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Measurement-driven reconstruction of many-particle quantum processes by semidefinite
programming with application to photosynthetic light harvesting
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Quantum measurements provide a trove of information about a quantum system or process without solution
of the Schrödnger equation, and in principle, the associated density matrix is a function of these measurements.
Inversion of the measurements can produce an estimate of the density matrix, but this estimate may be unphysical,
especially when the measurements are noisy or incomplete. We develop a general approach based on semidefinite
programming [D. A. Mazziotti, Phys. Rev. Lett. 106, 083001 (2011)] for reconstructing the density matrix
from quantum measurements which leads naturally to nonnegative solutions, a critical attribute of physically
realistic solutions. We discuss the use of this methodology for reconstructing p-particle reduced density matrices
(p-RDMs) of N -particle systems where additional semidefinite constraints, known as N -representability
conditions, are essential because they ensure that the p-RDM represents an N -particle system. Special attention
is given to the N -representability conditions for the experimentally important cases where p = 1 or 2. We apply
the methodology to reconstructing the time-dependent quantum process of exciton transfer in a photosynthetic
light-harvesting complex.
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I. INTRODUCTION

The density matrix encodes probability information about
the expected outcome of observations made on a quantum
system. Direct calculation of the density matrix by solving the
Schrödinger equation is challenging because the dimension of
the matrix grows factorially with the system size. Experimental
measurement has the ability to provide rich information about
a quantum system by accessing only one- and two-particle
observables, which provide direct information about the one-
and two-particle reduced density matrices (1- and 2-RDMs).
The p-particle RDM (p-RDM) can be formally defined from
the integration of the N -particle density matrix:

pD(1 · · · p; 1̄ · · · p̄)

=
∫

ND(1 · · · N ; 1̄ · · · N )d(p + 1) · · · dN, (1)

where each Arabic number denotes the spin and spatial
coordinates of an electron [1,2]. In this study we combine ad-
vances in reduced-density-matrix theory [3–13] and semidef-
inite programming [7,12,14,15] to develop a measurement-
driven reconstruction of many-particle quantum processes.
We broadly define quantum-state reconstruction (QSR) as
the reconstruction of the static p-RDM from experimental
data and quantum-process reconstruction (QPR) as reconstruc-
tion of the time-dependent p-RDM from experimental data.
Quantum-process reconstruction has important connections to
quantum control and inversion [16–18], matrix completion
[19,20], and quantum-process tomography (QPT) [21–29].
A wide range of inversion techniques from the area of
data reconstruction [19–21] are available to aid the study
of quantum processes from quantum measurements, but
these techniques do not address the specific challenges of
reconstructing reduced density matrices.
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Reconstruction from experimental data of the p-RDM of
an N -particle system where p < N faces two interwoven
challenges: (i) the experimental data may be incomplete
or corrupted, and (ii) the p-RDM may not represent the
N -particle system. If the data are corrupted or limited in
fidelity, the p-RDM estimate may violate necessary physical
conditions [21,22]. A p-RDM determined from one- to p-
particle observables rather than from the integration of the
N -particle density matrix must satisfy certain conditions to
guarantee it represents the N -particle system. An RDM must
obey fundamental properties shared by any density matrix: it
must be (i) Hermitian, (ii) normalized, (iii) symmetric (bosons)
or antisymmetric (fermions) upon particle exchange, and (iv)
positive semidefinite [30]. A matrix is positive semidefinite
if and only if all of its eigenvalues are greater than or equal
to zero. However, a p-RDM must obey additional constraints,
known as N -representability conditions [1–5,8–11,13,30–33],
to ensure that it represents a physically realistic N -particle
system.

