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Experimental observation and theoretical calculation of the diamagnetic spectrum of
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We report diamagnetic spectra of sodium atoms observed in a strong magnetic field up to 3 T and compare
them with theoretical calculations based on the formulation of an exact quantum-defect theory. We focus on
one-photon absorption processes from the ground 3s state to the excited np Rydberg states whose magnetic
quantum numbers are determined by the polarization of the laser field. The calculations employ B-spline basis
expansion and the complex spatial coordinate rotation technique, and their results agree well with the observed
ones when atomic core effects are appropriately taken into account. When graphed against magnetic field, level
anticrossings and core-induced interaction of the np states provide clear signatures for studying the effects of
quantum defect on the diamagnetic spectra.
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I. INTRODUCTION

Rydberg atoms in a magnetic field are an ideal system for
studying the correspondence between classical nonintegrable
dynamics and quantum chaos. In a pure magnetic field, the
Rydberg atom system is rotationally symmetric about the
direction of the magnetic field. Such a system provides a
fascinating opportunity, especially when the diamagnetic term
becomes comparable to the Coulomb potential. Numerous
theoretical and experimental studies have been conducted on
this system, for instance, the establishment and development
of closed-orbit theory [1–4] and the confirmation of a quasi-
Landau resonance region [5–12], as well as the existence
of Rydberg progression. For lower-energy np states, the
condition of comparable diamagnetic interaction with the
Coulomb potential can only be satisfied in interstellar systems
with an enormous magnetic-field strength such as in neutron
stars [13]. For highly excited Rydberg states, however, a
laboratory field strength of a few tesla can already give rise
to favorable conditions [14–16] as the ratio of diamagnetic
interaction to the binding energy scales as n6B2, where n is
the principal quantum number and B is the magnetic field.

Even for hydrogenic atoms, the calculation of energy
spectra in the regime we studied is by no means trivial due
to the intensely distributed number of states and the presence
of state mixing caused by the strong magnetic field. Several
basis expansion methods, including the generalized Laguerre
function basis [17], the Sturmian basis [18–21], the B-spline
basis [22–25], and the discrete variable representation basis
[26], were proposed and applied to the quantitative calculations
of excited atoms in external fields. In the 1980s, Taylor and
Clark performed an exact computation of the diamagnetic
spectra for Rydberg states of a hydrogen atom using a large
Sturmian basis [17,27]. Some consider B-splines derived from
numerical analysis as one of the most efficient and accurate
bases to calculate such spectra. It is also widely applied in
quantum treatments of atomic systems [25].
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The ionization potential of a sodium atom is lower
compared to most other alkali atoms, easily accessible with
pulsed lasers, making it one of the best candidates to
investigate atomic diamagnetic effects in external fields. In
1978, Zimmerman et al. reported observing a group of sodium
Rydberg states with n = 27–29 in up to 6-T magnetic fields
and compared this result to their calculations carried out
with numerical diagonalization using spherical basis states
in the range n = 25–31 [28]. In 1980, Castro et al. discovered
periodic resonance peaks in photoabsorption spectra of sodium
atoms in a strong magnetic field [6], or the predicted quasi-
Landau resonances (QLR) with a characteristic energy spacing
of 1.5 h̄ωc. Several other studies reported QLR of different
periods using a commonly employed numerical method which
combines the R matrix with quantum-defect theory [29] or
directly diagonalizing the diamagnetic Hamiltonian in a basis
constructed from model potential atomic eigenstates in the
absence of magnetic field [30].

QLR is found to be insensitively dependent on the quantum
defects of the atomic core, presumably because the concerned
Rydberg states are of very high energy. For the lower-energy
states, inclusion of the quantum defects is necessary to obtain
an accurate calculation and to explain the fine structure
embedded in the observed spectra in the presence of magnetic
fields. The Coulombic potential energies for these states
are comparable to the interaction strength with the external
magnetic field, and additionally, the Rydberg electron is
subjected to accumulative interactions from the atomic core,
making the diamagnetic spectra of sodium atoms very complex
and significantly different from that of the hydrogen atom. The
quantum defects for sodium atoms have large values [31]:

δs = 0.348, δp = 0.855, δd = 0.015.

