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Medium effects close to s- and p-wave Feshbach resonances in atomic Fermi gases
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Many-body effects may influence properties, such as scattering parameters, nature of pairing, etc., close to
a Feshbach resonance in the fermion BEC-BCS crossover problem. We study effects such as these using a
tractable crossing-symmetric approach. This method allow us to include quantum fluctuations, such as density,
current, spin, spin-current, and the higher-order fluctuations in a self-consistent fashion. The underlying fermion
interaction is reflected in the “driving” term. We perform calculations here on both Bose-Einstein condensate
(BEC) and BCS sides and taking the driving term to be finite range and of arbitrary strength. These are related
to two-body singlet and triplet scattering parameters and can be connected with experimental s- and p-wave
Feshbach resonances. We include the � = 0 density and spin fluctuations as well as � = 1 current and spin-current
fluctuations. We calculate renormalized scattering amplitudes, pairing amplitudes, nature of pairing, etc., on both
the BEC and BCS sides. We then compare our results qualitatively with experiments.
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I. INTRODUCTION

The impact of ultracold atomic and molecular quantum
gases on present-day physics is associated with the extraordi-
nary degree of control that such systems offer to investigate
the fundamental behavior of quantum matter under various
conditions [1]. Recent experimental achievements in the field
of ultracold Fermi gases are based mainly on the possibility
of tuning the scattering length as , in particular to values
much large than the mean interatomic distance, by changing
an external magnetic field [2]. This situation exists near the
so-called Feshbach resonances.

Resonances in general refer to the energy-dependent en-
hancement of interparticle scattering cross section due to the
existence of a metastable state. For Feshbach resonances, the
metastable state is described in terms of coupling of a bound
state of a subsystem to its environment. By tuning a magnetic
field, it is possible to obtain a quasidegeneracy between the
relative energy of two colliding atoms and that of a weakly
bound molecular state. As the quasibound state passes through
a threshold, the scattering length can be varied, in principle,
from positive to negative infinity. The Feshbach resonances
were observed in bosons [3–6], in fermions between distinct
spin states [7–9], and in a single-component Fermi gas [10]. In
this manner the interactions between the atoms can be strongly
enhanced by an external magnetic bias field, giving rise to
the BEC-BCS crossover phenomena [11–13]. As a result of
the atomic physics of the Feshbach resonance, the nature of the
Cooper pairs in the BEC-BCS crossover is, however, not solely
determined by the interaction strength or scattering length
but, in principle, also depends on the width of the Feshbach
resonance. In the limit of an infinitely broad resonance, the
properties of the gases can be described by a single-channel
theory that requires only the resonant scattering length as an
experimental input. In general, however, a two-channel theory
is needed. This is, in particular, true for the description of the
wave function of the Cooper pairs that plays an important role
in the BEC-BCS crossover.

Near a resonance, fluctuations can be quite important since
the system is no longer in the dilute limit, and therefore one

may expect contributions from higher angular momenta and
from quantum fluctuations or influence of collective modes.
Generally, inclusion of many-body effects in these systems is
not easy, and one usually stops at the level of random phase
approximation (RPA).

In this paper, we aim at presenting a different scenario
which emphasizes the role of the exchange particle-hole fluc-
tuations in addition to RPA in the direct particle-hole channel.
Our calculation is based on the induced interaction model
of Babu and Brown [14,15], subsequently generalized and
termed as the “crossing-symmetric approach” [16]. This takes
into account a properly antisymmetrized, effective two-body
interaction that reproduces the correct low-energy physics and
also suppresses any spurious ground states. The physics is
described in terms of the Landau interaction parameters and
scattering amplitudes to be discussed. In a previous study
Gaudio et al. [17] considered s-wave scattering by including
� = 0 density and spin fluctuation. We shall study s- and
p-wave scattering and include both � = 0 density and spin
fluctuations and � = 1 current and spin-spin fluctuations.

