
Rjsz

)
Re

{
1

ε(k,ω)
− 1

}
− sin

(
ω

v
Rjsz

)
Im

{
1

ε(k,ω)
− 1

}]
, (10b)

�Fj z
= 2

πV 2

∫ ∞

0
dk⊥k⊥

∫ ∞

0
dωωρj (−�k)

∑
s

ρs(�k)

× J0(k⊥Rjs⊥)

k2
⊥ + (ω/V )2

�njsz

[
cos

(
ω

v
Rjsz

)
Im

{
1

ε(k,ω)
− 1

}
+ sin

(
ω

v
Rjsz

)
Re

{
1

ε(k,ω)
− 1

}]
, (10c)

with k2 = k⊥2 + (ω/V )2. Here �njs⊥ and �njsz are the unit
vectors of the perpendicular and the parallel components

of �Rjs , respectively. The dielectric function ε(k,ω) for an
electron gas at absolute zero temperature was given in an
analytical form in [26]. Another dielectric function used
here for describing excitation of the bound electrons was
also derived [27]. The charge density ρj (�k) of the j th ion
is given as ρj (�k) = {Zj − ρje(�k)}e, where ρje(�k), obtained
from the Fourier transform of ρje(�r) in Eq. (4), includes the
average number of the bound electrons, Nj , determined self-
consistently by the ion speed V , the charges of surrounding
ions, Qj , and the spatial structure of the cluster. In Eqs. (10b)
and (10c), Jn(k⊥Rjs⊥)(n = 0,1) denotes the n-th order Bessel
function of the first kind. The subscripts z and ⊥ of the
arguments denote the components parallel and perpendicular
to the incident ion beam, respectively. In addition, Re{a} and
Im{a} are the real part and the imaginary part of a complex
number a, respectively. It should be noted that there are two
types of force involved in the expression of �Fj . One is the
conservative force and the other is the dissipative force. The
dissipative force can be discerned by absorption of energy,
including the imaginary part of the dielectric function. On
the other hand, the conservative force, including the real part
of the dielectric function, does not absorb energy but satis-
fies the action-reaction law. In other words, action-reaction
terms change sign when interchanging a variable �Rj by a
variable �Rs .

Another force is the Coulomb repulsive force acting among
constituent ions, derived from the potential energy as follows:

�Fj = −∇jV ( �Rj ),

V ( �R) =
∑
s(�=j )

∫ ∫
ρj (�r1)ρs(�r2)

| �R + �r1 − �r2|
d3r1d

3r2. (11)

Here we remember that each ion is not a point charge but a
partially stripped ion. One will see below that this is a general
expression for a Coulomb interaction. In general, the scalar
potential of an external charge is dynamically screened in the
dielectric material. Let us start with a general expression for a
force exerting on the j th ion, given by

�Fj = −
∫

d3rρj (�r,t)∇ϕtot(�r,t). (12)

Here the total scalar potential ϕtot(�r,t) consists of the
external potential ϕext(�r,t) plus the induced scalar potential
ϕind(�r,t). In the Fourier space, we have

ϕtot(�k,ω) = ϕext(�k,ω) + ϕind(�k,ω) = ϕext(�k,ω)

ε(�k,ω)
, (13)

and the scalar potentials in the real space are related with the
corresponding charge densities in the Fourier space as follows:

ϕa(�r,t) = 1

(2π )4

∫
d3k

∫ +∞

−∞
dω

4π

k2
ρa(�k,ω)

× exp{i(�k �·r − ωt)}, (14)

where the subscript represents a = tot, ext, ind. The expres-
sion of the force in Eq. (12) includes the self-interaction
terms so that, after removing them, we finally obtain the
expression of the force �Fj , which consists of the Coulomb
force and the expression of Eq. (10). As mentioned, there are
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two contributions in Eq. (10), i.e., the dissipated (or friction)
force and the conservative force. The conservative force and
the Coulomb force result in the screened Coulomb force.
Then we do not introduce the screened Coulomb force to
describe a repulsive force but treat the unscreened Coulomb
force separately.

It is interesting to describe the relation of the present forces
and the conventional expression for the electronic stopping
power of matter for the nonoriented cluster. It was done
by averaging the force �Fjz over the orientation of �Rji . Let
us denote by 〈A〉 the orientation average of a quantity A

over �Rji keeping the magnitude Rji constant. According to
a mathematical formula, we have

〈J0(aR⊥) cos(bRz)〉 = sin(R
√

a2 + b2)/(R
√

a2 + b2),
(15a)

〈J0(aR⊥) sin(bRz)〉 = 0. (15b)

Then we can finally obtain∑
j

〈Fjz〉 = 2

πV 2

∫ +∞

0
dk

1

k
〈|ρext(�k)|2〉

×
∫ kV

0
dωωIm

{ −1

ε(k,ω)

}
, (16a)∑

j

〈 �Fj⊥〉 = �0, (16b)

with

〈|ρext(�k)|2〉 =
∑

j

[ρj (k)]2 +
∑

j

∑
�(�=j )

ρj (k) ρ�(k)
sin(kRj�)

kRj�

.

(16c)

Here Rj� = | �Rj − �R�| is the relative distance between the j th
and �th ions. Equation (16a) is the familiar expression of the
electronic stopping power for a nonoriented cluster projectile,
whose charge density in Fourier space is given by Eq. (16c). It
is quite natural that the perpendicular component of the force
vanishes. From the above derivation, we confirm that Eq. (10)
is a general expression of the forces in a dielectric medium,
including the conservative and the dissipative ones as well as
the dynamic screened effect.