The reconstruction of the N -particle density matrix from
noisy or incomplete experimental data, we show in Sec. II A,
can be expressed as a multiobjective optimization problem
in which the density matrix’s deviations from experimental
data and smoothness in time are jointly minimized while
it is constrained at each time to be positive semidefinite.
Section II B formulates the direct reconstruction of p-RDMs
for p � 2 without the N -particle density matrix through
the use of N -representability constraints. Necessary N -
representability conditions can be cast in the form of restricting
multiple matrix forms of the p-RDM to be positive semidefi-
nite [33]. The N -representability conditions for the fermionic
1-RDM, for example, require that the one-particle and
one-hole RDM are positive semidefinite. The precise N -
representability conditions depend upon whether the N par-
ticles are bosons or fermions [34]. Here we assume that the
particles are fermions, but the basic ideas can also be applied
when the particles are bosons.
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In Sec. II C the reconstruction problem for the 1- and 2-
RDMs constrained by physically important N -representability
conditions is recast as a semidefinite program whose solution
is known as semidefinite programming [14,15]. A semidefinite
program is a special type of constrained optimization in which
a linear function of a matrix is minimized subject to linear
constraints on the matrix elements and the restriction that the
matrix be positive semidefinite. Semidefinite programming
generalizes the well-known family of linear programming
by replacing linear scalar inequalities with linear matrix
inequalities. Recently, first-order techniques have emerged
for performing semidefinite programming [7,12,35–38] effi-
ciently for large systems. We employ algorithms that were
developed by one of the authors in the context of computing
the ground-state energy of many-electron quantum systems
as a direct functional of the 2-RDM [7,12,38]. In this work
semidefinite programming serves as a computational engine
for forcing N -representability conditions on the 1- or 2-RDM
in the face of incomplete and corrupt data.

The observation of long-lived coherence in photosynthetic
light-harvesting complexes suggests that the energy-transfer
dynamics in these complexes is fundamentally quantum
mechanical. The investigation of energy transfer as a quantum
process has been the subject of extensive theoretical and
experimental effort [39–51]. As an illustration of the present
tomography method, the time-dependent 1-RDM for the
energy-transfer dynamics in a model photosynthetic complex
is reconstructed from corrupted and incomplete data (see
Sec. III). Reconstruction with N -representability constraints
and regularization is capable of improving the accuracy of the
1-RDM estimate by approximately two orders of magnitude
relative to the error from a least-squares fit to the data.
Furthermore, we show that reconstruction at the same level
of accuracy is achievable from incomplete measurements.

II. THEORY

A general theory for reconstruction of the N -particle
density matrix from quantum measurements is developed
in the first section. Because building the complete density
matrix for an N -particle system is both computationally and
experimentally difficult, we reformulate the theory in terms
of 1- or 2-RDMs constrained by representability conditions in
Sec. II B. In Sec. II C we discuss expressing the reconstruction
as a semidefinite program that can be solved in polynomial
time using efficient recently developed algorithms [7,12].
Finally, a theoretical model for the exciton-transfer dynamics
in a photosynthetic light-harvesting complex is described in
Sec. II D. In Sec. III this model is employed to test the
reconstruction of RDMs from noisy and/or incomplete data.

A. Quantum-process reconstruction

Full information of the time evolution of an N -particle
quantum system is given by the N -particle density matrix
D(t). The expectation value of any observable at time t for the
quantum system is a linear functional of the density matrix,

〈Â〉t = Tr[Â D(t)], (2)

which is to say that observable outcomes provide a linear map
to the density matrix. The results of a measurement can be
seen as providing a set of linear constraints on the density
matrix, and the elements of the density matrix can be found
by minimizing

εi =
(∣∣∣∣

∫ tf

ti

{Tr[Âi(t) D(t)] − bi(t)} dt

∣∣∣∣
2
) 1

2

, (3)

where bi is the ith measurement outcome and εi is the
magnitude of the ith residual. The details of performing
optimal measurements for QPT are beyond the scope of
this work, but they have been discussed for a variety of
physical systems [22,24,25,52–55]. Because minimization
of Eq. (3) is accomplished by linear least-squares inversion
(see, for example, Ref. [21]), a density-matrix estimate from
minimizing Eq. (3) will be denoted DLS.