This nonhydrogenic characters are well studied in the Stark
map for sodium, lithium, and potassium alkali atoms with
quantum-defect orbital theory [32]. The quantum defects
for sodium atoms are nearly independent of energy for
high Rydberg states, making it possible to refine theoretical
calculations for exploring atomic properties inside a more
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complex environment, for example, in the discussion of
the giant dipole moment in crossed electric and magnetic
fields [33].

This paper reports our experimental investigation of the
diamagnetic spectra of sodium atoms in static magnetic
fields up to 3 T. We also carried out calculations for the
corresponding measurement based on an exact quantum-defect
theory, which incorporates quantum defects into the angular
momentum quantum numbers in the centrifugal potential
part. While the single-photon excitation couples the ground
3s to the excited np states, the diamagnetic interaction
couples the adjacent L ± 2 states, causing the np states to
dominate the spectra. This latter selection rule simplifies the
analysis of the spectrum and makes it possible to compare
the theoretically calculated spectra to the experimental one
thoroughly. Our theoretical calculation employs the complex
coordinate rotation [22,29,31,34–37] and the B-spline basis
expansion methods [22–25,38,39].

II. EXPERIMENT

Our experimental setup and the apparatus have been
detailed previously [14,16]; therefore only a brief description is
given here. A sodium atomic beam spouted from a resistance-
heated oven travels to the interaction region after being
collimated by two pinholes with diameters of about 2 mm.
The beam direction is aligned along the magnetic field and
is intersected perpendicularly by a pulse laser beam. Such a
geometry avoids the motional Stark effect completely since the
velocity component in the perpendicular plane of the magnetic
field is negligible. The intense and stable magnetic field is
generated by a superconducting magnet (Oxford Instruments),
with a maximum magnetic field up to 4 T and a stability of
better than 1 G in the present measurement.

The sodium atom is efficiently excited, through a one-
photon transition into Rydberg states (n ∼ 30), by a 10-ns
pulsed laser in the intersection region. The laser wavelength
is around 242 nm, and the linewidth is approximately
0.15 cm−1. The laser pulse is produced by the dye laser
system (Lambda Physik, Scanmate 2E) pumped by a Nd:YAG
(Spectra Physics) laser and subsequently frequency doubled
with a system-controlled barium borate crystal. The final
excited states can be further selected by the polarizations
of the laser beam tuned by the Soleil-Babinet compensator.
The Rydberg atoms are ionized by a pair of electric grids
of high voltage after passing through the interaction region,
and the ion fragments are accelerated and efficiently detected
by a two-layer microchannel plate situated at the end of
the vacuum chamber. The ionization signal recorded by
an oscilloscope (Tektronix TD1012) is downloaded into a
personal computer for further processing. The data acquisition
and the wavelength scanning are synchronized and controlled
by integrated software running on a personal computer.

The one-photon excitation scheme avoids the pollution
and complications from the intermediate excited states in
two-step or multistep excitation configurations [40]. In an
external field(s), nearby intermediate states can be affected,
despite being nonresonant from the first-step excitation laser.
Their excitations from the first-step photon absorption will
complicate the final spectra.

III. THEORETICAL CALCULATION

To describe a single-electron atom inside a magnetic field,
the nonrelativistic infinite-proton-mass Hamiltonian H for the
Rydberg electron is adopted, which, in atomic units, takes the
form [41]

H = p2

2
+ V (c)(r) + B

2
Lz + B2

8
r2 sin2 θ, (1)

where V (c)(r) is the Coulomb potential including the effects of
valence electron polarization for the core, B is the magnetic-
field strength in atomic units, and θ is the polar angle of the
Rydberg electron in spherical coordinates. B

2 Lz and B2

8 r2 sin2 θ

are, respectively, the paramagnetic and diamagnetic terms.
Solving the time-independent Schrödinger equation

Hψ = Eψ, (2)

we can compute the transition probabilities corresponding to
the experimental observations. Due to cylindrical symmetry
along the magnetic-field direction, it is helpful to expand
the eigen-wave-function in the truncated associated Legendre
function basis,

ψ(r,θ ) =
lmax∑

l=|m|

Rl(r)

r
P

|m|
l (θ ), (3)

where P
|m|
l (θ ) is the normalized associated Legendre function

and Rl(r) is the expansion coefficient. l runs from |m|
to the truncated maximum value lmax with the boundary
condition R(r = 0) = 0. In this basis, we can decompose the
Hamiltonian in Eq. (1) into two parts:

H = H (0) + V (dia), (4)

where H (0) is the diagonal part and V (dia) is the nondiagonal
part, i.e., the diamagnetic term.