C. Enlargement of the internuclear separation
due to elastic collision

In this section, we present the contribution of elastic
collisions between a single ion and a target atom in the small-
angle approximation. As an ion traverses a solid, it experiences
subsequent elastic scatterings, and as a result, the moving
ion has an angular distribution around the incident direction
[28–31]. Here we consider the effect of this phenomenon on
enlargement of the internuclear distance. For simplicity, we
approximately describe the angular distribution by a Gaussian
f (θ ) = A exp(−θ2/〈θ2〉) as a function of deflection angle θ

with the normalization constant A. This angular distribution
gives rise to a lateral spread of the ion position perpendicular
to the incident direction. Let us assume the lateral spread �s
of the ion due to elastic scattering is also described by a
Gaussian f (�s) = 1

π �2
1

exp{−(�s − �s0)2/�2
1}, where �s0 is the

lateral position without elastic scattering. Here we introduce
the lateral spreading parameter �2

1, which is related to the
angular distribution parameter as below. First, using this
expression, we estimate the change of internuclear separation
of two independent ions located at positions �r1 = ( �s1,z1) and
�r2 = ( �s2,z2), due to one elastic collision. This can be done
by taking the following average: 〈| �r1 − �r2|2〉 = |z1 − z2|2 +
〈| �s1 − �s2|2〉, where

〈| �s1 − �s2|2〉 =
∫

d2s1

∫
d2s2| �s1 − �s2|2f ( �s1)f ( �s2)

= | �s10 − �s20|2 + 2�2
1. (17)

As a consequence, the interionic separation without
elastic collision, d12 = | �r1 − �r2|, is enlarged up to d̃12 =
(d2

12 + 2�2
1)1/2 by one elastic collision. Next we relate this

expression to the cross section σ of a single elastic scattering.
As the mean free path λ of a single elastic scattering is given
by λ = (Nσ )−1, so that the number n of elastic collisions
during the passage is given by n = τ/λ = Nστ , where τ is the
total path length or the foil thickness. If we take into account
the relation of θL = 1

2θc.m. between the scattering angle θL

in the laboratory (L) system and θc.m. in the c.m. system,
the lateral spreading due to a single scattering amounts to
�2

1 = λ2〈θ2〉L = λ2 1
4 〈θ2〉c.m., and the total lateral spreading

amounts to �2
total = 2n�2

1 in the case of λ < τ . Here we define
〈θ2〉c.m. = ∫

d�θ2 dσ
d�

/σ using a differential elastic scattering
cross section dσ

d�
. When the TFM potential is employed for

a two-body scattering, one obtains the differential scattering
cross section in the c.m. system as

dσ

d�
=

(
Z1Z2e

2

4E

)2
⎡⎣ 3∑

j=1

αj

sin2(θ/2) + (βj/2k0a)2

⎤⎦2

in Born approximation, whereE = (h̄k0)2/(2μ), k0 = μV/h̄,

μ=M1M2/(M1 + M2), and a = 0.8853a0
(
Z

1/2
1 + Z

1/2
2

)−2/3
.

The values of αj , βj (j = 1–3) are given in Eq. (3). Up to
here, we evaluate the contribution of the lateral spreading with
use of a statistical potential. We show that small-angle elastic
collisions have an effect of enlargement of the internuclear
separation through the lateral broadening.

D. Energy straggling and postfoil interaction

It is well known that the energy loss of swift particles transit-
ing a material fluctuates around its average value, resulting in
spreading energy spectrum. This fluctuation, called the energy
straggling, has several causes: statistical fluctuations in the
energy transfer to electrons [32], nonuniformity of thickness
of a target foil, molecular target effect [33], and fluctuation
of charge state via electron-capture and -loss processes [34].
Among them, the dominant contribution originates from
collisions with the target electrons in the bulk, which of a
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partially stripped j th ion is given in the dielectric form as

�2
j

/
(Nx) = 2h̄

πV 2

∫ +∞

0
dk

1

k
|ρj (�k)|2

×
∫ kV

0
dωω2Im

{ −1

ε(k,ω)

}
, (18)

where N and x denote the number density of target atoms and
the penetration path length.

Here we present another contribution which is unique to
cluster impact. It comes from the postfoil Coulomb interaction.
In order to see clearly, we assume a cluster composed of two
particles with masses m1 and m2. Emerging from a foil, their
charges and velocities are assumed q1, �v1 and q2, �v2, respec-
tively. The velocity of the c.m. is given by �VG = m1 �v1+m2 �v2

m1+m2
,

and the relative velocities in the c.m. frame are �u1 = �v1 − �VG

and �u2 = �v2 − �VG. Consequently, the energy conservation law
in the c.m. frame yields 1

2m1u
2
1 + 1

2m2u
2
2 + q1q2

R0
= 1

2m1u
2
1∞ +

1
2m2u

2
2∞. Here R0 indicates the relative distance between two

particles when exiting a foil, and u1∞ and u2∞ denote the
final speeds of particles 1 and 2 when infinitely far apart
from each other. With use of the momentum conservation law,
one can determine u1∞ and u2∞. The average energy in the
laboratory (L) frame under the action of Coulomb explosion is
given by Eav = 1

2 ( 1
2m1v

2
1∞ + 1

2m2v
2
2∞), so that the fluctuation

of energy is evaluated as �� = |Eav − 1
2m1v

2
1∞| =

|Eav − 1
2m2v

2
2∞|. This expression finally becomes

�� = 1

4
|(m2 − m1)V 2

G + m2u
2
2∞ − m1u

2
1∞

−2(m2u2∞ + m1u1∞) �VG · �e|,
where �e is the unit vector representing the direction of
Coulomb explosion. In the special case of homoatom clusters
(m1 = m2 = m), this reduces to

�� = 1

4
m

∣∣v2
1 − v2

2

∣∣ √1 + 4

(�v1 − �v2)2

q1q2

mR0
. (19)

If we neglect the postfoil interaction, it is easily
found that the fluctuation of energy is given by ��0 =
| 1

2 (mv2
1

2 + mv2
2

2 ) − mv2
1

2 | = 1
4m|v2

1 − v2
2 |. Thus the Coulomb po-

tential energy is converted to the kinetic energy of emerging
ions in a way that enlarges the difference in the kinetic energy.
This role is played similarly for more complicated clusters
coming out from a foil target. Finally, I would like to stress
that the energy straggling due to the postfoil interaction is a
unique process to cluster impact, where the average (or the
whole) energy loss of a cluster could not be influenced as long
as all constituent ions are detected after penetrating a foil.

