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Noncovariant gauge fixing in the quantum Dirac field theory of atoms and molecules
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Starting from the Weyl gauge formulation of quantum electrodynamics (QED), the formalism of quantum-
mechanical gauge fixing is extended using techniques from nonrelativistic QED. This involves expressing the
redundant gauge degrees of freedom through an arbitrary functional of the gauge-invariant transverse degrees
of freedom. Particular choices of functional can be made to yield the Coulomb gauge and Poincaré gauge
representations. The Hamiltonian we derive therefore serves as a good starting point for the description of atoms
and molecules by means of a relativistic Dirac field. We discuss important implications for the ontology of
noncovariant canonical QED due to the gauge freedom that remains present in our formulation.
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I. INTRODUCTION

Quantum electrodynamics (QED) in canonical form can be
formulated in a number of different ways because the QED
Lagrangian is independent of the velocity of the scalar poten-
tial. Formulations can be broadly categorized into two types.
The first type comprises the manifestly covariant formulations
within a Lorenz-type gauge such as the Feynman gauge. These
require the addition of a gauge symmetry-breaking term to the
Lagrangian after which the scalar potential can be taken as a
legitimate canonical variable with a nonvanishing conjugate
momentum. Quantization is carried out using an indefinite
metric with the Lorenz subsidiary condition implemented as a
constraint defining the physical space of states [1].

The second type of formulation consists of those in
which the scalar potential is eliminated from the Lagrangian
altogether. The vector potential is then the sole canonical co-
ordinate in the Hamiltonian. Of course, the relative simplicity
of such an approach comes at the price of sacrificing manifest
covariance [2].

In the Weyl gauge the scalar potential is set identically equal
to zero. In the Coulomb and Poincaré gauges it is eliminated
in favor of the gauge-invariant degrees of freedom. How this
is achieved, varies between the two gauges, so the resultant
Lagrangians are distinct. In these cases the gauge is fixed at
the classical level with a particular Lagrangian belonging to a
particular gauge [2,3].

Conventional calculations in atomic physics and quantum
optics most often start with a nonrelativistic Hamiltonian
in the Coulomb or Poincaré gauge [2–6]. With regards to
such calculations there are two main drawbacks. The first
is their nonrelativistic description of the material degrees of
freedom. The second is their ab initio restriction to a particular
gauge, which makes them incapable of fully exploring the
consequences of gauge freedom. Indicative of the potential
benefit of a more general formulation is the fact that certain
admixtures of the Coulomb and Poincaré gauge Hamiltonians
have proven useful in quantum optics [7–9].

In this paper we focus on formulations of QED of the second
(noncovariant) type in which the scalar potential is eliminated.
Specifically, the aim of this paper is to address both of the issues
raised above, first using a quantized Dirac field description for
the material degrees of freedom and second keeping at the
forefront the gauge freedom present in the theory.

The latter is achieved following Ref. [10] by reexpressing
the gauge-dependent longitudinal degrees of freedom using the
gradient of a linear functional of the gauge-invariant transverse
degrees of freedom. The functional is defined in terms of an
arbitrary c-number function g(x,x′), which then carries the
gauge freedom of the theory.

As a description of the Maxwell field we use a Hilbert
space of Schrödinger wave functionals of the vector potential
in which an inner product can be defined through functional
integration [11]. The material degrees of freedom can be
defined similarly in terms of a Hilbert space of functionals
of a Grassman field [11].

To obtain a Hamiltonian in an arbitrary noncovariant gauge
(defined by g), which is fully relativistic in the material degrees
of freedom, we combine these elements with an adaptation
of the quantum-mechanical gauge-fixing method presented
in Ref. [12]. In this approach one initially adopts the Weyl
gauge. From there the physical subspace of states (wave
functionals) is defined as the subspace of states vanishing under
the action of the Gauss law constraint. The Hamiltonian can
be found in different noncovariant gauges through the use of
unitary gauge-fixing transformations acting on the Weyl gauge
Hamiltonian.

