
PHYSICAL REVIEW A 86, 012705 (2012)

Quasi-one-dimensional atomic gases across wide and narrow confinement-induced resonances

Xiaoling Cui
Institute for Advanced Study, Tsinghua University, Beijing, 100084, People’s Republic of China

and Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
(Received 30 January 2012; revised manuscript received 1 July 2012; published 17 July 2012)

We study quasi-one-dimensional atomic gases across wide and narrow confinement-induced resonances (CIRs).
We show using the virial expansion that, by tuning the magnetic field, the repulsive scattering branch initially
prepared at low fields can continuously go across CIRs without decay; instead, the decay occurs when the
noninteracting limit is approached. The interaction properties essentially rely on the resonance width of the CIR.
Universal thermodynamics holds for the scattering branch right at a wide CIR, but is smeared out in a narrow CIR
due to the strong energy dependence of the coupling strength. In wide and narrow CIRs, the interaction energy
of the scattering branch shows different types of strong asymmetry when the decay is approached from opposite
sides of the magnetic field. Finally, we discuss the stability of the repulsive branch for a repulsively interacting
Fermi gas in different trapped geometries at low temperatures.
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I. INTRODUCTION

Quasi-one-dimensional (1D) atomic gases across scatter-
ing resonances can be realized in laboratories by utilizing
confinement-induced resonance (CIR) [1]. By initially prepar-
ing the system at a high or low magnetic field and sweeping the
field properly, the quasi-1D system can evolve on the attractive
branch with molecules [2] or on the repulsive scattering branch
that is free of molecules [3,4]. Quasi-1D atomic gases have
many fascinating properties that are very different from those
of 3D gases. For instance, in quasi-1D a two-body bound
state exists for an arbitrary s-wave scattering length as [1,2].
The three-body recombination rate of 1D bosons is efficiently
suppressed in the Tonks-Girardeau (TG) regime with strong
repulsion [3,5]. A long-lived metastable quantum phase in
the super-TG regime [6,7] has been realized in the scattering
branch of a 1D bosonic system with strong attraction [4].

Apart from dimensionality, the resonance width is another
important ingredient affecting many-body properties. Take
(3D) Feshbach resonance (FR) for example. In a wide FR,
where the width is much larger than the typical energy
scale E∗ [8], the system exhibits universal thermodynamics
(UT) right at resonance where as diverges [9,10]. UT means
that the thermodynamic potential is a universal function of
the temperature and density, regardless of any detail of the
interparticle interactions. However, in a narrow FR, where the
width is much smaller than E∗, the universality is not evident
due to the considerable effective-range effect [11]. Another
interesting property in a narrow FR is that the interaction
energy shows strong asymmetry when the resonance is
approached from different sides [12], as has recently been
observed in a 6Li Fermi gas [13]. Considering the facts that the
quasi-1D geometry is reduced from 3D by confinement and the
1D resonance originates from the 3D s-wave interaction, it is
natural to expect that the effective-range effect in 3D will also
influence the interaction properties of the quasi-1D system.

In this work, from the analysis of two-body solutions and
high-temperature virial expansions, we study the scattering
property and thermodynamics of quasi-1D atomic gases
across CIRs. We shall show that the quasi-1D geometry
greatly modifies the stability of the repulsive scattering branch

compared to the 3D case. As in FRs, CIRs can also be
classified as wide or narrow according to the resonance width.
We find very different thermodynamic properties between
wide and narrow CIRs due to the energy dependence of the
coupling strength. The stability of the repulsive branch in other
trapped geometries, such as isotropic 3D traps or anisotropic
quasi-low-dimensional trapped systems, is also discussed in
combination with recent developments on cold Fermi gases in
the laboratories. We use h̄ = kB = 1 throughout the paper.

The paper is organized as follows. In Sec. II, we introduce
the effective quasi-1D scattering, from which the wide and nar-
row CIRs are defined and the corresponding thermodynamics
is presented. In Sec. III we carry out a high-T virial expansion
for an effectively 1D system, and present a detailed study of
the stability and thermodynamic properties of the repulsive
branch. An extensive discussion of the stability of repulsive
the branch for a cold Fermi gas in various trapped geometries
is given in Sec. IV. Finally we summarize the paper in Sec. V.