Rather than using the model potential rectified on the
Coulomb potential [42,43] or the R-matrix method including
the quantum defects implicitly [29,31,37], we employ an
equivalent form by modifying the centrifugal potential [32],

V (c)(r) = λ(λ + 1) − l(l + 1)

2r2
− 1

r
, (5)

where λ = l − δ+Int(δ) and the quantum defects are explicitly
enclosed. Here Int(δ) is the rounded nearest-integer value of
the quantum defect. An added benefit of this formula in Eq. (5)
for the potential is that the Schrödinger equation has an analytic
solution for its eigenfunctions [44–46]. We employ a reduced
quantum defect,

δ′ = δ − Int(δ), (6)

to quantify the real contribution of the quantum defect for a
given angular momentum channel. In the following we will use
δ rather than δ′, i.e., ignore the prime. Obviously, the potential
V (c)(r) is explicitly parameterized by the nonzero quantum
defects.

In the radial direction, instead of expanding Rl(r) in the
quantum-defect orbital basis [47], in the present work, we will
take the B-spline function as the basis, the main incentive
being the Hamiltonian in the B-spline basis has a symmetric
banded matrix form. This special matrix structure saves time in
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numerical diagonalization for its eigenvalues and eigenfunc-
tions. In addition, radial coordinate rotation into the complex
plane is employed in our calculation [22,29,31,34–37]. For
pure magnetic field, the radial wave function of the system can
be expanded in terms of the B-spline basis {Bk

0 ,Bk
1 ,...,Bk

N−1}
according to

Rl(r) =
N−1∑

n=0

CnlB
k
n(r), (7)

where Bk
n(r) is the nth B spline of order k defined in Refs. [25,

38,39]. Both the Hamiltonian matrix and its wave functions are
parameterized by the angular momentum quantum number l

and the magnetic quantum number m; thus the wave function
in Eq. (3) can be expanded completely in the defined basis
sets. Substituting the Hamiltonian expressed in Eq. (1) and the
wave function in Eq. (3) into Eq. (2), the Schrödinger equation
is transformed into a general eigenvalue problem,

HC = ESC, (8)

where E and C represent eigenvalues and their corresponding
eigenvectors, respectively, H is the matrix form of the
Hamiltonian in the B-spline basis, and S is the overlap matrix.
Accurate matrix elements are obtained efficiently through the
Gauss-Legendre integration scheme. A Lanczos algorithm for
the general eigenproblem applied to the matrix equation can
give the eigenvalue E and eigenvector C. In our case, the
Schrödinger equation corresponding to Eq. (8) becomes

∑

n′l′

[
H

(0)
n,n′δl,l′ + V

(dia)
nl,n′l′

]
Cn′l′ = E

∑

n′l′
Sn,n′δl,l′Cn′l′ . (9)

The oscillator strength for the one-photon dipole transition
from the initial state |i〉 to the final state |f 〉 can be
expressed as

ci→f = |〈i |d| f 〉|2 , (10)

where d is the electric dipole operator. The signal detected
is proportional to the population of the excited Rydberg state
atoms resulting from photon absorptions. The absorption cross
section σ (E) from the initial state is then given by [29,31]

σ (E) ∼ Im
∑

n

ci→f

En − E
, (11)

where En is the complex homologous energy eigenvalue and
E is the resonant photon energy of the frequency-scanning
laser pulse.

To make it sufficiently general and also adaptable for the
calculation of the Stark spectrum by simply replacing the
interaction term, we do not consider the symmetry of π

parity in Eq. (3). The redundant calculation for states without
applying the π symmetry in Eq. (3) does not actually contribute
to the transitions since the corresponding oscillator strength
does not satisfy the one-photon selection rule and is thus
numerically equal to null in Eq. (10).