Particular choices of the function g can subsequently
be made to render the Hamiltonian in a fixed gauge. Two
particular choices yield the Coulomb gauge and Poincaré
gauge Hamiltonians.

On the one hand our results are of importance for the
relativistic theory of atoms and molecules and on the other they
provide an interesting extension of the quantum-mechanical
gauge-fixing formalism already employed in noncovariant rel-
ativistic QED. We will show that this extension has important
implications with regards to the ontology of noncovariant QED
in general because it allows for a thorough exploration of the
gauge freedom of the theory in canonical (Hamiltonian) form.
The requirement of gauge invariance of a result is translated
into the requirement that it be independent of the choice of the
arbitrary function g.

There are four sections to this paper. In Sec. II we use
the quantum-mechanical gauge-fixing formalism to obtain a
Hamiltonian in an arbitrary noncovariant gauge. In Sec. III we
discuss the implications of the gauge freedom still present
in the formulation. We then define useful gauge-invariant
operators and as an application address the problem of
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causality in spatially separated material systems [13]. In
Sec. IV we finish with a brief summary of our results.

II. THE QED HAMILTONIAN IN AN ARBITRARY
NONCOVARIANT GAUGE

We will begin in Sec. II A by outlining how the general
idea of gauge fixing we are going to employ works in the
simple case of classical electrodynamics. The aim is then to
extend this idea to noncovariant relativistic QED. To this end
we start Sec. II B formally with the QED Lagrangian and
obtain from it the Hamiltonian and canonical operators, which
are supposed to satisfy canonical commutation relations. We
go on to identify the Gauss law constraint, which defines the
physical subspace of states, and review a particular class of
transformations called residual gauge transformations [12].

In Sec. II C we identify the states of the system as
Schrödinger wave functionals and determine the general form
of a physical state using the coordinate representation for
the canonical operators of the Maxwell field and the Gauss
law constraint. From there we identify a general unitary
gauge-fixing transformation Ug as a map from the physical
space of states Hp to a space Hg , which is the space of states
for the gauge g. Next, in Sec. II D, we determine the effect of
this transformation on the various operators of the theory and
express the Hamiltonian in the arbitrary gauge g. We conclude
in Sec. II E by using the Hamiltonian to calculate the Dirac
equation in the gauge g.

A. Gauge in classical electrodynamics

In electrodynamics the electric and magnetic fields defined
by

E = −∇φ − ∂A
∂t

,

(1)
B = ∇ × A

are invariant under a change of gauge

A′ = A + ∇f,
(2)

φ′ = φ − ∂f

∂t

for an arbitrary function f . Clearly, the transverse vector
potential AT is gauge invariant, while the (redundant) gauge-
dependent degrees of freedom are longitudinal. For this reason
the transverse vector potential serves as a convenient starting
point relative to which vector potentials in other gauges can
be defined by

A = AT + ∇f, (3)

with the function f determining the gauge. The gauge-
invariant transverse electric field is given by

ET = −∂AT

∂t
, (4)

while the Gauss law

∇ · E = ρ (5)

involving the charge density ρ ensures that the longitudinal
electric field is equal to minus the gradient of the (static)

Coulomb potential EL = −∇V . Using this equality and Eq. (1)
we see that the scalar potential accompanying the vector
potential in Eq. (3) can be written

φ = V − ∂f

∂t
. (6)

The Coulomb gauge is defined by the choice f ≡ 0, but
it is not the only way in which the longitudinal degrees of
freedom can be eliminated. In nonrelativistic QED it has been
shown [10] that a general gauge-fixing condition is given by
a linear functional constraint satisfied by vector potentials of
the form

A = AT + ∇
∫

d3x ′ g(x,x′) · AT(x′), (7)

where g(x,x′) is the Green’s function for the divergence
operator

∇ · g(x,x′) = δ(x − x′). (8)

In Eq. (7) the redundant degrees of freedom have been reex-
pressed through a functional of the gauge-invariant transverse
degrees of freedom.