Estimating the density matrix in this manner faces the
following obstacles: (i) the measured data set may be corrupted
so that there is error associated with each density-matrix
element, that is,

DLS(t) = D(t) + f (σ ), (4)

where f (σ ) represents error with a standard deviation of σ

that arises from imperfect measurements, and (ii) the set of
measurements {bi} may not provide sufficient information to
estimate every element of the density matrix, and hence, DLS

may be incomplete. The challenge addressed in this work is to
reconstruct the true density matrix as accurately as possible
from quantum measurements that may be corrupted and
incomplete. In practice, the starting point may be experimental
information, whereby the objective is to minimize Eq. (3)
directly from a set of corrupted and incomplete measurements,
or the starting point may be a prior quantum-state estimate
(i.e., a density matrix) which may itself be corrupted and
incomplete.

Any physically realistic solution to the reconstruction
problem must satisfy conditions of a density matrix [56]. Fur-
thermore, physically realistic solutions should be continuously
differentiable in time. Because straightforward minimization
of Eq. (3) often leads to a matrix DLS which violates properties
requisite of a physical density matrix, the attempt to reconstruct
D from experimental data should seek to find the matrix
that minimizes Eq. (3) while constrained to be normalized,
Hermitian, antisymmetric (fermions) in particle exchange,
positive semidefinite, and continuously differentiable in time.
We demonstrate in Sec. II C that these conditions may be
enforced through semidefinite programming (SDP), and thus,
the density matrix that is reconstructed with these conditions
will be denoted DSDP. We define the matrices E and R as

E(t) = DSDP(t) − DLS(t), (5)

R(t) = DSDP(t + 1) − DSDP(t), (6)

where E measures the error between the reconstructed SDP
density matrix DSDP and the least-squares density matrix DLS

at time t and R measures the variability between elements of
the reconstructed SDP density matrix at time t and time t + 1.
Using these definitions, the reconstruction problem can be
framed as a multiobjective optimization where the norms of E
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and R are minimized while enforcing constraints to guarantee
the reconstructed solution is a proper density matrix,

min (α||E|| + β||R||)
such that DSDP(t) � 0, (7)

Tr[DSDP(t)] = N.

Minimization of the first objective E directs instantaneous
solutions DSDP(t) to a matrix which is close to the elements of
DLS(t) while minimization of the second objective directs the
global solution DSDP(t) to one that varies smoothly in time.

B. Reduced density matrices and N representability

Measurements on the full N -particle manifold are not
always realizable, and often measurements are made on the
one- or two-particle space where the p-RDM with p = 1 or 2 is
the appropriate variable to characterize the system. Care must
be taken in computing the p-RDM to ensure it corresponds
to a realistic N -particle system [1–5,8–11,13,30–33]. The
N -electron density matrix in the reconstruction of Eq. (7) can
be replaced with a p-RDM only if the positive semidefinite
condition DSDP(t) � 0 is replaced by N -representability con-
ditions. Importantly, the most important of these conditions are
also expressible as semidefinite constraints. In the following
two sections the N -representability conditions on the 1- and
2-RDMs are briefly reviewed.

Traditionally, quantum-process tomography has been as-
sociated with the generation of a complete map of the
system’s dynamics in time, but recent work has emphasized the
importance of partial quantum-process tomography to retrieve
the most important information without the cost of computing
a complete map [26–28]. For many-particle systems the use
of RDMs provides a natural framework for extracting the
most important information from the available experimental
measurements.

1. N representability of the 1-RDM

A reduced density matrix must satisfy special conditions
known as N -representability conditions to guarantee that it
corresponds to an N -particle density matrix [1–5,8–11,13,
30–33]. A set of necessary conditions, called the p-positivity
conditions, is known for the p-particle RDM. For p equal to 1,
one-positivity of the 1-RDM requires that the 1-RDM and the
one-hole RDM (1-HRDM) are positive semidefinite [30,33];
that is,

1D(t) � 0, (8)
1Q(t) � 0, (9)

where the elements of the one-particle RDM 1D and 1-hole
RDM 1Q are given by

1Dp
q (t) = Tr[â†

pâq,
ND(t)], (10)

1Qp
q (t) = Tr[âpâ†

q,
ND(t)], (11)

and â
†
p (âp) denotes a creation (annihilation) operator that

creates (destroys) a particle in orbital p. Taking the expectation
value of the anticommutation relation for fermion creation
and annihilation operators yields the following linear mapping

between the one-particle and one-hole RDMs:
1D(t) + 1Q(t) = 1I, (12)

where 1I is the one-particle identity matrix. For the 1-RDM,
one-positivity is both necessary and sufficient to guarantee
N representability for systems with at most one-particle
interactions [30], and these conditions guarantee that the
probabilities of finding one particle and one hole are between
0 and 1.