III. NUMERICAL RESULTS AND DISCUSSION

We treated the carbon clusters C+
n (n = 1–6) in a linear-

chain structure with equal spacing of 2.4a0 = 0.127 nm,
normally incident on a thin carbon target. The incident kinetic
energy ranges from 0.5 to 5 MeV/atom. Here the incidence
of the cluster is axially symmetric with respect to the incident
direction so that it is characterized by the polar angle θ between

the cluster axis and the direction of incident velocity and also
it is independent of the azimuth angle. In our calculation, the
scenario is the following: The cluster is injected with a given
polar angle. On entrance, each ion becomes a PSI with an
average number of bound electrons that is determined by the
cluster average charge theory. Inside the target, the individual
ions are governed by the Coulomb force and the polarization
force. We solve the equation of motion of the constituent ions
in the cluster using the molecular dynamics (MD) method. On
emergence from the target foil, the Coulomb interaction works
only among the partially stripped ions, where individual ions
are assumed to keep the average charge, determined in the bulk
target. Therefore, the edge effect or the surface effect is not
taken into account. This is valid because the interaction time
between the surface and the ions penetrating a foil is very small
in our case. Thus the present situation is completely different
from that of grazing incidence.

It is well known that the dielectric function of the electron
gas includes two excitation modes. One is the single-electron
excitation and the other is the plasmon (or collective) excita-
tion. For the former, we use the analytical expression derived
by Lindhard [25], where four outer-shell electrons per carbon
atom are assumed to participate in the electron gas. This
assumption leads to a bulk plasmon energy h̄ωp = 25 eV for a
carbon target. For the latter, we adopt the following expression
in the high-frequency limit, including the damping effect as
1/ε = 1 + ω2

p/(ω2 − ω2
p + iωγ ), where the damping constant

relating to the lifetime of a plasmon is set to h̄γ = 3.3 eV. In
addition, the excitation of two inner-shell electrons is taken
into account in the dielectric formalism [27].

First, let us consider the lower-incident-energy case. In
Fig. 1, we show the average charge Q(1) and the kinetic energy
E(1) in units of keV of a single carbon ion incident at kinetic
energy of 0.5 MeV/atom on a carbon target, as a function
of penetration depth in units of the Bohr radius a0. Here, the
charge state of the ion is assumed to attain to an equilibrium
state as soon as it enters the target. This will be valid because
the depth during which the charge state is in a preequilibrium
state is very thin (e.g., 20a0). For a single-ion incidence, only
the friction force works so that the ion loses its kinetic energy
at the rate of the stopping power as it penetrates the target
more deeply. Also the average charge, depending on the speed
of the ion, is decreasing with decreasing speed. The values
of the kinetic energy and the average charge as a function of
the penetration depth are standard, since the corresponding
quantities per ion for the cluster incidence will be compared
with those for the single-ion incidence at equivalent speeds. An
example of a higher-energy case (2 MeV/atom) was already
shown in Ref. [10].

Let us move on to the cluster incidence. We define the
θ -dependent energy loss and average charge per ion for a
Cn

+ incidence, respectively, by �E(n,θ ) = (1/n)
∑n

j=1 dEj

and Q(n,θ ) = (1/n)
∑n

j=1 Qj with dEj = E0 − Ej . Here
E0 denotes the kinetic energy per atom of the incident cluster,
and Ej and Qj denote, respectively, the kinetic energy and
the average charge of the j th constituent ion, far enough away
from the target foil. We calculated step by step the kinetic
energies and the average charges with use of MD calculation
and finally obtained Ej ’s and Qj ’s for individual ions, which
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FIG. 1. (a) The average charge Q(1) and (b) the kinetic energy
E in units of keV of a carbon ion incident at 0.50 MeV/atom on a
carbon target, calculated as a function of penetration depth in units
of a0.

depend on the incident polar angle θ . Here, θ = 0◦ (θ = 90◦)
means that the cluster axis, or the alignment direction of
atoms, is parallel (perpendicular) to the incident direction.

Figure 2 shows the average charge and the average energy
loss of constituent ions as a function of θ for 0.5 MeV/atom C+

2
cluster ions passing through a carbon foil of 400a0 thickness.
In Fig. 2(a), the dashed line and the dash-dot line indicate
the average charges Q1 and Q2, of the leading and the
trailing ions, respectively, and the solid line indicates the
average value Q(2,θ ). From this figure, the average charges
of the two constituent ions are almost the same value up to
about θ = 60◦, while beyond that angle the average charges
gradually increase a bit to the maximum value at θ = 90◦. This
is due to the enlargement of the interatomic separation and the
spatial symmetry at the exit surface. According to the cluster
average charge theory [10], the average charges at infinite
separation converge to the corresponding value of the single
ion with the equivalent speed. Then the relation of Q(2,θ =
90◦) < Q1 = 1.483 means that the interatomic separation at
the exit surface is not as large as the influence of other ions is
negligible. Figure 2(b) shows the energy losses of the leading
ion and the trailing ion, indicated by the dashed line and the
dash-dot line, respectively. The average energy loss per ion
�E(2,θ ) is indicated by the solid line. In the small-θ region,
the leading ion loses its kinetic energy less than the trailing ion.
This is caused by the postfoil Coulomb interaction, through
which the leading ion is pushed forward and the trailing ion is
pulled backward so that the difference in their kinetic energies

FIG. 2. (a) Average charges and (b) the energy losses per ion (in
units of keV) of constituent ions penetrating a carbon target of 400a0

thickness, calculated for a 0.50 MeV/atom C+
2 cluster incidence as

a function of angle θ : the dashed lines represent the leading ion and
the dash-dot lines the trailing ion. The solid lines indicate (a) Q(2,θ )
and (b) �E(2,θ ).

becomes enlarged. At θ = 90◦ in Fig. 2(b), however, they have
the same kinetic energy. This result is reasonable since the two
ions are symmetric in space and in equivalent positions. It is
interesting that the energy difference of about 14 keV obtained
for θ > 60◦ becomes smaller with increasing θ and at last
vanishes at θ = 90◦. The average energy loss per ion �E(2,θ )
is a monotonically increasing function of θ from a minimum
at θ = 0 to a maximum at θ = 90◦. It means that the energy
loss of an aligned (θ = 0) diatomic molecular ion is less than
that of a randomly oriented one. This situation agrees with the
results obtained for the incidence of other diatomic ions with
an aligned interatomic axis [35,36].