II. THEORETICAL APPROACH

A. The crossing-symmetric method

The crossing-symmetric method [14–16] was formulated to
calculate the effective quasiparticle interactions in Fermi sys-
tems. Due to an appropriate compromise between microscopic
and phenomenological approaches, it has been successfully
applied to a number of Fermi systems: liquid 3He [14,16,18],
3He-4He mixtures [19], paramagnetic metals [16], heavy-
fermion systems [20], nuclear matter [21], and ultracold atomic
Fermi gases [17]. It has been known [14,20,22,23] that a con-
sistent Fermi-liquid theory cannot be formulated in terms of
short-range effective interactions alone; collective excitations
generated by these must be exchanged between quasiparticles.

The main point is that the contributions to Landau interac-
tion f σσ ′

pp′ can be separated into two parts [15]:

f σσ ′
pp′ = dσσ ′

pp′ + I σσ ′
pp′

[
f σσ ′

pp′
]
, (1)
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where the induced part I σσ ′
pp′ , a function of the Landau

interactions f σσ ′
pp′ themselves, is particle-hole reducible in the

exchange particle-hole (u) channel, whereas the direct part
dσσ ′

pp′ is not particle-hole reducible in either the direct particle-
hole (t) channel or the crossed particle-hole (u) channel. It is
important to note that the direct interaction is model dependent,
as it gives information about the underlying Hamiltonian, and
that the induced interaction is a purely quantum effect, arising
from the exchange diagrams required to antisymmetrize the
effective two-body scattering amplitude.

For a two-component fermionic system, the Landau inter-
action can be expressed as

Fσσ ′
pp′ = F s

pp′ + Fa
pp′ �σ · �σ ′, (2)

where F s
pp′ and Fa

pp′ can be related to induced-interaction
equations as follows [15]:

F s
pp′ = Ds

pp′ + 1

2

F s
0 U0(q ′)F s

0

1 + F s
0 U0(q ′)

+ 3

2

Fa
0 U0(q ′)Fa

0

1 + Fa
0 U0(q ′)

+1

2

[
1 − q ′2

4k2
F

] [
F s

1 U1(q ′)F s
1

1 + F s
1 U1(q ′)

+ 3
Fa

1 U1(q ′)Fa
1

1 + Fa
1 U1(q ′)

]
,

(3)

Fa
pp′ = Da

pp′ + 1

2

F s
0 U0(q ′)F s

0

1 + F s
0 U0(q ′)

− 1

2

Fa
0 U0(q ′)Fa

0

1 + Fa
0 U0(q ′)

+1

2

[
1 − q ′2

4k2
F

] [
F s

1 U1(q ′)F s
1

1 + F s
1 U1(q ′)

− Fa
1 U1(q ′)Fa

1

1 + Fa
1 U1(q ′)

]
.

(4)

The momentum transfer in the crossed particle-hole channel is
q ′ = |p − p′| = kF

√
1 − cos θL, with the Landau angle θL =

cos−1 (p · p′). U0(q ′) and U1(q ′) are the Lindhard functions,
or density-density and current-current correlation functions,
respectively. The first term in Eqs. (3) and (4) is the so-called
direct interaction. The direct term is designed to convey the fact
that two quasiparticles can directly scatter via some effective
potential and repeatedly so, as in a T matrix. It is of short range
and contains information about the underlying Hamiltonian
of the system under consideration. Thus, it is the “driving”
term. The induced term is of somewhat longer range since two
particles can scatter via an interaction mediated by another
particle. Equations (3) and (4) are nonlinear coupled equations.
To solve these, we need to do Legendre projections:

F
s,a
pp′ =

∑
l

F
s,a
l Pl(cos θL), (5)

D
s,a
pp′ =

∑
l

D
s,a
l Pl(cos θL). (6)

Ainsworth et al. [16] treated Ds
0, Da

0 , and Ds
1 phenomenolog-

ically so as to reproduce the empirical Landau parameters F s
0 ,

Fa
0 , F s

1 , and Fa
1 and predicted the higher-order F

s,a
l ’s (l �1).

Then effective pairing interaction can be obtained [24]:

geff
s = [

As
0 − 3Aa

0 − (
As

1 − 3Aa
1

)]
/4 = As/4, (7)

geff
t = [

As
0 + Aa

0 − (
As

1 + Aa
1

)]
/12 = At/12, (8)

where

A
s,a
l = F

s,a
l

1 + F
s,a
l /(2l + 1)

(9)

is the As
l stands for the l-partial-wave symmetric scattering

amplitude, and Aa
l stands for the l-partial wave antisymmetric

scattering amplitude and As and At are the pairing-channel
singlet and triplet scattering amplitudes, respectively. The
vanishing of forward scattering of two particles of equal spin
yields the Landau sum rule

∑
l(A

s
l + Aa

l ) = 0, which provides
a test for obtained Landau parameters.