2. N representability of the 2-RDM

Necessary N -representability conditions on the 2-RDM,
known as two-positivity conditions, require that the two-
particle RDM, two-hole RDM, and the particle-hole RDM
are positive semidefinite [1–5,8–11,13,30–33]:

2D(t) � 0, (13)
2Q(t) � 0, (14)
2G(t) � 0, (15)

where the elements of these matrices are given by
2Dpq

rs (t) = Tr(â†
pâ†

q âs âr ,
ND), (16)

2Qpq
rs (t) = Tr(âpâq â

†
s â

†
r ,

ND), (17)
2Gpq

rs (t) = Tr(â†
pâq â

†
s âr ,

ND). (18)

The matrix elements of the two-particle, two-hole, and
particle-hole RDMs in Eq. (16) are related by linear mappings
which can be derived from the fermion anticommutation rela-
tions. Keeping the 2D(t), 2Q(t), and 2G(t) matrices positive
semidefinite corresponds to restricting the probability distri-
butions for finding two particles, two holes, and a particle-hole
pair nonnegative. The two-positivity conditions are necessary
but not sufficient conditions for the N representability of the
2-RDM.

C. Quantum-process reconstruction as a semidefinite program

Semidefinite programming is a generalization of linear
programming in which a linear function of a matrix is
minimized subject to linear constraints on the matrix elements
and the condition that the matrix be positive semidefinite
[14,15,38,57]. A semidefinite program is expressible in its
primal form as

min (cT x)

such that Ax = b, (19)

M(x) � 0,

where M is an operator that maps the solution vector x to a
matrix. Importantly, in this formulation multiple matrices, as
arise in the N -representability conditions of Sec. II B, can be
kept positive semidefinite by making M(x) a block-diagonal
matrix containing these matrices [38]. Semidefinite programs
can be solved by primal-dual interior-point methods which
have been implemented in several software packages (see, for
example, Refs. [35–37,58]), but the computational scaling of
such methods is prohibitive for large-scale systems. In the
context of 2-RDM-based electronic structure methods, one of
the authors has developed more efficient methods for solving
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the SDP based on nonlinear programming [7,38,59], which
we use in this application, as well as a method based on a
boundary-point algorithm [12,60].

The reconstruction problem was framed in Secs. II A and
II B as a multiobjective optimization in which the solution’s
proximity to the experimental data and its smoothness in the
time domain are minimized while it is constrained to satisfy
physical conditions, such as the N -representability conditions.
Significantly, the nonconvex optimization in Eq. (7) can be
reformulated as a convex optimization, more specifically, a
semidefinite program. Assuming that time is discretized, we
must define the solution x of the SDP in Eq. (19) to have three
parts for each point in time: xE(t), xR(t), and xD(t), which
correspond to the errors in the fit to the quantum measurements,
the errors in the smoothness of the solution, and the vector form
of the RDMs, respectively.

While the squared Frobenius norm of the error E(t) in
Eq. (5) is quadratic in the RDMs, the minimization of the
norm can be formulated as linear in the solution x of the SDP.
Minimizing the squared Frobenius norm of E(t) can be relaxed
to minimizing the trace of M(xE(t)) [61],

M(xE(t)) =
(

I E(t)
E∗(t) F (t)

)
� 0, (20)

where I is the identity, F (t) is a matrix of free variables, and
E(t) depends linearly upon xD(t) as defined in Eq. (5). Taking
the determinant of the 2 × 2 block matrices in the positive
semidefinite, M(xE(t)) yields

F (t) − E∗(t) E(t) � 0 (21)

or

F (t) � E∗(t) E(t), (22)

and taking the trace of Eq. (22) yields

Tr[F (t)] � Tr[E∗(t) E(t)]. (23)

Hence, because the Frobenius norm of the error matrix is

||E||F =
√

Tr[E(t)E(t)∗], (24)

minimizing the trace of F (t) provides a semidefinite relaxation
for the problem of minimizing the Frobenius norm. Further-
more, we can minimize the errors at all points in time by
minimizing over the sum of F (t) over all t . Similarly, the
optimization of the Frobenius norm of R(t) defined in Eq. (6)
may be performed by minimizing the trace of

M(xR(t)) =
(

I R(t)
R∗(t) F

′
(t)

)
� 0, (25)

where F ′(t) is a second matrix of free variables and R(t)
depends linearly upon xD(t) as defined in Eq. (6). As in the
previous case, we can minimize the errors at all points in time
by minimizing over the sum of F ′(t) over all t .