Figure 3 shows the average charge and the average energy
loss of constituent ions for the 0.5 MeV/atom C+

3 cluster
incidence, and is similar to Fig. 2. The average charges of
the leading, the central, and the trailing ions in Fig. 3(a) are
represented by the dashed line, the dash-dot-dot line, and the
dash-dot line, respectively. The solid line displays the average
charge Q(3,θ ). At a glance, they tend to increase gradually
with respect to θ as seen for C+

2 in Fig. 2. Compared with
the central ion, the average charges of the two edge ions are
relatively large and equal at θ = 90◦. The average charge of the
central ion is always smaller than those of the edge ions. This
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FIG. 3. (a) Average charges and (b) the energy losses per ion (in
units of keV) of constituent ions penetrating a carbon target of 400a0

thickness, calculated for a 0.50 MeV/atom C+
3 cluster incidence as

a function of angle θ : the dashed lines represent the leading ion, the
dash-dot-dot lines the central ion, and the dash-dot lines the trailing
ion. The solid lines indicate (a) Q(3,θ ) and (b) �E(3,θ ).

feature comes from the magnitude of the binding energy, as is
first predicted by the cluster average charge theory [10] with
Coulomb repulsive force and without the polarization force.
Now Fig. 3(a) also shows that this remarkable feature in the
cluster average charge is still valid even if the polarization
force is taken into account, and it is also consistent with the
first experimental observation by Chiba et al. [11] with use
of the 1 MeV/atom C+

3 cluster. Figure 3(b) shows the energy
losses of the leading, the central, and the trailing ions, drawn
by the dashed line, the dash-dot-dot line, and the dash-dot line,
respectively. The solid line indicates the average energy loss
per ion �E(3,θ ). At θ = 0, the magnitude of the energy loss is
in order of the trailing, the central, and the leading ions, while
at θ = 90◦, the energy loss of the central ion is the largest and
those of the two edge ions are equal. �E(3,θ ) is monotonically
increasing with increasing θ from a minimum value at θ = 0;
there is also the same feature in the C+

2 incidence.
Figure 4 shows the average charge and the average energy

loss of constituent ions for the 0.5 MeV/atom C+
4 cluster

incidence on a carbon foil of 400a0 thickness. In Fig. 4(a),

FIG. 4. (a) Average charges and (b) the energy losses per ion (in
units of keV) of constituent ions penetrating a carbon target of 400a0

thickness, calculated for a 0.50 MeV/atom C+
4 cluster incidence as

a function of angle θ : the dashed lines represent the leading ion, the
dash-dot lines the second ion, the dash-dot-dot lines the third ion, and
the dotted lines the trailing ion. The solid lines indicate (a) Q(4,θ )
and (b) �E(4,θ ).

the average charges of the leading, the second, the third, and
the trailing ions are represented by the dashed line, the dash-dot
line, the dash-dot-dot line, and the dotted line, respectively. The
solid line displays the average charge Q(4,θ ). The difference
in the average charges of individual ions is relatively large at
θ = 0, but it becomes smaller at θ = 90◦. In this cluster the
average charges of the two edge ions are larger than those of the
two inner ions, due to the spatial symmetry and the magnitude
of the binding force. At a glance, the θ -dependent variation of
Q(4,θ ) is weaker than those of Q(2,θ ) and Q(3,θ ). Figure 4(b)
represents the energy losses of constituent ions. At θ = 0, the
leading, the second, the third, and the trailing ions have the
energy loss in magnitude in this order. On the other hand, at
θ = 90◦ the two edge ions have the energy losses larger than
those of the two inner ions. This means that the two inner ions
are behind the two edge ions and the linear-chain structure
at the entrance changes to a bent one at the exit of the foil
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as is also seen in a C+
3 penetration. The energy loss per ion

�E(4,θ ) is also an increasing function of θ , as is the same in
the C+

2 and C+
3 clusters. Regarding heavier clusters, Q(n,θ )

and �E(n,θ ) for C+
n (n = 5,6) have a similar character of the

θ dependences to those for smaller clusters C+
n (n = 2–4).

As a short summary, for a relatively low-MeV/atom cluster,
the value of Q(n,θ ) tends to increase with the increasing θ for
smaller clusters, while the variation of Q(n,θ ) with respect
to θ becomes weaker for larger clusters. From this tendency,
we may conjecture that the increase of the number of ions
smears out the variation of Q(n,θ ). In other words, it leads to
the idea that the influence of surrounding ions may be mainly
limited to the nearest- or the next-nearest-neighbor ions, and
consequently the edge ions play a tiny role in the average
charge for clusters consisting of a lot of atoms.

Let us move on to the orientation-averaged quantities,
derived from the θ -dependent quantities. In general, the
θ -dependent quantity Y (n,θ ) obtained for the incidence of
the cluster C+

n in a linear-chain structure leads to the averaged
value over the allowed θ values by taking into account the
weight function W (θ ) = sin θ for axial symmetry. Thus we
obtain the average value per ion, Y (n), from the following
definition:

Y (n) =
∫ π/2

0
dθW (θ )Y (n,θ )

/∫ π/2

0
dθW (θ )

=
∫ π/2

0
dθ sin θY (n,θ ). (20)

On the basis of the above consideration, the average charge
per ion, Q(n), and the average energy loss per ion, �E(n),
calculated for the 0.50 MeV/atom C+

n cluster incident on
a carbon foil of 400a0 thickness are shown as the solid
squares in Fig. 5. There one finds that Q(n) in Fig. 5(a)
decreases with increasing number n of constituent atoms in
the cluster, and that in the case of n = 6, it is reduced more
than 10%, compared with Q(1) for a single carbon atom with
an equivalent speed. On the other hand, �E(n) in Fig. 5(b)
tends to gradually decrease to n = 3 and saturate in a range of
n = 3–6. In addition, the reduction of the relative energy loss
per ion, �E(n)/�E(1), amounts to 5% at most, representing a
significant contrast to the average charge reduction. These two
remarks mean that both the average charge and the energy loss
per ion for the clusters depend on the number of constituent
atoms weaker than the linear relation. Recently, Tomita et al.
[24] measured the energy loss of the constituent ions for carbon
clusters C+

n (n = 1–4) with kinetic energy 0.50 MeV/atom,
penetrating a carbon foil of thickness 5.7 μg/cm2.
Their results lead to �E(n)/�E(1) ≈ 0.95, which is in good
agreement with the calculated result shown in Fig. 5. In
order to confirm to what extent the average charge reduction
contributes, we also carried out the similar calculation for a
carbon foil of 480a0 thickness with and without taking into
account the cluster average charge reduction. The calculated
result without charge reduction is drawn by solid triangles in
Fig. 5(b) for the clusters C+

n (n = 2–4), which shows that the
energy loss per ion amounts to a few percent reduction. On
the other hand, the results with charge reduction included are
plotted as the open circles, which are close to the values for a
carbon foil of 400a0 thickness. This means that the reduction