While the longitudinal component of the Green’s function
g is fixed according to Eq. (8) by

gL(x,x′) = −∇ 1

4π |x − x′| , (9)

its transverse component is essentially arbitrary, meaning that
the gauge is determined through a choice of gT. This idea has
been employed in nonrelativistic QED to obtain a Hamiltonian
in an arbitrary gauge [10], but it has yet to be extended
to the relativistic setting. Furthermore, the nature of gauge
transformations and residual symmetries in such a framework
has not been explored.

B. The QED Lagrangian and Hamiltonian

We start formally with the QED Lagrangian density

L = iγ0γ
μψ†Dμψ − (γ0m + eφe)ψ†ψ − 1

4FμνF
μν, (10)

where Dμ = ∂μ + ieAμ is the gauge-covariant derivative,
Fμν = ∂μAν − ∂νAμ is the electromagnetic field strength
tensor, and φe is an external potential due, for example, to
nuclei. Since the Lagrangian is independent of the velocity
of the scalar potential its conjugate momentum is identically
zero. As a result, it is natural to quantize the theory within the
Weyl gauge corresponding to the choice φ ≡ 0. The remaining
redundant degrees of freedom are eliminated by defining the
physical subspace of states Hp consisting of those states,
which vanish under the action of the Gauss law constraint
G|ϕp〉 ≡ (∇ · E − ρ)|ϕp〉 = 0.

The Hamiltonian density is obtained from the Lagrangian
density via a Legendre transformation

H = −iψ†α · (∇ − ieA)ψ + (βm + eφe)ψ†ψ

+ 1
2 [�2 + (∇ × A)2]. (11)

Quantum mechanically ψ and its conjugate ψ† are Dirac field
operators satisfying the anticommutation relation

{ψ(x),ψ†(x′)} = δ(x − x′), (12)
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while A and � = −E are the canonical operators of the
Maxwell field satisfying the commutation relation

[Ai(x),�j (x′)] = iδij δ(x − x′). (13)

We employ the usual definitions of the charge and current
densities

ρ = eψ†ψ,
(14)

j = eψ†αψ,

in terms of which the (conserved) Noether four-current is jμ =
(ρ,j). Related to the charge density is the polarization field Pg

defined by

Pg(x) = −
∫

d3x ′ g(x,x′)ρ(x′), (15)

whose longitudinal component satisfies

−∇ · Pg = ρ, (16)

but whose transverse component is arbitrarily determined by
gT. Equation (16) bares a close resemblance to the Gauss law
G, which can indeed be written

G = ∇ · � + ρ = ∇ · (� − Pg). (17)

As an operator G is a symmetry of the Hamiltonian
[G,H ] = 0 and is responsible for generating time-independent
gauge transformations of the vector potential and Dirac field
operators. Identifying a group ({β(x)}, + ) consisting of real-
valued functions on R3 and group operation of addition, we
define a group action  acting on the vector potential and
Dirac fields by

[ψ,β] = e−ieβψ,
(18)

[A,β] = A + ∇β.

The action is implemented through unitary transformations
� generated by G, viz., �ψ�−1 = [ψ,β] and �A�−1 =
[A,β], where

�[β] = exp

(
i

∫
d3x(� · ∇ + ρ)β(x)

)
. (19)

These transformations are called residual gauge transforma-
tions, with the word residual intended to signify that the above
time-independent symmetry is what remains of the local gauge
symmetry present in the original formulation [12].

C. Unitary gauge-fixing transformations

We now turn our attention to the procedure of gauge fixing.
In order to determine the form of a general gauge-fixing
transformation we first need to identify the form of a physical
state. To do this we take as a Hilbert space H for the composite
system wave functionals ϕ[A] of the c-number vector potential
A, which take values in the Hilbert space of the Dirac field
operators [11].