B. The driving term near a Feshbach resonance

In the crossing-symmetric approach, the form of the direct
interaction used to derive the induced interactions must be
determined. In general, it represents the sum of all particle-hole
irreducible interactions. A self-consistent calculation could
be performed starting with a T -matrix direct interaction
if a more general interaction were used to derive the T -
matrix calculation. According to the proposal by Bedell and
Ainsworth [25], the direct interaction is the Fourier transform
of an effective quasiparticle potential. From this potential the
quasiparticle scattering amplitude fk(φ) is given by

fk(φ) = −m∗

4π

∫
eiq·rVeff(r,k)d3r, (10)

where h̄ = 1, q2 = |k − k′|2 = 2k2(1 − cos φ), 2k2 = k2
F (1 −

cos θ ), and the quasiparticle mass m∗ = m(1 + F s
1 /3). The

relative momentum of the incoming (outgoing) particles is
k(k′), and the angle between the incoming and scattering plane
is φ. Equation (10) is restricted to the Fermi surface; therefore
fk(φ) depends on only two variables, θ and φ. According to
the effective range expansion, the effective potential Veff(r,k)
is, in general, nonlocal and can be expanded in powers of k2,

Veff(r,k) = U (r) + 1
3 k2r2W (r) + · · · , (11)

where U (r) and W (r) are local potentials. Keeping order of k
to 2 yields a three-parameter approximation to fk(φ),

fk(φ) � m∗

m
[−as + 3k2at (1 − cos φ) − 3k2bt ], (12)

where as = m
∫

r2U (r)d3r, at = (m/9)
∫

r4U (r)d3r, and
bt = (m/9)

∫
r4W (r)d3r. As pointed out in Ref. [25], the

triplet quasiparticle scattering volume at and the nonlocal
part of the effective potential bt are p wave in nature and
thus sample relatively little of the repulsive core of the bare
interaction. Therefore they should not have a strong density
dependence. The at is a finite-range correction to the contact
interaction; this allows some interaction between particles of
the same spin. The nonlocal piece of the direct interaction
results from the coupling of quasiparticle currents. The direct
interaction for particles of parallel spin is

d↑↑(θ,φ) = −4π

m∗ [fk(φ) − fk(φ + π )]

= 12π

m
k2
F at (1 − cos θ ) cos φ. (13)

Similarly, for particles of opposite spin,

d↑↓(θ,φ) = −4π

m∗ fk(φ) = 4π

m

[
as − 3

2
k2
F at (1 − cos θ )

× (1 − cos φ) + 3

2
k2
F bt (1 − cos θ )

]
. (14)
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The standard Landau parameters are the q = 0 values of
momentum-dependent functions F

s,a
l (q). In the limit of q →

0, cos θ = cos θL, cos φ = 1. d↑↑, d↑↓ could be rewritten as

d
↑↑
pp′ = d

↑↑
0 + d

↑↑
1 P1(p̂ · p̂′) = 12π

m
k2
F at (1 − cos θL),

d
↑↓
pp′ = d

↑↓
0 + d

↑↓
1 P1(p̂ · p̂′) = 4π

m

[
as + 3

2
k2
F bt (1 − cos θL)

]
.

Solving the above equations, we obtain

d
↑↑
0 = 12π

m
k2
F at ,

d
↑↓
0 = 4π

m
as + 6π

m
k2
F bt ,

(15)

d
↑↑
1 = −12π

m
k2
F at ,

d
↑↓
1 = −6π

m
k2
F bt .