II. EFFECTIVE ONE-DIMENSIONAL SCATTERING
AND THERMODYNAMICS

The Schrödinger equation for the relative motion of two
atoms moving in quasi-1D is

H0ψ(r) + 4πas(E)

m
δ(r)

∂

∂r
[rψ(r)]|r→0 = Eψ(r); (1)

here the noninteracting part is H0 = −∇2
r /m + mω2

⊥(x2 +
y2)/4, r = (x,y,z), and r = |r|; In the pseudopotential part,
we use the energy-dependent s-wave scattering length obtained
from a renormalization procedure [14,15]:

as(E) = abg

(
1 + W

E/δμ − (B − B0)

)
. (2)

as(E) physically describes both wide and narrow FRs, with
background scattering length abg, magnetic field B, resonance
position B0, width W , and magnetic moment difference δμ

between the atom and the closed molecular state.
The reduced quasi-1D scattering from the 3D s-wave

interaction has been analyzed by Olshanii and co-workers [1].
For low-energy scattering with E = ω⊥ + k2/m and k2/m �
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2ω⊥, the wave function at large interparticle distance is frozen
in the lowest transverse mode, and its even-parity part is phase
shifted as �even(r) ∼ exp[−(x2 + y2)/(2a2

⊥)] cos(k|z| + δk),
with a⊥ = √

2/(mω⊥) and

cot δk = −ka⊥
2

[
a⊥

as(E)
− C0 + o

(
k2a2

⊥
4

)]
, (3)

where C0 = 1.4603. Hereafter we neglect the small correction
from the last term in Eq. (3). δk in turn determines the 1D
energy-dependent coupling strength g(Ē) = 2k tan δk/m with
Ē = k2/m, as

g(Ē) = gbg

(
1 + W1D

Ē/δμ − (B − B1D)

)
, (4)

where gbg = 2γω⊥abg, W1D = γW, B1D = B0 − (γ −
1)W − ω⊥/δμ, with γ = (1 − C0abg/a⊥)−1 (see also [15]).
Equation (4) explicitly shows all realistic parameters describ-
ing CIRs, namely, the background coupling gbg, the resonance
position B1D, and the width W1D. Near a CIR (B ∼ B1D) and
for Ē � δμW1D, one can construct an effective-range model
to formulate the 1D interaction,

1

g(Ē)
= 1

g1D
− m

2γ 2ω⊥
r0Ē, (5)

with g1D the zero-energy coupling strength and r0 =
−1/(mabgδμW ) the effective range characterizing the E
dependence in as(E) [16]. To this end, Eqs. (4) and (5) show
the reduced effective-range effect (or E dependence of the
coupling strength) in going from a 3D to a quasi-1D system.

In tight transverse confinements and the low-atomic-density
(n) limit, na⊥ � 1, we consider an effective 1D system with
interaction given by Eq. (4). Generally, the pressure takes the
form

P = μ(2mμ)1/2F
(

T

μ
,

{
δμ(B − B1D)

μ
,
δμW1D

μ
,
Ebg

μ

})
,

(6)

where μ is the chemical potential, Ebg = mg2
bg, and F is a

dimensionless function.
For wide CIRs, δμW1D (	 2ω⊥) 	 n2/m, the E depen-

dence in Eqs. (4) and (5) is negligible, and the interaction
parameters in braces of Eq. (6) can be replaced by a single
g1D. The pressure is then reduced to

P = μ(2mμ)1/2F
(

T

μ
,

μ

mg2
1D

)
. (7)

In wide CIRs (g1D = ∞), P is just a function of T and μ

(or T and n), indicating UT for the scattering branch [17].
Particularly at T = 0, UT can be established by noting that the
bosons and spin-1/2 fermions with infinite repulsion are fully
fermionalized, with energy identical to that of an ideal single-
species Fermi sea [7,18]. However, in narrow CIRs (B = B1D),
Eq. (6) still essentially relies on other interaction parameters
(W1D,gbg) and thus UT is absent. More explicitly, UT can be
identified by virial expansions at high temperatures.