A realization of the algebra of the Maxwell field operators
A and � is given on H using the coordinate representation

(Âϕ)[A] = Aϕ[A],
(20)

(�̂ϕ)[A] = −i
δϕ[A]

δA
,

where we have introduced carets to distinguish between oper-
ators and c-number vector fields. Defining a scalar function α

by ∇α = AL, we can vary the wave functional ϕ with respect
to α and make use of Eq. (20) to obtain

i
δϕ

δα
= −∇ · �̂ϕ. (21)

Using the constraint G in Eq. (17), we get for a physical state
ϕp

i
δϕp

δα
= ρϕp (22)

and finally solving this equation gives the general form of a
physical state

ϕp[A] = ϕp[AT + ∇α]

= exp

(
− i

∫
d3x α(x)ρ(x)

)
ϕp[AT]. (23)

Having determined the form of a physical state, we can
begin to define some unitary gauge-fixing transformations. In
the original work of Lenz et al. [12] a unitary gauge-fixing
transformation yielding the Coulomb gauge representation
was given as

U ≡ exp

(
i

∫
d3x α̂(x)ρ(x)

)
, (24)

where α̂ is defined analogously to α by ∇α̂ = ÂL. In
the present context we see clearly that U eliminates the
dependence of the physical state on AL,

(Uϕp)[A] = ϕp[AT]. (25)

Now, as in Eq. (7) of Sec. II A, we write the longitudinal vector
potential as the gradient of a functional of the transverse vector
potential

AL = ∇χg(x,[AT]), (26)

where

χg(x,[AT]) =
∫

d3x ′ g(x,x′) · AT(x′). (27)

We can then define a more general unitary gauge-fixing
transformation Ug by

Ug ≡ exp

(
i

∫
d3x{α̂(x) − χg(x,[ÂT])}ρ(x)

)
, (28)

mapping from Hp to a space denoted Hg , which is the space
of states for the gauge g,

(Ugϕp)[A] = exp

(
− i

∫
d3x χg(x,[AT])ρ(x)

)
ϕp[AT]

= ϕp[AT + ∇χg] ≡ ϕg[AT] ∈ Hg. (29)
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The (transverse component of the) Green’s function g is
essentially arbitrary and determines the gauge. Two commonly
used examples are the Coulomb gauge gT ≡ 0 and the
Poincaré gauge gT,j (x,x′) ≡ − ∫ 1

0 dλxiδ
T
ij (x′ − λx) [2,4]. The

vector potential operator in the gauge g is Â(x) ≡ ÂT(x) +
∇χg(x,[ÂT]) with action on Hg given by

(Âϕg)[AT] = (AT + ∇χg)ϕg[AT]. (30)

Finally we define a unitary transformation from a fixed
gauge g to a fixed gauge g′ by

Ugg′ ≡ exp

(
i

∫
d3x{χg(x,[ÂT]) − χg′(x,[ÂT])}ρ(x)

)
,

(31)

an example of which is the well known Power-Zienau-Woolley
transformation [2–4] used to obtain the Hamiltonian in the
Poincaré gauge from the Hamiltonian in the Coulomb gauge.
Such a gauge transformation is not to be confused with the
residual gauge (symmetry) transformation given in Eq. (19).

D. The Hamiltonian in the gauge g

To obtain the Hamiltonian in the gauge g we need to
determine the effect of the transformation in Eq. (28) on the
various operators of the theory, namely, ψ, ψ†, A, and �. In
doing so we will resume denoting operators without carets.
Clearly Ug leaves the vector potential A unchanged, while the
action of A on Hg is given in Eq. (30). The effect on the Dirac
field operator ψ is that of a gauge transformation

UgψU−1
g = eie(α−χg )ψ. (32)

The canonical momentum � transforms as

Ug�U−1
g = � + Pg, (33)

so that in the new representation � represents the (negative
of) the gauge-dependent displacement operator Dg ≡ E + Pg .
Using Eq. (16) we find the constraint G and the residual gauge
transformation � transform as

UgGU−1
g = ∇ · �,

(34)

Ug�[β]U−1
g = exp

(
i

∫
d3x(� · ∇)β(x)