IV. RESULT AND DISCUSSION

In the experiment, the laser polarization can be rotated by
the Soleil-Babinet compensator so that the sodium atoms are
excited by the absorption of both π and σ photons. For a direct

FIG. 1. (Color online) The calculated and observed diamagnetic
spectra for the σ transitions. As the laser is linearly polarized
perpendicular to the magnetic field, both σ+ and σ− transitions can
occur. The two components are in coincidence if one of them is shifted
by the paramagnetic energy difference 	E = B

2 	m = B in atomic
units. For example, this value is 1.87 cm−1 for (a). The split spectral
lines within the same n-manifold are due to diamagnetic interaction
at low energies such as those labeled A. Their spectra strengths are
heavily suppressed in intensity due to the effect of significant quantum
defects. Part of the spectrum in (c) is magnified in (d) for a better
evaluation of the calculation.

comparison with our experimental spectrum, the theoretically
calculated spectrum in Eq. (11) is convoluted with a Gaussian
function (a full width at half maximum 	G = 0.15 cm−1) to
account for the Doppler broadening and the laser linewidth.
They are displayed in upper frame, as shown in Figs. 1 and
2. The spectrum range we investigated extends from −180 to
−25 cm−1, and the magnetic field applied varies from B = 2 T
to B = 3 T. The recorded spectra for the different situations
are well resolved by carefully matching the laser wavelength
and the applied magnetic fields.

Figure 1 shows the calculated and experimental σ spectra of
sodium in magnetic fields from 2 to 3 T. As the laser is linearly
polarized perpendicular to the magnetic field, both σ+ and σ−
transitions occur simultaneously. The two components are in
coincidence if one of them is shifted by the paramagnetic
energy difference 	E = B

2 	m = B in atomic units. In the
calculation, we adopt the effective quantum-defect values
from Ref. [31], taking δs = 0.348, δp = −0.145, δd = 0.015,
and δf = 0.002. The quantum defects for higher angular
momentum states are very small and thus are set equal to zero
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FIG. 2. (Color online) The calculated and observed spectra for
the π transition. As the laser is linearly polarized along the magnetic
field, only the π transition occurs. (a) reveals the spectral profile for
n-manifolds at low and high energies. For example, at A1 and at A2,
the spectra are very different. This spectral profile is similar to that
of the hydrogen σ transition at A1. This abnormal spectral feature
is attributed to the substantial quantum defect of the np states for
sodium atoms, as explained in Fig. 3. Part of the spectrum in (c) is
magnified in (d) for careful comparison.

in our calculation. From the observed spectra in Figs. 1(a) and
1(b), it seems that there are only spectral peaks corresponding
to the principal quantum number n, and each peak appears as
a pair. The split spectral lines within the same n-manifold due
to the diamagnetic term are very weak and are labeled A. At
higher energies above E = −80 cm−1, as in Fig. 1(c), we find
these weak peaks become stronger with energy. In this limit
the sodium atom behaves like a hydrogen atom in spectral
character because of the large quantum defect of sodium for
the np states, a point made clearer later. The calculated spectra
are displayed in upper frame in Fig. 1. Selected regions of
Fig. 1(c) are further enlarged in Fig. 1(d) for more convenient
comparisons and better evaluations of the calculation. Taking
the effects of the quantum defect into account, the calculation
explains the experimental observations very well.

Following the σ spectrum, the π polarization transitions
are also observed and calculated in the same magnetic-field
strength as in Fig. 1. They are shown in Figs. 2(a)–2(c). At
one magnetic-field strength, for example, at B = 2.0 T, below
an energy of E = −115 cm−1, the spectrum is similar to that
of the σ rather than the π transition of the hydrogen atom.
For spectral lines in the same manifold n, intensities decay

exponentially towards the low-energy direction, although this
scaling does not persist into the end of the energy region,
labeled A1 in Fig. 2(a). Above an energy of E = −115 cm−1,
typically at the energies labeled A2, the spectral profiles in
every manifold do not follow the exponential decay rule as
those at low energies do. This spectral feature is also very
different from that of barium atoms in magnetic fields [14],
which behave closer to hydrogen atoms due to the negligible
reduced quantum-defect values for its np states. This inversion
of the spectral intensity distribution of the transition from π to
σ reflects the prevailing competition of the core polarization
effects induced quantum defect from the diamagnetic term.
At higher energies, corresponding to the Rydberg electron at
longer distances, the core polarization effect gradually trails
off, and the spectrum will recover its profile and behave like
hydrogen.