III. HIGH-TEMPERATURE VIRIAL EXPANSION

At high temperatures, n2/m � T � 2ω⊥, we carry out
virial expansions on the effectively 1D system [19]. The

pressure can be expanded using the small fugacity z = eμ/T

as P = α T
λ

∑
n�1 bnz

n, where λ = √
2π/(mT ) is the thermal

wavelength, and α is 1 for spinless bosons and 2 for an
equal mixture of spin-1/2 fermions. Compared with the
noninteracting case (with superscript 0),

P = P (0) + α
T

λ

∑
n�2

(bn − b(0)
n )zn. (8)

Here the difference bn − b(0)
n characterizes the interaction

effect in the n-body cluster, which is generally a function of
{ δμ(B−B1D)

T
,
δμW1D

T
,
Ebg

T
}. For wide CIRs, bn − b(0)

n depends only
on a single parameter 1/(λmg1D), which is free of parameters
at g1D = ∞ for any order of the virial expansion and leads to
UT according to Eq. (8). This also justifies us in examining
UT within the second-order virial expansion. Consideration
of higher-order expansions will not change the conclusions,
except for a negligible correction (of higher order in z or nλ)
to the thermodynamic quantities.

Due to the interaction effect, the second virial coefficient
�b2 = (b2 − b

(0)
2 )/

√
2 can be written as �b2 = ∑

l[e
−El/T −

e−E
(0)
l /T ] (here l is the energy level for relative motion of two

atoms). Given P (T ,μ) in Eq. (8), it is straightforward to obtain
the density n = ∂P/∂μ and entropy density s = ∂P/∂T , and
finally the energy densities E = μn + T s − P , for spinless
bosons (b) and spin-1/2 fermions (f ) as

Eb = nT

2

[
1 + nλ

23/2
(−1 + 2εint) + o((nλ)2)

]
, (9)

Ef = nT

2

[
1 + nλ

25/2
(1 + 2εint) + o((nλ)2)

]
, (10)

with the dimensionless interaction energy

εint = −�b2 + 2T
∂�b2

∂T
. (11)

In the following we derive �b2 in strictly 1D by enumer-
ating the energy levels of two interacting particles in a tube
([−L/2,L/2]). For simplicity, we first consider the scattering
branch without inclusion of any bound state. The discretized
wave vector (k > 0) is determined by the boundary condition

klL/2 + δl = (l + 1/2)π (l = 0,1, . . .). (12)

By comparing to the noninteracting k
(0)
l where δl = 0, we

obtain

�b2 =
∑

l

{
exp

[ − k2
l /(mT )

] − exp
[ − k

(0)2
l /(mT )

]}
,

(13)

which can be transformed to an integral as
2/(mT )

∫ ∞
0 dk kδke

−k2/(mT ) and further to

�bsc
2 = −1

2
+ 1

π

∫ ∞

0
dk e−k2/mT dδk

dk
. (14)

Note that to obtain Eq. (14) we extrapolate δl=0 to δk=0 in
the thermodynamic limit, and set δk=0 = −π/2 considering
δl=0 < 0 as well as Eq. (3). When considering a bound state
(with l = 0 occupied), the lowest available l for the scattering
state should be l = 1. This implies that δk=0 is upshifted by π
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FIG. 1. (Color online) Upper panel: Schematic plot of zero-
energy coupling strength g1D across wide (A1) and narrow (A2)
CIRs. The labels a–e correspond to B � B1D (a); B → B1D − 0+

(b); B → B1D + 0+ (c); B > B1D (d); B 	 B1D (e). Lower panel:
Phase shift δk versus k across wide (B1) and narrow (B2) 1D
resonances, with each label (a,b,c,d,e) corresponding to a specific
g1D as marked in (A1) and (A2).

as revealed by Levinson’s theorem. In this case,

�bbd
2 = e−|Eb |/T − 1

2
+ 1

π

∫ ∞

0
dk e−k2/mT dδk

dk
. (15)

In this way �b2 is obtained for both the repulsive scattering
branch [Eq. (14)] and the attractive branch [Eq. (15)]. Re-
markably, compared with 3D [9], �b2 in 1D has an additional
term (−1/2) resulted from the zero-energy phase shift and the
unique scattering properties of a 1D system. Equations (14)
and (15) are consistent with results obtained from Bethe-ansatz
solution [20] and analyses of real-space wave functions [21].