For reconstruction of the 1-RDM, at each point in time the
solution has a block of the form

M(xD(t)) =
(

1D(t) 0
0 1Q(t)

)
� 0, (26)

and for reconstruction of the 2-RDM with two-positivity
conditions, at each point in time the solution has a block of the

form

M(xD(t)) =
⎛
⎝ 2D(t) 0 0

0 2Q(t) 0
0 0 2G(t)

⎞
⎠ � 0. (27)

In addition to the semidefinite conditions, linear constraints of
the form Ax = b are required to enforce trace relations, the
contraction of 2-RDM to the 1-RDM, and the linear mappings
connecting 1D(t) and 1Q(t) or 2D(t), 2Q(t), and 2G(t).
This formalism may be generalized to include higher-particle
RDMs as well, but we will show in the following section that
the 1-RDM is an appropriate choice for the current application.

D. Model for photosynthetic light harvesting

Photosynthetic light-harvesting systems are collections of
chromophores that capture and transfer energy from photons.
The energy-transfer process can be understood in terms of
the dynamics of a delocalized excitation (or exciton). The
dynamics of the exciton density matrix can be modeled by a
Liouville equation of motion supplemented with a Lindblad
operator [62],

dD(t)

dt
= − i

h̄
[Ĥ , D(t)] + L̂(D(t)), (28)

where Ĥ is the system Hamiltonian and L̂ is the Lindblad
operator accounting for the interaction between the system
and its surroundings. A model for the system Hamiltonian in
the site basis of the chromophores [63,64] is

Ĥ =
M∑
j

h̄ωj â
†
j âj +

∑
j �=i

h̄νj,l(â
†
j âl + âj â

†
l ), (29)

where â
†
i (âi) creates (kills) an excitation on site i. The Lind-

blad operator L̂ models the effects of dephasing, dissipation,
and transfer to the sink; further details are reported elsewhere
[63,64]. If the initial state of the system contains a single
excitation, then the dynamics is restricted to the Hilbert space
spanned by the set of singly excited states, and consequently,
the 1-RDM is sufficient to fully characterize the quantum state.

For the 1-RDM, N representability is ensured by keeping
the 1-RDM and the 1-HRDM positive semidefinite [30,33]. In
the special case that only single excitons are considered, the
one-particle RDM in the basis set of excited orbitals traces
to unity. Using the relation in Eq. (12), we perceive that
when the one-particle RDM traces to 1, the one-hole RDM
is automatically positive semidefinite. Hence, in this case
constraining the one-particle RDM to be positive semidefinite
is sufficient for N representability of the 1-RDM. The solution
block xD simplifies because only 1D(t) needs to be explicitly
computed and constrained to be positive semidefinite. Alter-
natively, because we consider only one exciton in the system,
the 1-RDM for excitons is equivalent to the complete exciton
density matrix, and hence only the density matrix needs to be
held positive semidefinite.
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III. APPLICATIONS

A. Methodology

The model quantum process in this application is the
one-exciton dynamics of a seven-chromophore model of the
Fenna-Matthews-Olson (FMO) complex. The SDP is encoded
with quantum-process information from a simulation of the
exciton-transfer process in FMO. The Liouville equation is
solved for the 1-RDM with a fourth- and fifth-order Runge-
Kutta method with variable step size [61]. The initial density
matrix describes a single excitation on chromophore 1, and
the time evolution of the 1-RDM is simulated for 1 ps with a
1-fs time step. The parameters for the system Hamiltonian in
Eq. (29) and the Lindblad operator are taken from a study done
by Plenio and coworkers [63]. From solving Eq. (28), we obtain
1000 instantaneous 1-RDMs from t = 0 to 1000 fs, which
we will consider the exact 1-RDMs for the quantum process
discretized in time. We introduce corruption and incomplete-
ness of the quantum-process information as postprocessing
steps following the solution of Eq. (28). Corruption in the
data is simulated by adding Gaussian noise to each 1-RDM
element for each time step in the data set. A Gaussian random
number generator is implemented as described in Ref. [65]
with μ = 0 and σ = 0.005. Incompleteness of the data set is
simulated in two ways: (i) by omitting the coherences 1D1