This abnormal spectral profile can be well understood in
the numerical investigation of the calculated π spectrum by
varying the quantum-defect values, as shown in Fig. 3. The
calculation including quantum defects for all channels is taken
as a reference, which is shown upwards. In Fig. 3(a), we notice
that the variation of quantum defects of channels ns and nd

does not change the spectrum at all. This is well understood by
the matrix elements of the diamagnetic term. A prerequisite
for nonzero elements is that the angular momentum quantum
number satisfies L′ = L ± 2. For our case, the ns and nd states
do not contribute to the excited states np. For most alkali
and alkaline-earth atoms, the quantum defects of channels
ns, np, and nd are quite substantial. If we investigate the
diamagnetic spectrum by the transition to np states, we avoid
taking the ns and nd states into account. This feature is very
important to study atomic properties under complex external
fields. The conclusion of the exclusion of ns and nd states

FIG. 3. (Color online) (a) The dependence of the calculated π

transition spectrum on the quantum defects of channels ns, nd , and
np. It is essentially independent of the quantum defects of channels
ns and nd , although it remains sensitive to the quantum defect δp

of channel np. (b) When δp decreases to δp = −0.075 and (c) when
δp = 0, significant changes occur for the spectra. (d) For sodium
atoms, quite counterintuitively, the heavily distorted π spectral profile
resembles that of the hydrogen σ transition.
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FIG. 4. (Color online) The calculated diamagnetic spectral map
of the sodium π transition, showing a complex anticrossing with
increasing magnetic fields. Note that the horizontal axis for the
magnetic field is not linearly scaled in order to trace out the whole
interior of the magnetic field. Between the labeled horizontal tick
marks, the axis is linearly scaled.

can also be drawn by the application of symmetry to the atom
in the magnetic field. On the contrary, from Figs. 3(b) and
3(c), we find that the calculated spectrum is heavily dependent
on the quantum defects of channel np. When the quantum
defect of np is decreased to δp = −0.075 and then δp = 0,

significant changes occur for the spectral profiles. For sodium
atoms, a larger value for δp keeps more high-energy states
populated in one manifold, which counterintuitively resembles
the hydrogen σ transition spectrum, as shown in Fig. 3(d).

Since the quantum defect of a sodium atom is substantial for
the concerned one-photon transition from the ground state, we
expect the diamagnetic spectrum will reveal its anticrossing
properties on the energy levels. We calculate the diamagnetic
spectrum of sodium in the small energy range −114 to about
−110 cm−1 from B = 2 T to B = 3 T. The results are shown
in Fig. 4, where we see the spectral lines from different n-
manifolds are separated below B = 2.6 T, but at B = 2.7 T
the spectral lines repel each other. Above B = 2.7 T, more
complex and frequent anticrossings occur. We thus conclude
that level anticrossing is a general feature for the diamagnetic-
spectrum-associated states of nonzero quantum defects.

V. CONCLUSION

In summary, we observe the photoabsorption spectra of
sodium in strong magnetic fields and calculate the correspond-
ing theoretical spectrum. Using one-photon dipole coupling,
only the np Rydberg states are excited, starting with the ground
s states of alkali-metal atoms. Our method avoids the pollution
from the intermediate states in the multistep excitation con-
figuration and keeps the effects of the neighboring quantum
channel away. Incorporating the quantum defects into the
angular part of the centrifugal term, the calculation based on
the B-spline expansion method and the complex coordinate
rotation technique gives a satisfactory explanation for the
experimental results. Due to the substantial quantum defect
value for the np states, the π spectrum is heavily distorted
and resembles the σ transition of a hydrogen atom. Our study
proves that the diamagnetic map is an efficient method for
understanding anticrossings between the concerned energy
levels.
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