For a quasi-1D system, the virial expansions are carried
out by setting k = 2/a⊥ as the upper limit of the integrals
in Eqs. (14) and (15). In the rest of this section, we shall
mainly focus on the scattering branch [cf. Eq. (14)] which
might exhibit UT as discussed above.

A. Wide CIR

With δμW1D (	 2ω⊥) 	 n2/m, we replace the E-
dependent g(Ē) by a constant g1D. g1D is schematically plotted
in Fig. 1(A1), giving the phase shift (δk) of the scattering
branch in Fig. 1(B1). Here we have excluded the existence of a
bound state for any B field; thus δk all start from −π/2 at k = 0.
By increasing B across the CIR (from a to e), the amplitude
of δk at finite k gradually becomes enhanced, implying more
repulsive energies in the system. In particular, δk is uniformly
−π/2 for all k right at the CIR (between b and c), leading to
universal values of �bsc

2 and εsc
int as shown below.

For a strictly 1D system with constant g1D, Eqs. (14) and
(15) can be analytically solved, for example,

�bsc
2 = −1

2
+ sgn(g1D)

2
exp

(
1

x2

)[
1 − erf

(
1

x

)]
; (16)

here x = 2
√

2π/(m|g1D|λ); sgn( ) is the sign function and erf( )
is the error function. In the weak-coupling limit (x → ∞), we

FIG. 2. (Color online) �b2 (a) and εint (b) for two-species 6Li
fermions across a wide CIR at T (μK) = 1.5 (dark black),
3 (medium purple), and 6 (light pink). We consider FR at B0 =
834.1 G with width W = −300 G [22]. Transverse confinements
are generated by optical lattices with lattice spacing aL = 500
nm and depth V0 = 25ER [ER = (1/2m)(π/aL)2], giving ω⊥ =
(2π )300 kHz. CIR occurs at B1D = B0 − 152.2 G with W1D =
−147.9 G, which satisfies δμW1D 	 2ω⊥ 	 T . Solid and dashed
lines are respectively for the scattering [Eq. (14)] and attractive
[Eq. (15)] branches. Dash-dotted lines denote the universal values
−�bsc

2 = εsc
int = 1/2 at the CIR.

obtain

�bsc
2 = −1/(

√
πx), εsc

int = 2/(
√

πx) (17)

for the scattering branch at g1D → 0+ (corresponding to the
solid lines in small B field in Fig. 2); and

�bbd
2 = 1/(

√
πx), εbd

int = −2/(
√

πx) (18)

for the attractive branch at g1D → 0− [23] (dashed lines in
large B field in Fig. 2). In the strong-coupling limit (x → 0),
we obtain

�bsc
2 = −1

2
± 1

2
√

π

(
x − x3

2

)
, (19)

εsc
int = 1

2
∓ x3

2
√

π
; (20)

the universal values at x = 0, −�bsc
2 = εsc

int = 1/2, are direct
consequences of the k-independent phase shift (−π/2) as
mentioned above.

In Fig. 2, we plot �b2 and εint for two-species 6Li fermions
across a wide CIR. For the scattering branch, we see that all
curves of �bsc

2 (or εsc
int) at different T intersect at a single point

in the �bsc
2 -B (or εsc

int-B) plane [24], demonstrating the UT of
the scattering branch right at a wide CIR. The scattering system
on the strongly repulsive side of a CIR can smoothly evolve
to the strongly attractive side with even higher energy. This is
consistent with previous theoretical predictions of a super-TG
phase [6,7] and its recent experimental realization in a bosonic
gas [4]. Virial expansion also shows that the scattering branch
will achieve the strongest repulsion as g1D → 0− at large B
field, with −�bsc

2 ,εsc
int → 1. All the above properties can be

clearly seen by tracing any individual energy level of two
scattering atoms in a tube, as shown in Fig. 3(a).
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FIG. 3. (Color online) Two-body energy levels in the center-of-
mass frame for a quasi-1D system confined in a tube ([−L/2,L/2])
across wide (a) and narrow (b) CIRs. The orange and black dashed
lines denote π/2 and 0 phase shifts [corresponding to g(E) = ∞ and
0]. E0 = (2π/L)2/m. The dotted lines denote noninteracting energy
levels with E(0)/E0 = (l + 1/2)2, l = 0,1,2 . . ..