2(t)
and 1D2

1(t) for each t between 1 and 1000 fs and (ii) by omitting
a randomly chosen population (diagonal 1-RDM element) for
each t between 1 and 1000 fs. This corrupted and incomplete
quantum-process information constitutes our model for a
1-RDM obtained by least-squares inversion 1DLS(t) and enters
into the SDP calculation through the matrix block defined in
Eq. (20).

The objective of the SDP, as formulated in Sec. II C, in-
volves a matrix block of dimension 7 and two matrix blocks of
dimension 14 at each time t , so each time step has 441 variables
and 295 constraints. This SDP is intractable by primal-dual
interior-point methods for more than approximately 10 time
steps, but it is easily solvable with first-order methods [7,12].
The first-order algorithm for solving SDP in Ref. [7] is
implemented for real-valued problems while the data set is
complex valued, and so one additional step is taken to map the
complex-valued data set to a real data set. The complex-to-real
mapping increases the rank of each matrix block by a factor
of 2, but because of the efficiency of the first-order algorithm,
this has a negligible impact on computational cost. The details
of this mapping are described in the Appendix.

B. Results

We consider reconstruction of the 1-RDM by semidefinite
programming using three models for corrupted or incomplete
information in the least-squares inversion 1DLS(t). All three
models for 1DLS(t) introduce corruption through Gaussian
noise. The second and third models also introduces data
loss. The second model omits the coherences between chro-
mophores 1 and 2 at each t , and the third model omits a
randomly selected population at each t . The semidefinite
reconstruction is performed using information from each
model of 1DLS in combination with restrictions from N

representability and/or regularization.
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FIG. 1. (Color online) Two reconstructions methods, (a) least-
squares fit and (b) SDP fit with N -representability conditions and
regularization, are compared in their reconstruction of an energy
transfer in light harvesting from noisy data. While the least-squares
reconstruction results in a poor resolution of the population dynamics,
the SDP reconstruction recovers the exact population dynamics
[shown in red (dark gray)] for all of the chromophores. Corruption is
introduced through Gaussian noise with σ = 0.005.

The reconstruction of the quantum process from the
corrupted (first) model of 1DLS is shown in Fig. 1. The
corruption (Gaussian noise with σ = 0.005) in the least-
squares 1-RDM results in poor resolution of the population
dynamics in all seven chromophores. For chromophores 3
through 7 the corruption severely obscures the individual
population dynamics. Nevertheless, by enforcing N repre-
sentability and regularization through SDP reconstruction, we
can unambiguously recover the population dynamics for all
of the chromophores. Figure 2 plots the Frobenius norms
of (i) the error in the least-squares 1-RDM, (ii) the error
in the SDP 1-RDM reconstructed with N representability,
and (iii) the error in the SDP 1-RDM reconstructed with N

representability and regularization. The error matrix for a
given 1-RDM estimate is defined as the difference between
the 1-RDM estimate and the exact 1-RDM; for example,
ELS(t) =1 DLS(t) −1 D(t) is the error matrix for the 1-RDM
obtained from least-squares inversion. From Fig. 2 we see that
applying the 1D � 0 condition alone decreases the Frobenius
norm of the error matrix at each time step by at least half
an order of magnitude, while including regularization further
decreases the error by at least another half an order of

012512-5



JONATHAN J. FOLEY IV AND DAVID A. MAZZIOTTI PHYSICAL REVIEW A 86, 012512 (2012)