FIG. 5. The n dependences of (a) the ratio of the average charge
per ion Q(n)/Q(1) and (b) the ratio of the energy loss per ion,
�E(n)/�E(1), calculated for the 0.50 MeV/atom C+

n (n = 1–6)
incidence on carbon target of thickness d . Solid squares are for
d = 400a0 with reduction of the cluster average charge; the open
circles are for d = 480a0 with reduction of the cluster average charge;
and the solid triangles are for d = 480a0 without reduction of the
cluster average charge.

value is suppressed to be about half in the corresponding cases
where the charge reduction effect is excluded.

In the above cases, we concentrate on the emergence of
the sublinear (or negative) cluster effect in detail at relatively
lower energy (i.e., 0.5 MeV/atom), and we confirm the
existence of the sublinear effect. Next, in order to look
into implementation of the present theory, we consider the
higher-incident-energy cases, where the superlinear (or the
positive) cluster effect will be expected. Figure 6 shows
the average charge per ion Q(n,θ ) for a Cn (n = 2–6)
cluster ion penetrating a carbon foil of 480a0 thickness at
E = 4.8 MeV/atom. One sees in Fig. 6(a) that Q(n,θ ) is
almost constant, representing a very weak θ dependence.
Moreover, with increasing number of atoms, the average
charge is decreasing. This latter tendency is also valid at
the lower energies. Figure 6(b) represents a remarkable
feature in �E(n,θ ). At E = 4.80 MeV/atom, �E(n,θ ) has
a maximum around θ = 35◦–40◦, and �E(n,θ ) at lower
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FIG. 6. (a) Q(n,θ ) and (b) �E(n,θ) for a C+
n (n = 1–6) at

4.8 MeV/atom, calculated as a function of incident orientation angle
θ : n = 2 (dashed lines), n = 3 (dash-dot lines), n = 4 (dash-dot-dot
lines), n = 5 (dotted lines), and n = 6 (solid lines).

θ decreases with increasing n. On the contrary, at E =
500 keV/atom as shown in Figs. 2(b), 3(b), and 4(b), �E(n,θ )
(n = 2–4) monotonically increases with increasing θ , and the
perpendicular orientation (θ = 90◦) yields the maximum value
of the average energy loss. Moreover, in Fig. 6(b), �E(n,0)
decreases and �E(n,90) increases with increasing n. Namely,
they display an opposite trend, and the difference between
them, i.e., �E(n,90) − �E(n,0), becomes larger for larger n.
The increase of �E(n,θ ) around θ = 90◦ is found at both E =
4.8 MeV/atom and 500 keV/atom. Thus, one recognizes that
the n and θ dependences of �E(n,θ ) display characteristic
features, depending on the incident energy. These tendencies
are due to the force originating from the electron polarization.
At low incident energies, the induced electronic polarization
potential contributes to the static screening of the electric fields
of the ion; however, at relatively high incident energies, it could
not accompany the moving ion so that it tends to oscillate
and becomes strong, because of the higher average charge.
This complex behavior influences the motion of constituent
ions, and is different from the monotonic effect of a Coulomb
repulsion potential. Finally, the difference in �E(n,θ ) at E =
4.8 MeV/atom between the maximum and the minimum of
�E(n,θ ) increases from 5 keV for C+

2 to 24 keV for C+
6 . It

is noticed that in case of n = 2, the difference between the
maximum and the minimum values at E = 4.8 MeV/atom

FIG. 7. (a) �E(n) − �E(1) vs n, and (b) Q(n)/Q(1) vs n,
calculated for a Cn (n = 2–6) at the incident energy of 4.8 MeV/atom
(solid squares) and 675 keV/atom (solid circles).

is smaller than that obtained at E = 500 keV/atom. Thus,
inclusion of the polarization force brings a different aspect,
depending on the incident energy.

Hereafter we present the θ -averaged energy loss per ion
�E(n) and the θ -averaged average charge per ion Q(n).
Figure 7(a) shows the difference of the energy loss per ion,
�E(n) − �E(1) for a C+

n ion penetrating a carbon foil of
480a0 thickness, as a function of the particle number n, where
the positive cluster effect is found at E = 4.8 MeV/atom
and the negative one is seen at E = 675 keV/atom. In the
lower-energy case, the negative effect in �E(n) − �E(1)
seems to saturate at n = 3, while the positive effect does so at
n = 5. On the other hand, the average charge ratio Q(n)/Q(1)
in Fig. 7(b) shows the negative effect in both cases of E =
4.8 MeV/atom and E = 675 keV/atom, and the degree of
suppression is stronger at E = 4.8 MeV/atom. This is because
the dwell time in a foil is shorter and expansion of mutual
separation among ions is not evolved so much, which results
in a stronger influence of the surrounding ions.

Finally, in order to confirm the cluster effect in both
energy loss and average charge in a wide energy range, we
present Q(n)/Q(1) in Fig. 8 and �E(n) − �E(1) in Fig. 10
in the incident energy range from 0.30 MeV/atom to ∼5
or 6 MeV/atom for a C+

n (n = 2,4,6) penetrating a carbon
foil together with the existing experimental data. In our
calculation, the foil thickness is set to be 480a0 (∼25.4 nm),
or, 5.72 μg/cm2. Figure 8 indicates that the calculated average
charge ratio decreases with increasing both the incident energy
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FIG. 8. Q(n)/Q(1) calculated as a function of the incident energy
for a Cn (n = 2,4,6) penetrating carbon foil of 480a0 (=5.7 μg/cm2)
thickness (n = 2, dashed line; n = 4, dash-dot line; and n = 6, solid
line), together with the experimental data [9] for 5.30 μg/cm2 carbon
foil (n = 3, �; n = 5, •).