Here we remark on the stability of the scattering branch.
In the framework of two-body clusters in the virial expan-
sion, the decay of the scattering branch manifests itself in
the discontinuity of thermodynamic quantities, due to the
relabeling of scattering states when the underlying bound
state converts to the lowest scattering state. This is why in
3D the decay occurs right at the FR where the bound state
converts to a scattering state at as = ∞ [9]. In 1D, however, the
conversion is at g1D = 0 instead of at resonance, and therefore
the scattering branch can extend far away from the CIR until
the zero-coupling limit is approached. A more comprehensive
discussion of the stability of the scattering branch in other
trapped geometries will be given in Sec. IV.

At the end of this section we briefly discuss the second-order
virial expansion in a 1D harmonic trap, which can be carried
out given the two-body spectrum under the coupling strength
of Eq. (4). In particular, at a wide CIR with g1D = +∞, the
spectrum is El = (2l + 3/2)ωz compared with E

(0)
l = (2l +

1/2)ωz; this gives �bsc
2,trap = −1/(2

√
2) compared with −1/2

in the homogeneous case. In fact, based on the local density
approximation (as used in a 3D trapped system in Ref. [25]),
we have

�bsc
n,trap = 1√

n
�bsc

n,hom (21)

for the scattering branch right at a wide CIR. This shows a
more rapid convergence of virial expansions in a trapped 1D
system than in the homogeneous case.

FIG. 4. (Color online) �b2 (a) and εint (b) for 87Rb bosons across
a narrow CIR at T (μK) = 1 (dark black), 2 (medium purple), and
3 (light pink). We consider a FR at B0 = 406.2 G with width W = 0.4
mG [22]. The optical lattice is the same as that for 6Li in Fig. 2,
giving ω⊥ = (2π )80 kHz. CIR occurs at B1D = B0 − 27.1 mG with
W1D = 0.5 mG, which satisfies δμW1D � T � 2ω⊥. On decreasing
B across B1D + W1D, the scattering branch (solid lines) continuously
evolves to the attractive branch (dashed lines) with a bound state
emerging at threshold.

B. Narrow CIR

With δμW1D � n2/m (� ω⊥), we take the full form of
g(Ē) [Eq. (4)] due to the strong E dependence. Assuming a
positive background abg, we give a schematic plot of g1D in
Fig. 1(A2) and δk for the scattering branch in Fig. 1(B2). In
Fig. 4, we show �b2 and εint for the 87Rb system across an
extremely narrow CIR.

Compared with the wide-CIR case, the scattering branch
in a narrow CIR shows many distinct properties. First, δk is
no longer universal at the CIR; instead, it sensitively depends
on k and is quite small at finite k [see b and c in Fig. 1(B2)].
This can be attributed to the strong E dependence in Eq. (4):
g(Ē) is far off resonance at finite Ē, even its zero-energy value
g1D → ∞. Accordingly, as plotted in Fig. 3(b) the two-body
levels at finite energies are just shifted by a small amount
although the lowest level is shifted halfway. As a result, there
is no UT at a narrow CIR, and the scattering branch generally
has very weak repulsion even close to CIR (see also Fig. 4).

Second, shortly beyond the CIR, the scattering branch
goes through a decay at B = B1D + W1D as manifested by
discontinuous �bsc

2 and εsc
int there (see Fig. 4). This is exactly

the place where g1D evolves from 0− to 0+ and the bound state
transforms to a scattering state.

Third, after the decay, i.e., for B > B1D + W1D and g1D >

0, we see from Fig. 1(B2) that δk will complete a continuous
change from −π/2 to nearly π within an energy window
�Ē ≈ B − B1D. Due to the large π shift for all energies larger
than �Ē, we see a large and negative εsc

int in Fig. 4(b) despite
the positive g1D. As for a narrow FR in 3D [12], we expect
that the negative εsc

int in an extremely narrow CIR will extend to
much larger B field, until δμ(B − B1D) approaches the typical
energy scale of the system [8].