The direct interactions Ds and Da are linear combinations of
d↑↑ and d↑↓:

Ds = N (0)

2
(d↑↑ + d↑↓), (16)

Da = N (0)

2
(d↑↑ − d↑↓), (17)

where N (0) = kF m∗/π2 is the density of states at Fermi
surface. For a pure s-wave resonance, we set at = 0,bt = 0:

Ds
0 = 2π

m
asN (0) = U0/2,Ds

1 = 0, (18)

Da
0 = −2π

m
asN (0) = −U0/2,Da

1 = 0. (19)

For a pure p-wave resonance, we set as = 0:

Ds
0 = 3πk2

F

m
(2at + bt )N (0),Ds

1 = −Ds
0; (20)

Da
0 = 2πk2

F

m
(2at − bt )N (0),Da

1 = −Da
0 . (21)

C. Connection to the usual scattering parameters

The two-body scattering amplitude is

f (θ ) = 1

2ik

∞∑
l=0

(2l + 1)(e2iηl − 1)Pl(cos θ )

=
∞∑
l=0

(2l + 1)fl(k)Pl(cos θ ), (22)

where the lth angular momentum channel is given by [26]

fl(k) = k2l

−a−1
l + rlk2 − ik2l+1

. (23)

According to the effective range expansion, we have

k2l+1 cot ηl = − 1

al

+ rlk
2 + · · · . (24)

From the induced-interaction description, as q = 0, 2k2 =
k2
F (1 − cos θ ). Equation (12) becomes

fk(θ ) = m∗

m

[
− as − 3

2
k2
F bt + 3

2k2
F bt cos θ

]
. (25)

Combining Eqs. (22)–(25), we reach

m∗

m

1

2
k2
F bt =

∣∣∣∣∣
k2

−a−1
1 + r1k2 − ik3

∣∣∣∣∣ = k2√
(k3 cot η1)2 + k6

.

(26)

III. CALCULATIONS AND RESULTS

A. Close to an s-wave resonance

In the vicinity of a Feshbach resonance, the s-wave
scattering length a(B) is described approximately by [28]

a(B) = abg

(
1 − �B

B − B0

)
, (27)

where B is the applied field, abg is the background scattering
length, and B0 is the field at which the resonance occurs.
The resonance width �B is proportional to the strength of
the coupling between the open and close channels. For 40K,
abg = 174a0 [29], where a0 is the Bohr radius. Based on this,
we construct the driving terms and solve Eqs. (3) and (4).
We find that the scattering length tends to smooth out as it
approaches the resonance, as shown in Fig. 1. On the BCS
side far from the resonance, the many-body results give exactly
two-body physics. When the system is driven to the resonance,
two-body scattering gives a diverging unrenormalized (bare)
scattering length. Many-body exchange fluctuations greatly
suppress the divergence of the scattering length. In this
region, the exchange fluctuations are quite strong and act as
a feedback to the system. On the Bose-Einstein condensate
(BEC) side far from the resonance, the medium effects reduce
the effect of the interaction. This is similar to what occurs

FIG. 1. (Color online) The s-wave scattering length as a function
of the magnetic field B on both sides of the Feshbach resonance in
40K, using data from Regal and Jin [27]. The density here is n =
5.8 × 1013 cm−3, with �B = 9.7 G, and the Feshbach resonance
occurs at B0 = 224.21 G. The scattering length is measured in terms
of the Bohr radius.
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FIG. 2. (Color online) The scattering cross section of an s-wave
resonance between 40K atoms in |f = 9/2,mf = −9/2〉 and |f =
9/2,mf = −7/2〉 states. The data used [10] for calculation are as
follows: number density is npk = 1.5 × 1013 cm−3, with �B = 7.8 G,
and the Feshbach resonance occurs at B0 = 202.1 G.

on the BCS side far from the resonance. The suppression of
divergence close to the resonance is also suggested in the
many-body renormalized scattering cross section, as shown in
Fig. 2, where scattering occurs between two hyperfine species,
namely, |f = 9/2,mf = −9/2〉 and |f = 9/2,mf = −7/2〉.
Here f is the total angular momentum, and mf is the
corresponding magnetic quantum number. As can be seen,
away from the resonance, the medium effects are small.
However, close to resonance, the medium effects strongly
modify the scattering cross section.