 1e-04

 0.001

 0.01

 0.1

 1

 100  200 300  400 500 600  700  800 900 1000

F
ro

be
ni

us
 N

or
m

 o
f E

rr
or

 M
at

rix

Time (fs)

Least Squares  - Exact
SDP, No Regularization - Exact

SDP  - Exact

FIG. 2. (Color online) The Frobenius norms of (i) the error in
the least-squares 1-RDM [red (medium gray)], (ii) the error in the
SDP 1-RDM reconstructed with N representability [green (light
gray)], and (iii) the error in the SDP 1-RDM reconstructed with
N representability and regularization [blue (dark gray)] are shown.
Applying the 1D � 0 condition decreases the Frobenius norm of the
error at each time step by at least half an order of magnitude, while
also including regularization further decreases the error by half an
order of magnitude.

magnitude. Finally, Fig. 3 demonstrates that the model of
1DLS corrupted with Gaussian noise is not N representable
and that semidefinite reconstruction successfully enforces the
N -representability conditions. Many 1DLS(t) have eigenvalues
as small as −0.03, whereas the smallest eigenvalues of 1DSDP

are greater than or equal to zero for all t .
The reconstruction of the quantum process from a cor-

rupted and incomplete (second) model of 1DLS is shown
in Fig. 4, where incompleteness is introduced by omission
of the coherences between chromophores 1 and 2. The
results show that it is possible to reconstruct the population
dynamics very accurately even without information about the
coherences between the channels with the largest populations,
chromophores 1 and 2. Finally, we consider the third model
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FIG. 3. (Color online) The lowest eigenvalues of the least-squares
1-RDM (blue squares) and the SDP 1-RDM (red dots) are shown.
Both models are reconstructed from noisy data. The least-squares
1-RDM is not N representable because its lowest eigenvalues are as
negative as −0.03, especially at early t , while the SDP 1-RDM has
nonnegative eigenvalues (N representable) for all t .
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FIG. 4. (Color online) Chromophore populations [green (light
gray)] from semidefinite reconstruction using N representability
and regularization are compared with the exact populations [red
(dark gray)]. Reconstruction is from corrupted and incomplete data.
Incompleteness is introduced by omitting the coherences between
chromophores 1 and 2 for each t from 1 to 1000, while corruption is
introduced through Gaussian noise with σ = 0.005.

of 1DLS in which a randomly selected population is omitted
at each t . Reconstructing the 1-RDM with N -representability
conditions alone, shown in Fig. 5(a), leads to wild fluctuations
in the values of the elements and a large error relative to the
model data. However, using N representability and regular-
ization, shown in Fig. 5(b), provides sufficient information to
reconstruct the 1-RDM accurately.

IV. DISCUSSION AND CONCLUSIONS

Experimental measurements offer the opportunity to ac-
cess quantum-state and quantum-process information directly
without computational solution of the Schrödinger equation.
In particular, experiment provides information that can be
used to build the one- or two-particle reduced density matrix
without construction of the N -particle density matrix. Ma-
jor obstacles facing reconstruction of RDMs, and therefore
QST and QPT, include corruption and incompleteness of
experimental data and the challenge of constraining the
solution to satisfy necessary N -representability conditions
[1–3,8,30–33], that is, constraints that are necessary for the
RDM to represent an N -particle system. We have shown
that a general reconstruction methodology that overcomes
these obstacles is possible through semidefinite programming
[14,15,38,57]. The reconstruction methodology developed
encodes N -representability conditions through a combination
of positive semidefinite and linear constraints. Optimization is
performed with respect to two objectives: (i) the least-squares
fit to measured data and (ii) the smoothness of the solution
in time. Both objectives are expressed as linear objectives,
suitable for a semidefinite program, through a relaxation
of the Frobenius norms [61]. The smoothness criterion (or
regularization) and the N -representability conditions allow
accurate reconstruction from data sets which are corrupted
and incomplete.