and the number of constituent ions, except for a very small dip
appearing in the C2 case. In the case of C6 incidence, the value
of Q(n)/Q(1) is reduced to about 0.83. For reference, the
experimental data, obtained by Brunelle et al. [9] for C+

3 and
C+

5 ions penetrating a carbon foil of 5.30 μg/cm2, are plotted
by the solid squares and the solid circles, respectively. Though
they have large error bars, the data around E = 2 MeV/atom
show that a larger cluster has a lower average charge ratio.
The decreasing dependence of the calculated charge ratio on
the particle number, which is seen up to 4.8 MeV/atom (i.e.,
v = 4v0), is supported by the existing data. However, one
might be aware that the average charge ratio has to approach
unity at extremely high speed. In order to confirm it, we present
Fig. 9, where the calculated values of Q(n) (n = 2,4,6) for a
linear-chained Cn with equal interionic separation of 2.4a0, are
drawn in a wider range of speed v in units of v0, together with
Q(1). One finds that the dashed line (n = 2), the dot-dash line

1
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6

1 2 3 4 5 6 7 8 9 10

Q
(n

)

V / V 0

FIG. 9. Q(n) calculated for Cn (n = 2,4,6) with equal interionic
separation of 2.4a0, together with Q(1) (thin solid line) as a function
of speed v in units of v0 (n = 2, dashed line; n = 4, dot-dash line;
and n = 6, thick solid line).

FIG. 10. �E(n) − �E(1) as a function of the incident energy (a)
for C2, (b) for C4, and (c) for C6. The experimental data: �, Baudin
et al. [21];•, Tomita et al. [25]; �, Brunelle et al. [18]. The calculated
result: solid lines.

(n = 4), and the thick solid line (n = 6) tend to approach the
thin solid line (n = 1), as the speed increases. It is noticed that
the stronger the binding effect becomes, the more the curve of
Q(n) shifts toward the higher-speed side. Figure 10 shows the
energy-loss difference, �E(n) − �E(1), for a C+

n (n = 2,4,6)
ion penetrating a carbon foil of 480a0 thickness, as a function
of the incident energy per atom. Regarding C2

+ incidence,
shown in Fig. 10(a), the value of �E(n) − �E(1) changes
around 1.5 MeV/atom from negative to positive; this we
call the threshold energy. In addition, it can be seen that
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the calculated value of �E(n) − �E(1) increases gradually
with increasing incident energy over 2.5 MeV/atom. In the
positive region, the calculated result is in good agreement with
the experimental data obtained by Baudin et al. [21], though
those data have large error bars. On the other hand, in the
negative region, our result agrees well with the recent data
obtained at 0.5 MeV/atom by Tomita et al. [25], where they
have a small error bar, and the data obtained at 1.01 MeV/atom
by Brunelle et al. [18]. Figures 10(b) and 10(c) represent
�E(n) − �E(1) in the cases of C+

4 and C+
6 incidence,

respectively. The trends of those calculated result are similar
to the case of C+

2 incidence and the threshold energies are
located at almost the same value for C+

n (n = 2,4,6) incidence.
Moreover, comparing the three theoretical curves, we find
the remarkable aspect that the increase of �E(n) − �E(1)
against the incident energy in the positive region becomes
steeper as the particle number increases. The decreasing
trend obtained for C+

6 incidence by Baudin et al. [21] with
increasing energy cannot be found in the present calculation.

Finally, we give several comments for elaboration. First, the
contribution of a small-angle elastic collision to enlargement
of the internuclear separation is in substance negligibly small
for the swift cluster ions penetrating thin foils investigated
here. Consider the case of E = 0.675 MeV/atom, which is
expected to have a prominent contribution of elastic scattering
in this paper. According to the numerical evaluation, we
have 〈θ2〉c.m. = 2.2 × 10−4, σ = 1.6a2

0 , λ = 2.0 nm, n = 13,
which yields �2

1 � 2.2 × 10−4 (nm)2. Then the enlarged sep-
aration is evaluated as d̃12 = 0.1289 nm and d̃12/d12 = 1.013
when the separation without elastic collision is assumed to be
d12 = 0.1272 nm. With increasing incident energy, the mean
free path of elastic collision is growing and the scattering prob-
ability is strongly diminishing. In an extreme case, the mean
free path exceeds the foil thickness. Thus, the elastic collision
hardly influences the numerical results presented in this paper.
If a larger-angle elastic collision were to occur in a foil, one or
more constituent ions in a cluster would be eliminated in one
event detection catching all constituent ions after transmission.
This case is out of the present consideration. Second, let us
give a comment on the energy straggling in a foil. According
to the estimate Eq. (18), which includes the contribution of
four conduction electrons and two 1s electrons per carbon
atom, we have �2

C/Nx = 1.0 × 10−11 eV2 cm2 and 3.46 ×

10−11 eV2 cm2 for a carbon ion at E = 675 keV/atom and
4.8 MeV/atom, respectively. Then, for a carbon ion penetrat-
ing a carbon foil of 480a0 thickness with E = 675 keV/atom
and 4.8 MeV/atom, the energy straggling values are
�C = 1.70 keV and 3.16 keV, respectively. Although these
values bring about the broadening of energy-loss spectra, the
θ -dependent energy loss shown in the figures cannot be washed
out.

In conclusion, we studied the cluster effect in the average
charge and the energy loss for MeV/atom carbon clusters in
a linear-chain structure penetrating a carbon foil. Regarding
the cluster average charge, the sublinear effect is found
regardless of the incident energy. If we increase the incident
energy and the number of atoms in a cluster, this negative
effect is enhanced as far as the present study is concerned.
On the other hand, the energy loss of the carbon-cluster
ions incident on carbon foil at the lower energies lower
(greater) than the threshold energy (∼1.5 MeV/atom) is found
to be weaker (stronger) than the linear dependence on the
number of constituent particles. The sublinear and superlinear
effects theoretically obtained were in good agreement with
the existing experimental data. The sublinear dependence
is in contrast to a recent theoretical result [22], predicting
superlinear dependence. We remark that the reduction of the
cluster average charge plays a significant role in the sublinear
dependence of the cluster energy loss. On the other hand,
at incident energies greater than the threshold, the present
theory was also found to predict the positive cluster effect in
nice agreement with the data, though taking into account the
sublinear cluster effect in the average charge. We also point out
that the postfoil effect enlarges the energy straggling while the
average energy loss of the whole cluster is kept unchanged.
This effect will be especially magnified under the parallel
(θ = 0) incident condition. This new contribution to energy
straggling is unique to cluster incidence.