B. Close to a p-wave resonance

A p-wave resonance is distinct from an s-wave (l = 0)
resonance in that the atoms must overcome a centrifugal
barrier to couple to the bound state. It is sensitive to the
temperature and the magnetic field. We need two parameters to
characterize the p-wave resonance: scattering volume at and
effective range r1. The magnetic field dependence of at and r1

is obtained from the fitting formula given by Ticknor et al. [30].
Therefore we can construct the driving terms and solve Eqs. (3)
and (4). The p-wave resonance could be tuned by the magnetic
field to occur between two atoms in the hyperfine states of
|f,mf 〉 = |9/2, − 9/2〉 and |f,mf 〉 = |9/2, − 7/2〉. The joint
state of the atom pair will be written as |f1mf1〉|f2mf2〉|�m�〉.
The many-body effects in a p wave are less severe than
in an s wave, as shown in Fig. 3. In Fig. 3, we plot the
scattering cross section for a p-wave resonance for 40K atom
pairs in the state |f = 9/2,mf = −7/2〉|� = 1,m� = 0〉. Here
� = 1 is the orbital angular momentum quantum number,
and m� = 0 is the corresponding magnetic quantum number.
Away from the resonance, the many-body corrections due to
medium effects are small. Distinct correction only appears at
a region close to the Feshbach resonance. Figure 4 shows
the temperature dependence of the many-body scattering
cross section. We can see that the lower the temperature
is, the higher the resonance peak is. As the temperature
rises, the resonance cross section broadens. The position of
the resonance changes slightly with temperature due to the

FIG. 3. (Color online) The scattering cross section of a p-wave
resonance between 40K atom pairs in the state |f = 9/2,mf =
−9/2〉|f = 9/2,mf = −7/2〉|� = 1,m� = 0〉 at T = 3.2 μK.

temperature dependence of the scattering cross section. The
resonance at T = 5.0 μK (green dots) shows a double-peak
feature resulting from the strong energy dependence of the
cross section. The pairing-channel scattering amplitudes (As

and At ) are shown in Fig. 5. The triplet scattering amplitude
At is negative on the BCS side, indicating a p-wave superfluid
pairing. On the BEC side, the singlet scattering amplitude is
negative, indicating the formation of s-wave molecules. The
p-wave Feshbach resonances offer a means to experimentally
study anisotropic interactions in systems other than identical
fermions. On resonance the p-wave cross section becomes
comparable to the background s-wave scattering. This means
that it could have an equally important role in determining
the collisional behavior and mean-field interaction of the
quantum gases. Utilizing p-wave Feshbach resonances, the
Joint Institute for Laboratory Astrophysics (JILA) group has
successfully created p-wave molecules [31].

C. Close to a p-wave resonance with an s-wave background

For a p-wave resonance, the JILA group [10] found
that there exists non-negligible off-resonant scattering in the
ultracold Fermi gas of 40K. Our model can be employed

FIG. 4. (Color online) The many-body scattering cross section
of a p-wave resonance for 40K atom pairs in the |f = 9/2,mf =
−9/2〉|f = 9/2,mf = −7/2〉|� = 1,m� = 0〉 state at various tem-
peratures.
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FIG. 5. (Color online) The singlet and triplet scattering ampli-
tudes (As and At ) for a p-wave resonance between 40K atom pairs in
the state |f = 9/2,mf = −9/2〉|f = 9/2,mf = −7/2〉|� = 1,m� =
0〉 at T = 0.1 μK.

to study the situation when the singlet correlation (s-wave
scattering) and the triplet correlation (p-wave scattering) are
both present. This situation can occur when the resonant
magnetic field for p waves and s waves are well separated.
By tuning the magnetic field around p-wave resonance one
can realize a p-wave resonance with an s-wave background.
The driving terms can then be modeled as

Ds
0 = 3π

m
k2
F (2at + bt )N (0) + 2π

m
asN (0),

Da
0 = 3π

m
k2
F (2at − bt )N (0) − 2π

m
asN (0),

(28)

Ds
1 = −3π

m
k2
F (2at + bt )N (0),

Da
1 = −3π

m
k2
F (2at − bt )N (0).

Here s-wave background interaction is characterized by U0 =
4π
m

asN (0). By fixing U0 and varying the parameters 1/k3
F at

and 1/k3
F bt , we can evaluate the pairing-channel scattering

amplitudes (As and At ) in full parameter space through
solving crossing-symmetric equations (3) and (4). From the
obtained Landau parameters F

s,a
l , by s-p approximation [24],

one can straightforwardly construct pairing-channel scattering
amplitudes via

Asinglet = As
0 − 3Aa

0 − As
1 + 3Aa

1,
(29)

Atriplet = As
0 + Aa

0 − As
1 − Aa

1.