Interesting parallels exist between the reconstruction of
one- and two-electron RDMs from experimental measure-
ments and the variational calculation of the two-electron RDM
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FIG. 5. (Color online) Chromophore populations [green (light
gray)] from semidefinite reconstruction using N representability (a)
without and (b) with regularization are compared with the exact
populations [red (dark gray)]. Reconstruction is from corrupted
and incomplete data. Incompleteness is introduced by omitting the
coherences between chromophores 1 and 2 for each t from 1 to
1000, while corruption is introduced through Gaussian noise with
σ = 0.005.

of many-electron systems [3–5,8–11,33,66–68]. Because both
methods attempt to compute RDMs without calculation of the
N -electron density matrix, they both need N -representability
conditions that are necessary for the computed RDM to
represent an ensemble N -electron density matrix. The N -
representability conditions on the 1-RDM, keeping its eigen-
values (natural occupation numbers) between 0 and 1, were
first proven sufficient by Coleman in 1963 [30], while the N -
representability conditions on the p-RDM for p > 1, involving
much more complicated non-negativity conditions, were only
recently characterized and proven sufficient [13]. Because the
N -representability conditions involve linear and linear matrix
(semidefinite) constraints, both the reconstruction of 2-RDMs
from experimental measurements and the variational calcu-
lation from an energy functional for many-electron systems
are naturally formulated as semidefinite programs, solvable by
semidefinite programming. The N -representability constraints
for the 1-RDM have a polynomial scaling with system
size, while the complete constraints for the 2-RDM have a
nondeterministic polynomial complete (NP-complete) scaling
with system size [13]. In practice, however, by using a subset of
the N -representability conditions on the 2-RDM, both 1-RDM

and 2-RDM reconstruction can be performed with polynomial
scaling.

We applied the reconstruction methodology to charac-
terizing the energy-transfer dynamics of the photosynthetic
light-harvesting complex in green sulfur bacteria [39–51].
Reconstruction of the one-electron RDM was performed
from data that were corrupted with Gaussian noise. The
semidefinite reconstruction improved the accuracy of the
1-RDM by approximately two orders of magnitude compared
to the least-squares estimate, which did not consider the
representability of the 1-RDM. We observed similar accuracy
when reconstruction was performed from data that were both
corrupted and incomplete.

Unlike reconstruction from linear least-squares inversion,
reconstruction by semidefinite programming can be for-
mulated to constrain the solution to satisfy the physical
requirements of an RDM. Importantly, this reconstruction
can be formulated directly with experimental data as well as
with an estimate of the RDM. The semidefinite programming
filters the quantum measurements to remove noise and incom-
pleteness through a combination of regularization (smooth-
ness) and N -representability conditions. The reconstructed
N -representable RDMs provide a compact description of the
quantum system and process, including information about
coherence lifetimes and energy-transfer efficiency. The present
work can be readily generalized to interacting many-boson
systems [34] as well as the determination of higher-particle
RDMs [1,8]. Quantum-process reconstruction by semidefinite
programming provides an important tool for reconstructing
realistic, N -representable reduced density matrices of many-
particle quantum processes.
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APPENDIX: REAL REPRESENTATION
OF A COMPLEX MATRIX

Consider the complex number z1 = a1 + b1i, where
Re(z1) = a1 and Im(z1) = b1. A matrix representation for z1

is [69]

M(z1) =
(

a1 −b1

b1 a1

)
. (A1)

For two complex numbers z1 and z2 this mapping preserves
arithmetic operations such as

M(z1 + z2) = M(z1) + M(z2),

M(z1z2) = M(z1)M(z2),
(A2)

M(z1 − z2) = M(z1) − M(z2),

M(z1/z2) = M(z1)M(z2)−1.

This idea can be generalized to represent a Hermitian matrix by
a real symmetric matrix by either applying the above mapping

012512-7



JONATHAN J. FOLEY IV AND DAVID A. MAZZIOTTI PHYSICAL REVIEW A 86, 012512 (2012)

to each complex entry of the matrix or noticing an equivalent
representation,

M̄(Z1) =
(

Re(Z1) −Im(Z1)T

Im(Z1) Re(Z1)

)
. (A3)

The rank of M̄(Z1) is twice the rank of Z1 with each eigenvalue
being doubly degenerate, but the mapping preserves both
Hermiticity and positive semidefiniteness. Hence, solving an
SDP for the real symmetric matrix M̄(Z1) is equivalent to
solving an SDP for the Hermitian matrix Z1 [58].
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