ACKNOWLEDGMENTS

The author thanks Professor H. Kudo and Dr. S. Tomita of
the University of Tsukuba and Dr. A. Chiba, Dr. Y. Saitoh, and
Dr. K. Narumi of JAEA cluster group, Takasaki, for valuable
discussions. The author is grateful to Professor H. Ogawa of
Nara Women’s University for useful discussion.

[1] P. Attal, S. Della-Negra, D. Gardes, J. D. Larson, Y. Le. Beyec,
R. Vienet-Legue, and B. Waast, Nucl. Instrum. Methods Phys.
Res., Sect. A 328, 293 (1993).

[2] I. Yamada, J. Matsuo, N. Toyoda, and A. Kirkpatrick, Mater.
Sci. Eng., R 34, 231 (2001).

[3] B. Farizon, M. Farizon, M. J. Gaillard, E. Gerlic, and S. Ouaskit,
Nucl. Instrum. Methods Phys. Res., Sect. B 88, 86 (1994).

[4] A. Itoh, H. Tsuchida, T. Majima and N. Imanishi, Phys. Rev.
A 59, 4428 (1999); A. Itoh, H. Tsuchida, T. Majima, S. Anada,
A. Yogo, and N. Imanishi, ibid. 61, 012702 (1999); H. Tsuchida,
A. Itoh, K. Miyabe, Y. Bitoh and N. Imanishi, J. Phys. B 32, 5289
(1999).

[5] T. LeBrun, H. G. Berry, S. Cheng, R. W. Dunford, H. Esbensen,
D. S. Gemmell, E. P. Kanter, and W. Bauer, Phys. Rev. Lett. 72,
3965 (1994).

[6] A. Faibis, G. Goldring, M. Hass, R. Kaim, I. Plesser and
Z. Vager, Nucl. Instrum. Methods 194, 299 (1982).

[7] K. Wohrer, M. Chabot, J. P. Rozet, D. Gardes, D. Vernhet,
D. Jacquet, S. Della Negra, A. Brunelle, M. Nectoux,
M. Pautrat, Y. Le. Beyec, P. Attal and G. Maynard, J. Phys.
B 29, L755 (1996); M. Chabot, K. Wohrer, J. P. Rozet,
D. Gardes, D. Vernhet, D. Jacquet, S. Della Negra, A. Brunelle,
M. Nectoux, M. Pautrat, Y. Le. Beyec, Phys. Scr., T 73, 282
(1997).

012901-11

http://dx.doi.org/10.1016/0168-9002(93)90645-X
http://dx.doi.org/10.1016/0168-9002(93)90645-X
http://dx.doi.org/10.1016/S0927-796X(01)00034-1
http://dx.doi.org/10.1016/S0927-796X(01)00034-1
http://dx.doi.org/10.1016/0168-583X(94)96085-2
http://dx.doi.org/10.1103/PhysRevA.59.4428
http://dx.doi.org/10.1103/PhysRevA.59.4428
http://dx.doi.org/10.1103/PhysRevA.61.012702
http://dx.doi.org/10.1088/0953-4075/32/22/307
http://dx.doi.org/10.1088/0953-4075/32/22/307
http://dx.doi.org/10.1103/PhysRevLett.72.3965
http://dx.doi.org/10.1103/PhysRevLett.72.3965
http://dx.doi.org/10.1016/0029-554X(82)90532-8
http://dx.doi.org/10.1088/0953-4075/29/20/006
http://dx.doi.org/10.1088/0953-4075/29/20/006
http://dx.doi.org/10.1088/0031-8949/1997/T73/092
http://dx.doi.org/10.1088/0031-8949/1997/T73/092


TOSHIAKI KANEKO PHYSICAL REVIEW A 86, 012901 (2012)

[8] K. Hirata, Y. Saitoh, A. Chiba, M. Adachi, K. Yamada and
K. Narumi, Nucl. Instrum. Methods Phys. Res., Sect. B 266,
2450 (2008); K. Hirata, Y. Saitoh, K. Narumi and Y. Kobayashi,
Appl. Phys. Lett. 81, 3669 (2002).

[9] A. Brunelle, S. Della-Negra, J. Depauw, D. Jacquet, Y. LeBeyec,
M. Pautrat, Phys. Rev. A 59, 4456 (1999).

[10] T. Kaneko, Phys. Rev. A 66, 052901 (2002).
[11] A. Chiba, Y. Saitoh, K. Narumi, M. Adachi, and T. Kaneko,

Phys. Rev. A 76, 063201 (2007).
[12] H. Kudo, W. Iwazaki, R. Uchiyama, S. Tomita, K. Shima,

K. Sasa, S. Ishii, K. Narumi, H. Naramoto, Y. Saitoh,
S. Yamamoto and T. Kaneko, Jpn. J. Appl. Phys. 45, L565
(2006).

[13] S. Tomita, S. Yoda, R. Uchiyama, S. Ishii, K. Sasa, T. Kaneko
and H. Kudo, Phys. Rev. A 73, 060901(R) (2006).

[14] T. Kaneko, H. Kudo, S. Tomita, and R. Uchiyama, J. Phys. Soc.
Jpn. 75, 034717 (2006).

[15] H. Kudo, H. Arai, S. Tomita, S. Ishii and T. Kaneko, Vacuum
84, 1014 (2010).

[16] M. Vicanek, I. Abril, N. R. Arista, and A. Gras-Marti, Phys. Rev.
A 46, 5745 (1992).

[17] T. Kaneko, Nucl. Instrum. Methods Phys. Res., Sect. B 88, 86
(1994).

[18] A. Brunelle, S. Della-Negra, J. Depauw, D. Jacquet, Y. Le.
Beyec, M. Pautrat, and Ch. Schoppmann, Nucl. Instrum.
Methods Phys. Res., Sect. B 125, 207 (1997).

[19] T. Kaneko, Nucl. Instrum. Methods Phys. Res., Sect. B 153, 15
(1999).