On the whole, the scattering branch in a narrow CIR has
weak repulsion (εsc

int → 0+) or strong attraction [εsc
int → (−1)+]

when B approaches the decay position (B = B1D + W1D) from
the small- or large-field side. The asymmetry here differs from
that in wide CIRs, where εsc

int approaches 1− or 0+, respectively.
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It is also helpful to compare these features in quasi-1D with
those in 3D systems [9,12]. For a wide FR in 3D, the amplitudes
of interaction energies are symmetric for systems evolving in
different branches and approaching the FR from different sides
[9], which is in contrast with what we find in a quasi-1D system
across a wide CIR. For a narrow FR, the interaction effects
are greatly suppressed for the repulsive branch but greatly
enhanced for the attractive branch [12], the same features as
revealed above in the quasi-1D system across a narrow CIR. In
cold-atom experiments, all these features in quasi-1D systems
can be detected using the technique of rf spectroscopy, as has
been successfully applied to a quasi-2D Fermi gas [26] and a
3D Fermi gas across a narrow FR [13].

IV. STABILITY OF REPULSIVE FERMI GASES IN
TRAPPED GEOMETRIES

Recently, the metastable repulsive branch of atomic gases
has attracted much research interest, in the context of the
experiment of Jo et al. on itinerant ferromagnetism for a
repulsively interacting Fermi gas [27]. The same researchers
later claimed the absence of itinerant ferromagnetism from
a measurement of the spin susceptibility, and attributed this
to the instability of the repulsive branch against molecule
formation for a 3D Fermi gas near a Feshbach resonance [28].
Similarly, the instability of a repulsive Fermi gas has also been
observed in a quasi-2D Fermi gas [26], but at the negative-as

side.
There have also been quite a few theoretical studies as to

why the repulsive Fermi gas in a 3D homogenous system is
unstable close to a Feshbach resonance [29–31]. For instance,
the instability has been attributed to a shifted resonance in
the background of a Fermi sea [29], the pairing instability
dominating over the ferromagnetism instability [30], or the
vanishing zero-momentum molecule due to the Pauli-blocking
effect of Fermi-sea atoms [31]. All these studies can lead to the
same conclusion at low temperatures, i.e., the 3D Fermi gas
becomes unstable at the place where as is comparable to the
interparticle distance (1/kF ), or equivalently, the two-body
binding energy (Eb ∼ 1/ma2

s ) is comparable to the Fermi
energy (EF ∼ k2

F /m). The scattering branch can be stable
only when Eb > EF , where the deep molecule cannot be
absorbed by the Fermi-sea atoms [29–31]. In other words,
in this parameter regime the existence of a deep two-body
bound state effectively stabilizes a many-body system on the
metastable repulsive branch. Since the physics behind this
criterion does not depend on any detail of the dimension or
trapping geometry, it should be equally applicable to other
cases besides the homogeneous 3D system. In the following,
we will use this criterion to study the stability of a repulsive
Fermi gas in various trapping geometries at low temperatures.

Typically we consider three different types of trapping po-
tential, namely, an isotropic or nearly isotropic 3D trap (ωx ∼
ωy ∼ ωz), an extremely anisotropic quasi-2D trap (ωz 	
ωx,ωy), and a quasi-1D trap (ωz � ωx,ωy). To facilitate the
discussion, we consider the system across a wide resonance
(with a single interaction parameter), while the extension to a
narrow resonance should be straightforward.