The calculated singlet scattering amplitude is plotted in Fig. 6.
When there is no background s-wave scattering, the singlet
scattering amplitude becomes very large when it crosses the
unitary limit (strongly interacting regime) of either parameter
1/k3

F at or 1/k3
F bt , as suggested in Fig. 6(a). To investigate the

effects of the s-wave background on the p-wave resonance,
we choose U0 = −1.5 for illustration such that it has a
noticeable effect. In the presence of background s-wave
scattering, the singlet scattering amplitude becomes negative
and shows a pronounced peak when it crosses the unitary
limit of both parameters 1/k3

F at and 1/k3
F bt . Away from the

unitarity limit, the singlet scattering amplitude As is mainly

FIG. 6. (Color online) The singlet scattering amplitude As for
a p-wave resonance: (a) without s-wave background and (b) with
s-wave background where U0 = −1.5.

negative, manifesting trends of background s-wave pairing.
The purpose of introducing U0 is to introduce background
singlet pairing interaction. The competition between the p-
wave scattering and background s-wave scattering determines
the sign of the singlet scattering amplitude. When the p-wave
interaction is weak, the properties of the system are dominated
by s-wave behavior with a constant negative singlet pairing
amplitude, as can be seen in Fig. 6(b).

To investigate p-wave pairing, we plot the triplet scattering
amplitude At in Fig. 7. Interestingly, the triplet scattering
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(a) (b)

1/k3
F bt

1/k3
F at1/k3

F bt

1/k3
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FIG. 7. (Color online) The triplet scattering amplitude At for a
p-wave resonance: (a) without s-wave background; (b) with s-wave
background where U0 = −1.5.
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amplitude At is sensitive to parameter 1/k3
F at but insensitive to

parameter 1/k3
F bt except building up a bump near the unitarity

regime in the presence of background s-wave scattering.
Remarkably, in the absence of background s-wave scattering
As is antisymmetric with respect to parameter 1/k3

F at while
symmetric with respect to parameter 1/k3

F bt . These properties
are closely related to the parametrization and symmetrical
features in Eq. (28), where s-wave scattering only contributes
to the � = 0 channel in the driving terms. The background
s-wave scattering shows its existence by shifting the triplet
scattering amplitude in total toward the negative side. In
addition, it enhances the effect of parameter 1/k3

F bt , especially
near resonance. The antisymmetry of At with respect to
parameter 1/k3

F at is lost; in contrast, the symmetry of
At with respect to parameter 1/k3

F bt is still preserved. It
is necessary to point out that when both As and At are
negative, the actual pairing symmetry depends on their relative
magnitude.

IV. CONCLUDING REMARKS

By using the crossing-symmetric method to treat many-
body Fermi systems, one generally solves nonlinear coupled
crossing-symmetric equations for four-point vertex functions
in particle-particle, particle-hole, and exchange particle-
hole channels. In appropriate limits on the Fermi surfaces,
these vertex functions become the Landau quasiparticle

interaction F (q) and the scattering amplitude A(q). For
isotropic systems, these can be expressed in Legendre polyno-
mials giving Landau parameters F s

l and Fa
l in spin-symmetric

(s) and spin-antisymmetric (a) channels. From the obtained
Landau parameters, one can calculate several thermodynamic,
transport, and pairing properties of a system.

We study s- and p-wave Feshbach resonance with the
crossing-symmetric method. Our findings are as follows: (1)
many-body exchange effects may be important close to a
Feshbach resonance. Renormalized physical quantities get
smoothed out at the Feshbach resonance. In particular, we
find that the particle-hole exchange fluctuations introduce
an effective scattering length which has been substantially
reduced close to resonances. (2) For a p-wave resonance,
the triplet scattering amplitude is negative on the BCS
side, indicating a triplet (p-wave) superfluid pairing. (3)
Background off-resonant scattering has some effects on the
singlet and triplet scattering amplitudes, which may influence
the pairing symmetry of the ground state.
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