[20] E. Ray, R. Kirsch, H. H. Mikkelsen, J. C. Poizat, and
J. Remillieux, Nucl. Instrum. Methods Phys. Res., Sect. B 69,
133 (1992).

[21] K. Baudin, A. Brunelle, M. Chabot, S. Della-Negra,
J. Depauw, D. Gardes, P. Hakansson, Y. Le. Beyec, A. Billebaud,
M. Fallavier, J. Remillieux, J. C. Poizat, and J. P. Thomas, Nucl.
Instrum. Methods Phys. Res., Sect. B 94, 341(1994).

[22] S. Heredia-Avalos, R. Garcia-Molina, and I. Abril, Phys. Rev. A
76, 012901 (2007).

[23] C. Tomaschko, D. Brandl, R. Kuegler, M. Schurr and H.
Voit, Nucl. Instrum. Methods Phys. Res., Sect. B 103, 407
(1995).

[24] A. Chiba, Y. Saitoh, K. Narumi, Y. Takahashi, K. Yamada and
T. Kaneko, Nucl. Instrum. Methods Phys. Res., Sect. B 269, 824
(2011).

[25] S. Tomita, M. Murakami, N. Sakamoto, S. Ishii, K. Sasa,
T. Kaneko, and H. Kudo, Phys. Rev. A 82, 044901 (2010).

[26] J. Lindhard and A. Winther, Mat. Fys. Medd. K. Dan. Vidensk.
Selsk. 34, 1 (1964).

[27] T. Kaneko, Phys. Rev. A 40, 2188 (1989); Phys. Status
Solidi B 156, 49 (1989); At. Data Nucl. Data Tables 53, 271
(1993).

[28] J. Lindhard, V. Nielsen, and M. Scharff, Mat. Fys. Medd. K.
Dan. Vidensk. Selsk. 36, 10 (1968).

[29] P. Sigmund and K. B. Winterbon, Nucl. Instrum. Methods 119,
541 (1974).

[30] J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and
Range of Ions in Solids (Pergamon, New York, 1985).

[31] S. Ikegami and T. Kaneko, Bull. Okayama Univ. Sci. A 42, 21
(2006); T. Kaneko and S. Ikegami, Nucl. Instrum. Methods Phys.
Res., Sect. B 258, 57 (2007).

[32] N. Bohr, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 18, 8
(1954).

[33] F. Besenbacher, J. U. Andersen, and E. Bonderup, Nucl. Instrum.
Methods 168, 1 (1980).

[34] T. Kaneko and Y. Yamamura, Phys. Rev. A 33, 1653
(1986).

[35] M. F. Steuer, D. S. Gemmell, E. P. Kanter, E. A. Johnson, and
B. J. Zabransky, Nucl. Instrum. Methods Phys. Res. 194, 277
(1982).

[36] M. F. Steuer and R. H. Ritchie, Nucl. Instrum. Methods Phys.
Res., Sect. B 40-41, 372 (1989).

012901-12

http://dx.doi.org/10.1016/j.nimb.2008.03.019
http://dx.doi.org/10.1016/j.nimb.2008.03.019
http://dx.doi.org/10.1063/1.1520336
http://dx.doi.org/10.1103/PhysRevA.59.4456
http://dx.doi.org/10.1103/PhysRevA.66.052901
http://dx.doi.org/10.1103/PhysRevA.76.063201
http://dx.doi.org/10.1143/JJAP.45.L565
http://dx.doi.org/10.1143/JJAP.45.L565
http://dx.doi.org/10.1103/PhysRevA.73.060901
http://dx.doi.org/10.1143/JPSJ.75.034717
http://dx.doi.org/10.1143/JPSJ.75.034717
http://dx.doi.org/10.1016/j.vacuum.2009.10.020
http://dx.doi.org/10.1016/j.vacuum.2009.10.020
http://dx.doi.org/10.1103/PhysRevA.46.5745
http://dx.doi.org/10.1103/PhysRevA.46.5745
http://dx.doi.org/10.1016/0168-583X(94)96085-2
http://dx.doi.org/10.1016/0168-583X(94)96085-2
http://dx.doi.org/10.1016/S0168-583X(97)00902-6
http://dx.doi.org/10.1016/S0168-583X(97)00902-6
http://dx.doi.org/10.1016/S0168-583X(99)00032-4
http://dx.doi.org/10.1016/S0168-583X(99)00032-4
http://dx.doi.org/10.1016/0168-583X(92)95749-H
http://dx.doi.org/10.1016/0168-583X(92)95749-H
http://dx.doi.org/10.1016/0168-583X(94)95376-7
http://dx.doi.org/10.1016/0168-583X(94)95376-7
http://dx.doi.org/10.1103/PhysRevA.76.012901
http://dx.doi.org/10.1103/PhysRevA.76.012901
http://dx.doi.org/10.1016/0168-583X(95)00617-6
http://dx.doi.org/10.1016/0168-583X(95)00617-6
http://dx.doi.org/10.1016/j.nimb.2010.12.002
http://dx.doi.org/10.1016/j.nimb.2010.12.002
http://dx.doi.org/10.1103/PhysRevA.82.044901
http://dx.doi.org/10.1103/PhysRevA.40.2188
http://dx.doi.org/10.1002/pssb.2221560104
http://dx.doi.org/10.1002/pssb.2221560104
http://dx.doi.org/10.1006/adnd.1993.1007
http://dx.doi.org/10.1006/adnd.1993.1007
http://dx.doi.org/10.1016/0029-554X(74)90805-2
http://dx.doi.org/10.1016/0029-554X(74)90805-2
http://dx.doi.org/10.1016/j.nimb.2006.12.093
http://dx.doi.org/10.1016/j.nimb.2006.12.093
http://dx.doi.org/10.1016/0029-554X(80)91224-0
http://dx.doi.org/10.1016/0029-554X(80)91224-0
http://dx.doi.org/10.1103/PhysRevA.33.1653
http://dx.doi.org/10.1103/PhysRevA.33.1653
http://dx.doi.org/10.1016/0029-554X(82)90527-4
http://dx.doi.org/10.1016/0029-554X(82)90527-4
http://dx.doi.org/10.1016/0168-583X(89)91001-X
http://dx.doi.org/10.1016/0168-583X(89)91001-X