)
,

which are independent of the gauge g. The constraint G implies
that the longitudinal canonical momentum �L vanishes onHg .
On the one hand this means PL alone represents (the negative
of) the longitudinal electric field and on the other that the
Hamiltonian density on Hg can be written in terms of the
transverse operators AT and �T only,

H = −iψ†α · [∇ − ie(AT + ∇χg)]ψ + (βm + eφe)ψ†ψ

+ 1
2 (PL)2 + 1

2

[(
�T + Pg

T

)2 + (∇ × AT)2
]
, (35)

where AT + ∇χg is simply the vector potential A in the gauge
g. Equation (35) gives a Hamiltonian in an arbitrary gauge,
which is fully relativistic in the material degrees of freedom.
It is one of the main results of this paper.

The commutator of the transverse operators follows from
Eq. (13) and is given by

[AT,i(x),�T,j (x′)] = iδT
ij (x − x′), (36)

with δT denoting the transverse delta function. We note also
that by denoting the Fourier transforms of AT and �T with
tildes we can define photon creation and annihilation operators
in the usual way

aλ(k) =
√

1

2ω
[ωÃT,λ(k) + i�̃T,λ(k)], (37)

where λ = 1,2 denotes one of two polarization directions
orthogonal to k. The bosonic commutator

[aλ(k),a†
λ′ (k′)] = δλλ′δ(k − k′) (38)

follows from Eq. (36).

E. The Dirac equation in the gauge g

It is an instructive exercise to calculate in the arbitrary gauge
g the equation of motion for the Dirac field operator ψ , which
should be the Dirac equation in the presence of a Maxwell
field. The calculation demonstrates how the scalar potential,
like the longitudinal vector potential, is reexpressed through
the functional χg .

Writing first the products of Dirac field operators appearing
in Eq. (35) in normal order, we obtain

iψ̇ =
[
α · [−i∇ − e(AT + ∇χg)] + βm + eφe

+ e

4π

∫
d3x ′ ρ(x′)

|x − x′|
−e

∫
d3x ′ gT(x,x′) · (

�T + Pg

T

)]
ψ. (39)

The first term on the second line of Eq. (39) is equal to eV ,
with V denoting the static Coulomb potential of charges. The
transverse electric field in the gauge g is ET = −(�T + Pg

T)
and it is straightforward to verify that ET = −ȦT, as in Eq. (4).
These equalities imply that Eq. (39) is indeed the Dirac
equation

iψ̇ = [α · (−i∇ − eA) + βm + e(φe + φ)]ψ, (40)

where we have defined the scalar potential anew by

φ = V − ∂χg

∂t
, (41)

which is analogous to Eq. (6).

III. IMPLICATIONS OF THE FORMALISM

Having obtained the Hamiltonian in an arbitrary gauge, we
discuss in this section some implications resulting from the
freedom to choose gT. In Sec. III A we point out that as in the
nonrelativistic case a canonical partitioning of the Hamiltonian
is gauge dependent and therefore leads to gauge-dependent
definitions of quantum subsystems [10].

By means of analogy with classical electrodynamics, in
Sec. III B we demonstrate how gauge-invariant subsystem
components might be defined. Finally in Sec. III C, we consider
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an application of such a definition in the context of energy
transfer and causality in Fermi’s two-atom problem.

A. Ambiguity in defining quantum systems

To understand what the arbitrariness of gT might mean
with regard to the physical predictions of our formulation it
is important to identify the physical observables in a given
gauge g. In the Weyl gauge the canonical momentum � is the
negative of the electric field E. In the gauge g we have E =
−Ug�U−1

g = −(� + Pg). The operator �T + Pg

T appearing
in Eq. (35) therefore represents the negative of the transverse
electric field ET. This identity was used in obtaining the Dirac
equation (40).

Due to the gauge dependence of Pg

T, the operator �T is
implicitly gauge dependent in that it represents a different
physical observable in each different gauge. Explicitly �T

represents the transverse component of (the negative of) the
gauge-dependent displacement operator Dg .