In a trapped system, a two-body bound state is always
supported no matter how weak is the attractive interaction

[1,32,33]. For a 3D isotropic trap (ωx ∼ ωy ∼ ωz ∼ ω),
however, it should be noted that the two-body binding energy
Eb at the as < 0 side is less than the order of ω, i.e., the
level spacing of all scattering states [32]. As a result, in the
thermodynamic limit with atom number N 	 1, Eb (< ω)
at the as < 0 side is negligible compared with the Fermi
energy EF ∼ Nω. The system is then expected to behave
as in the homogeneous case, in the sense that the repulsive
branch is stable only with positive as where the bound state
is visibly deep (Eb ∼ Nω). This is consistent with what has
been observed in experiments [27,28]. On the contrary, for
an anisotropic quasi-2D or quasi-1D trap, the energy spacing
of the scattering state is generally of the order of trapping
frequency of the shallow confinement, while the binding
energy can be of the order of trapping frequency of the tight
confinement even at as < 0 side [1,33]. For example, for a
quasi-2D trapped system at as = ∞, Eb � ωz 	 ωx,ωy , and
the existence of a deep molecule would be possible to stabilize
the repulsive branch at as = ∞ as long as Eb > EF ∼ Nωx,y .
In this case, the stable scattering branch can even extend to the
negative-as side, as shown in the experiment with a quasi-2D
Fermi gas [26]. The same conclusion can be drawn in the
quasi-1D trapped case (ωz � ωx,ωy), which is also consistent
with the high-temperature result presented in the last section.

In short summary of this section, at low temperatures, the
stability of the repulsive Fermi gas in a trapped geometry
relies not only on the existence of a two-body bound state, but
more importantly on the value of its binding energy compared
with the typical energy scale of a many-body system. In
other words, here the two-body physics should be evaluated
in a many-body background. Generally, the repulsive branch
in quasi-low-dimensional systems is expected to be more
stable than that in an isotropic 3D system. Therefore the
low-dimensional system provides us a more favorable platform
to realize possible itinerant ferromagnetism in repulsively
interacting Fermi gases.

V. SUMMARY

In this paper, we have studied quasi-1D atomic gases across
wide and narrow CIRs. Our main results are summarized as
follows.

First, from high-temperature virial expansions we obtain
the following:

(1) By tuning the magnetic field across the CIR, the
repulsive scattering branch of a quasi-1D system can evolve
continuously across the CIR, from the g1D = +∞ to the
g1D = −∞ side.

(2) Universal thermodynamics is identified for the repulsive
scattering branch right at a wide CIR, but is found to be washed
away at a narrow CIR by the strong energy dependence of the
coupling strength.

(3) The decay of the quasi-1D repulsive branch occurs
when g1D → 0. The interaction energy shows different types of
strong asymmetry for wide and narrow CIRs, when the decay
position is approached from opposite sides of the magnetic
field.

Moreover, the second-order virial expansion presented in
this paper can also serve as a benchmark for testing future
experiments on 1D atomic gases.
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Second, we have discussed the stability of the repulsive
branch for a repulsively interacting Fermi gas at low tem-
peratures in different trapped geometries. By evaluating the
two-body bound state in the presence of a Fermi sea, we
conclude that the system can generally be more stable in a
quasi-low-dimensional trapped system than in a 3D isotropic
trap. This should shed light on the current experiments seeking
for ferromagnetism in more stable and strongly interacting
Fermi gases in low dimensions.
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coupling ḡ2 and detuning ν̄ therein.

[15] V. A. Yurovsky, Phys. Rev. A 71, 012709 (2005).
[16] In the low-energy limit and near a FR, one can expand 1/as(E)

as 1/as(0) − mr0E.

[17] UT is absent for the attractive branch at g1D = ∞, where atoms
tend to form deep molecules with typical size as small as a⊥ [1,2].
The corresponding energy scale is not within the scope of this
paper.

[18] L. Guan and S. Chen, Phys. Rev. Lett. 105, 175301 (2010).
[19] All higher transverse modes (n > 0) contribute a negligible

correction, which is of the order of e−2ω⊥/T .
[20] S. Servadio, J. Math. Phys. 12, 2413 (1971).
[21] W. G. Gibson, Phys. Rev. A 36, 564 (1987).
[22] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod.

Phys. 82, 1225 (2010).
[23] Combined with Eqs. (9) and (10), this reproduces the mean-

field interaction energy as g1Dn2/2 for bosons and g1Dn2/4 for
fermions.

[24] The deviation, due to the finite cutoff (k = 2/a⊥) in a quasi-1D
system, is negligible if T � 2ω⊥.