Now, the most common way to use a Hamiltonian (density)
such as Eq. (35) is to split it into free and interacting
components as follows:

H = H0 + HI , (42)

where

H0 ≡ HD + HEM,

HD ≡ −iψ†α · ∇ψ + (βm + eφe)ψ†ψ + 1
2 (PL)2 + 1

2 (Pg

T)2,

HM ≡ 1
2

[
�2

T + (∇ × AT)2
]
, (43)

and

HI ≡ −eψ†α · (AT + ∇χg)ψ + �T · Pg

T. (44)

The reason for this splitting is of course that the sets of
operators {ψ,ψ†} and {AT,�T} are mutually commuting. The
component HD represents the Dirac field subsystem, HM

represents the Maxwell field subsystem, and HI represents
their interaction. The problem with such a splitting is that
the subsystem components so defined are like the operator
�T, implicitly gauge dependent and as a result physically
ambiguous.

Given this ambiguity it is natural to try and determine
what kind of calculations can be carried out that yield results
independent of g, i.e., that are gauge invariant. For example,
S-matrix elements on energy shell are gauge invariant to
all orders in perturbation theory [14,15]. Consequently, the
conceptual difficulty regarding the definition of subsystems
does not effect scattering theory in any way. The invariance of
S-matrix elements rests on the fact that the bare states (eigen-
states of the free-energy operator H0) coincide asymptotically
with eigenstates of the total Hamiltonian, that is, that bare
states are asymptotically stable.

In order that conventional (perturbative) calculations using
bare states produce gauge-invariant results a condition of
free-energy conservation must be satisfied [14]. Otherwise
calculations will in general yield gauge-dependent results.
Free-energy conservation is a condition that must be imposed
from outside the theory, so various approximations, which
essentially ensure free-energy conservation by giving rise to a
δ function in the initial energy minus the final energy of the

process under study, are used throughout nonrelativistic QED
and quantum optics; they include the resonant state on an
energy shell approximation [14,16], the pole approximation
[17], the Markovian approximation [17], and the Fermi
approximations [3,6].

A general survey of the types of calculation used in
practice in nonrelativistic QED and their dependence on g

can be found in Ref. [14]. An example of the difference in
predicted results from calculations in two different gauges
is well known in nonrelativistic QED where the Coulomb
gauge (minimal coupling) Hamiltonian and Poincaré gauge
(multipolar) Hamiltonian yield different results for, among
other things, the theoretical lineshape of spontaneous emission
[4]. The source of this difference lies in the use of physically
different canonical operators in determining the lineshape
observable.

The ambiguity regarding subsystems defined using canoni-
cal variables is also present at the classical level. It occurs when
moving to the Hamiltonian formalism from the Lagrangian
formalism. Since canonical momenta are defined in terms of
the Lagrangian, equivalent Lagrangians yielding equivalent
Hamiltonians will in general not yield physically equivalent
canonical momenta. Again, a well known example is given
by the Coulomb gauge and Poincaré gauge formulations of
classical electrodynamics.

At the quantum level the ambiguity in the definition of
subsystems can be viewed as a generic trait of interacting
theories, whether they are relativistic, field theoretic, or
otherwise. Given a Hamiltonian dependent on two sets of
mutually commuting operators {xi} and {yi} and a splitting
of the Hamiltonian of the form H = Hx({xi}) + Hy({yi}) +
Hxy({xi,yi}), an equivalent Hamiltonian is obtained by a uni-
tary transformation H ′ = UHU−1. In general, the subsystem
components of H ′ will not be equivalent to those of H , i.e.,
H ′

x �= UHxU
−1, with the same being true for Hy and Hxy .

The importance of this fact for concepts such as quantum
entanglement and decoherence has been recognized in the
philosophy literature [18].

B. Classical-type gauge-invariant subsystems and operators

In the preceding section we discussed the gauge dependence
of splitting the Hamiltonian into free and interaction compo-
nents and we reviewed the situation regarding the kinds of
calculation that yield gauge-invariant results. In this section we
address the complimentary question as to whether manifestly
gauge-invariant subsystem components can be defined from
the outset. This question has so far received no direct attention
in the literature, but it is important if one wishes to identify how
gauge-invariant results might be obtained outside the range of
validity of the simplifying assumptions of scattering theory.