[25] The same analysis can be found in the 3D case; see X.-J. Liu,
H. Hu, and P. D. Drummond, Phys. Rev. Lett. 102, 160401
(2009).
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M. Köhl, Phys. Rev. Lett. 106, 105301 (2011).

[27] G.-B. Jo, Y.-R. Lee, J.-H. Choi, C. A. Christensen, T. H. Kim,
J. H. Thywissen, D. E. Pritchard, and W. Ketterle, Science 325,
1521 (2009).

[28] C. Sanner, E. J. Su, W. Huang, A. Keshet, J. Gillen, and
W. Ketterle, Phys. Rev. Lett. 108, 240404 (2012).

[29] R. Combescot, Phys. Rev. Lett. 91, 120401 (2003).
[30] D. Pekker, M. Babadi, R. Sensarma, N. Zinner, L. Pollet, M. W.

Zwierlein, and E. Demler, Phys. Rev. Lett. 106, 050402 (2011).
[31] V. B. Shenoy and T.-L. Ho, Phys. Rev. Lett. 107, 210401

(2011).
[32] T. Busch, B.-G. Englert, K. Rzazewski, and M. Wilkens, Found.

Phys. 28, 549 (1998).
[33] D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov, Phys. Rev.

Lett. 84, 2551 (2000); D. S. Petrov and G. V. Shlyapnikov, Phys.
Rev. A. 64, 012706 (2001).

012705-6

http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1103/PhysRevLett.91.163201
http://dx.doi.org/10.1103/PhysRevLett.94.210401
http://dx.doi.org/10.1103/PhysRevLett.107.230404
http://dx.doi.org/10.1126/science.1175850
http://dx.doi.org/10.1103/PhysRevLett.90.010401
http://dx.doi.org/10.1103/PhysRevLett.90.010401
http://dx.doi.org/10.1103/PhysRevLett.95.190407
http://dx.doi.org/10.1088/1742-5468/2005/10/L10001
http://dx.doi.org/10.1088/1742-5468/2005/10/L10001
http://dx.doi.org/10.1103/PhysRevA.81.031609
http://dx.doi.org/10.1103/PhysRevLett.92.090402
http://dx.doi.org/10.1103/PhysRevLett.92.160404
http://dx.doi.org/10.1103/PhysRevLett.95.120402
http://dx.doi.org/10.1103/PhysRevLett.95.120402
http://dx.doi.org/10.1103/PhysRevLett.93.143201
http://dx.doi.org/10.1103/PhysRevLett.104.023201
http://dx.doi.org/10.1103/PhysRevA.83.063618
http://dx.doi.org/10.1103/PhysRevA.83.063618
http://dx.doi.org/10.1103/PhysRevLett.108.250401
http://dx.doi.org/10.1103/PhysRevLett.108.045304
http://dx.doi.org/10.1103/PhysRevLett.108.045304
http://dx.doi.org/10.1103/PhysRevA.65.053617
http://dx.doi.org/10.1103/PhysRevA.71.012709
http://dx.doi.org/10.1103/PhysRevLett.105.175301
http://dx.doi.org/10.1063/1.1665552
http://dx.doi.org/10.1103/PhysRevA.36.564
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/PhysRevLett.102.160401
http://dx.doi.org/10.1103/PhysRevLett.102.160401
http://dx.doi.org/10.1103/PhysRevLett.106.105301
http://dx.doi.org/10.1126/science.1177112
http://dx.doi.org/10.1126/science.1177112
http://dx.doi.org/10.1103/PhysRevLett.108.240404
http://dx.doi.org/10.1103/PhysRevLett.91.120401
http://dx.doi.org/10.1103/PhysRevLett.106.050402
http://dx.doi.org/10.1103/PhysRevLett.107.210401
http://dx.doi.org/10.1103/PhysRevLett.107.210401
http://dx.doi.org/10.1023/A:1018705520999
http://dx.doi.org/10.1023/A:1018705520999
http://dx.doi.org/10.1103/PhysRevLett.84.2551
http://dx.doi.org/10.1103/PhysRevLett.84.2551
http://dx.doi.org/10.1103/PhysRevA.64.012706
http://dx.doi.org/10.1103/PhysRevA.64.012706