To see how we might define gauge-invariant subsystems
consider first the case of a free classical electron coupled to
a classical Maxwell field. For this system the Hamiltonian in
any gauge can be written

H = 1

2
mṙ2 + 1

2

∫
d3x[E(x)2 + B(x)2], (45)

which represents the total energy of the system as the sum
of the kinetic energy of the electron and the energy of the
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electromagnetic (EM) field. Regarding the electron variables,
what varies between gauges is the identification of the gauge-
invariant velocity ṙ, with the electron canonical momentum
p = mṙ − eA(r) [3,10,19].

The classical electron velocity and canonical momentum
have clear analogs in QED; the velocity density

V = −iψ†α · [∇ − ie(AT + ∇χg)]ψ (46)

is manifestly gauge invariant, while the canonical momentum
density P = −iψ†α · ∇ψ depends on g. Analogously to
Eq. (45), we can split the Hamiltonian into two gauge-invariant
components

H = HM + HEM,

HM = −iψ†α · [∇ − ie(AT + ∇χg)]ψ

+ (βm + eφe)ψ†ψ,

HEM = 1
2 (PL)2 + 1

2

[(
�T + Pg

T

)2 + (∇ × AT)2
]
, (47)

with the first component representing the energy density of the
matter field and the second component the energy density of
the EM field. With these definitions the Hamiltonian naturally
represents the energy of the system as the sum of energies of
the subsystems rather than as the sum of superficially defined
free and interaction energies.

We note that the first term in HEM represents the energy
density of the longitudinal EM field, while the second
represents the energy density of the transverse EM field.
The subsystems defined in this way are coupled because the
velocity density V and the electric field E do not commute;
using for simplicity the Coulomb gauge (gT ≡ 0), we obtain

[V (x),Ej (x′)]

= [iψ†(x)α · [∇ − ieAT(x)]ψ(x),�T,j (x′) + PL,j (x′)]

= ieψ†(x)αi

(
δT
ij (x − x′) − ∇i∇j

1

4π |x − x′|
)

ψ(x)

≡ ieψ†(x)αiδij δ(x − x′)ψ(x) ≡ ijj (x)δ(x − x′). (48)

The δ function ensures that V (x) and E(x′) are compatible
observables for x �= x′. Moreover it ensures that the matter field
and the EM field energies are compatible in disjoint regions R
and R′ in R3:

[
HR

M,HR′
EM

] ≡
∫
R

d3x

∫
R′

d3x ′[HM (x),HEM(x′)] = 0.

(49)

Using the commutator Eq. (48) and the commutator of the
electric field and magnetic field energy,

1

2

∫
d3x ′[Ei(x),Bj (x′)2] = iεijk∇jBk(x), (50)

the equation of motion for the electric field is found to be

Ė = ∇ × B − j, (51)

which is just one of Maxwell’s equations. The remaining
Maxwell equation

Ḃ = −∇ × E (52)

is found in a similar fashion as the equation of motion for the
magnetic field.

C. Energy and causality

In recent years a great deal of attention has been paid to the
nature of energy transfer between separated material systems
[20–25], specifically in the context of the two-atom problem of
Fermi [13]. In order to investigate causality at the microscopic
level, Fermi considered two identical spatially separated atoms
A and B. Initially atom A is energetically excited while atom
B is in its ground state and there are no photons present in
the EM field. The question posed by Fermi was; when does
atom B begin to move out of its ground state due to atom A?
Einstein causality would appear to require that any changes in
the energy of atom B be independent of atom A for all times
less than the time it would take for a signal produced by atom
A traveling at the maximal speed of propagation c to reach
atom B. The most recent work concerning the Fermi problem
was the proposal of a circuit QED experiment designed to test
for any possible violations of causality [24].

The majority of theoretical proofs of causality in the Fermi
problem involve using the bare states of a nonrelativistic
Hamiltonian in the Poincaré gauge and the electric dipole
approximation (EDA) [21–24]. The EDA dictates that the
atoms in the Fermi problem couple to the Maxwell field at
the c-number atomic center-of-mass positions. The problem
itself can then be formulated in terms of a well defined
center-of-mass separation. Moreover, the EDA ensures that the
Poincaré gauge dipole canonical momenta pi = mṙi , i = A,B

which define the bare atomic energies, are purely kinetic [2,3].
At the same time in the Poincaré gauge the field canonical

momentum is identified as the (negative of the) local multipolar
transverse displacement field [2,3]. Outside the atoms, which
in the EDA means away from the center-of-mass positions,
this field coincides with the retarded electric field. The bare
energies of the atoms are coupled through this field, which
ensures that there are no violations of causality.

A different proof presented in Ref. [25] uses the abstract
language of algebraic quantum-field theory, relying quite
generally on the primitively causal nature of relativistic
quantum field theory resulting from the hyperbolicity of the
relevant equations of motion. Here we will show using the
gauge-invariant definition of HM in Eq. (47) that changes
in the energy density of the matter field at a point (t,x) are
independent of the matter field at all points, which cannot be
connected to (t,x) by a causal signal. The energy of the matter
field in some closed region R ⊂ R3 is merely

HR
M (t) =

∫
R

d3x HM (x,t). (53)

Since HM is gauge invariant the result does not rely on the use
of a particular gauge and avoids any approximations.

We begin by calculating the equation of motion for HM ,
which for simplicity is carried out in the Coulomb gauge

iḢM (x) = −1

2

∫
d3x ′{[eψ†(x)αiAT,i(x)ψ(x),�T,j (x′)2]

+ [iψ†(x)αi∇iψ(x),PL,j (x′)2]}
= iji(x)[ET,i(x) + EL,i(x)] = iji(x)Ei(x). (54)
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Thus, together with the Maxwell equations (51) and (52) we
have a system of equations, which can be written

ḢM (x,t) = j(x,t) · E(x,t),

j(x,t) = ∇ × B(x,t) − Ė(x,t),
(55)

�E(x,t) = −∇ρ(x,t) − j̇(x,t),

�B(x,t) = ∇ × j(x,t),

where � is the d’Alembertian ∂2/∂t2 − ∇2.
Now, first we note that using the second equation

the first can be written in terms of the electric and
magnetic fields alone. Second we note that the remain-
ing two equations are inhomogeneous wave equations
for the (Cartesian components of the) electric and mag-
netic fields with source terms ν(x,t) ≡ ∇ρ(x,t) + j̇(x,t) and
μ(x,t) ≡ −∇ × j(x,t), respectively. These equations are hy-
perbolic and have well known retarded solutions of the
form

E(x,t) = E0(x,t) + Er (x,t),
(56)

B(x,t) = B0(x,t) + Br (x,t),

where E0 and B0 satisfy the homogeneous equations �E0 =
�B0 = 0 and Er and Br depend respectively on the sources

ν(x′,tr ) and μ(x′,tr ) at the retarded time tr = t − |x − x′|
[26,27]. Using these solutions, we can conclude that as desired
ḢM (x,t) at the point (t,x) depends on the matter field at points
(tr ,x′) only.

IV. CONCLUSION

In this paper we have derived a Hamiltonian in an arbitrary
noncovariant gauge, which could be taken as the starting
point for the relativistic description of atoms and molecules.
It also serves well as a means by which the gauge freedom
of noncovariant canonical QED can be explored. We have
discussed some implications of this gauge freedom and
highlighted that a canonical partitioning of the Hamiltonian is
manifestly gauge dependent. We have shown that a classical-
type partitioning of the Hamiltonian in terms of velocities
instead of canonical operators is gauge invariant and suggested
a possible application of such a partitioning in relation to the
problem of causality in spatially separated material systems.
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