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Quantum-mechanical interference with far-off-resonance neighboring states is found to cause systematic shifts
for the measurements of the 2 3P fine-structure intervals. The shifts depend on the type of experiment used to
measure the intervals. Here the shifts are calculated for measurements using a single microwave pulse and for
measurements using the Ramsey method of separated oscillatory fields. The shifts are small, but are large enough
to affect the continuing program of determining the fine-structure constant from a comparison between accurate
experimental measurements and theoretical calculations of the interval energies. The separated-oscillatory-field
shifts are found to be much smaller than the single-pulse shifts.
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I. INTRODUCTION

In previous papers [1,2], we have shown that the line center
of a resonance is shifted due to interference with a distant
neighboring resonance. Those papers treated simple three- and
four-level atoms, for which analytic line shapes and shifts
could be derived. The analytic calculations give intuition about
the size of the shifts and the scaling of these shifts, but are not
directly applicable to more complicated atomic systems. In this
work, we extend the analysis to a multilevel atomic system,
and we also deduce the shifts that are present when using the
Ramsey technique of separated oscillatory fields. We apply our
analysis to the 2 3P fine-structure intervals of helium; intervals
that are of direct interest for precision measurements since
they can be used to determine the fine-structure constant α.

The idea of determining α from a comparison of a precise
measurement and theory of the 2 3P fine structure in helium
dates back to 1964, when Schwartz suggested [3] that a
part-per-million determination of α might be possible if both
the theory and experiment made significant advances. Since
that time, large theoretical programs [4–24] and experimental
programs [25–42] have made significant progress, and a
determination of α to better than a part per billion (ppb) may
soon be possible.

In this work, we show that interference from distant
neighboring resonances shifts the line centers for the 2 3P

fine-structure intervals, that the shifts are large enough to
be significant for a precise determination of α, and that the
magnitude of the shifts depends on both the measurement
technique and on the experimental parameters used.

II. DENSITY MATRIX FORMULATION

The helium n = 2 triplet levels are shown in Fig. 1. A
comparison between the theory and experiment for the larger
2 3P2-to-2 3P0 (or 2 3P1-to-2 3P0) interval allows for a precise
determination of α, and a similar comparison of the smaller
2 3P2-to-2 3P1 interval (which, because of its smaller size, is
less sensitive to α) provides an independent test of the theory
for the intervals.
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For the present work, we consider microwave transitions
between the 2 3P levels. For simplicity (and to follow the
experimental technique used in [39–42]), we assume that the
2 3P1mJ = 0 state (denoted |1〉 in Fig. 1) is initially populated
(i.e., in terms of the density matrix ρ11 = 1). State |1〉 has
the convenient property that it cannot decay down to the
2 3S1mJ = 0 state (which is denoted as |b〉 in Fig. 1), and thus
the population of state |b〉 remains empty (ρbb = 0) unless
an applied microwave field drives the population out of the
|1〉 state. A linearly polarized microwave field is assumed
to be nearly resonant with the 2 3P1mJ = 0-to-2 3P2mJ = 0
(|1〉 → |2〉) transition (as shown by the solid arrow in Fig. 1)
and we consider the shifts that result from interference with the
distant 2 3P1mJ = 0-to-2 3P0mJ = 0 (|1〉 → |0〉) transition.
Alternately, we consider a microwave field that is nearly
resonant with the |1〉 → |0〉 transition (as shown by the dashed
arrow in Fig. 1) and consider the shifts due to the distant
|1〉 → |2〉 transition.

Microwave measurements of the 2 3P intervals can be
obtained either with a single pulse of microwaves [Fig. 2(a)]
or by using the Ramsey method of separated oscillatory fields
(SOF), for which the atoms interact with two microwave
pulses, with the pulses either in phase [Fig. 2(b)] with each
other, or 180◦ out of phase [Fig. 2(c)]. The SOF signal is
obtained by subtracting the signal obtained using Fig. 2(c)
from that obtained using Fig. 2(b).

In the magnetic dipole approximation, U (t) = −�μ · �B(t)
couples state |1〉 to both |2〉 and |0〉. Here, �B(t) =
�B0g(t) cos (ωt + φ), with [for the cases of Figs. 2(a), 2(b),
and 2(c), respectively] ga(t) = σD(t) and gb,c(t) = [σD(t) ±
σD(t − T )], where σD(t) is a pulse of unit amplitude and with
FWHM duration D.

The density matrix equations for determining the popula-
tion in states |1〉, |2〉, |0〉, and |b〉 for this system are [43,44]

ρ̇11 = iV12ρ12 − iV21ρ21 + iV10ρ10 − iV01ρ01 − γ1ρ11

− γ10

2
(ρ10 + ρ01) − γ12

2
(ρ12 + ρ21), (1a)

ρ̇12 = iV21(ρ11 − ρ22) −
(

γ1 + γ2

2
− iω21

)
ρ12 − iV01ρ02

− γ20

2
ρ10 − γ12

2
(ρ11 + ρ22) − γ10

2
ρ02, (1b)
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FIG. 1. (Color online) The n = 2 triplet energy levels of helium.
For this work the population is assumed to start in the |1〉 state
and an applied microwave field either drives the |1〉 → |2〉 transition
(solid arrow) or the |1〉 → |0〉 transition (dashed arrow). The allowed
radiative decay paths from states |1〉, |2〉, and |0〉 are indicated. When
driving one of the resonances (the solid arrow or the dashed arrow), a
far-off-resonant transition amplitude from the other resonance causes
a shift in the measured line center.

ρ̇22 = iV21ρ21 − iV12ρ12 − γ2ρ22 − γ20

2
(ρ20 + ρ02)

− γ12

2
(ρ21 + ρ12), (1c)

ρ̇10 = iV01(ρ11 − ρ00) − iV21ρ20 −
(

γ1 + γ0

2
− iω01

)
ρ10

− γ20

2
ρ12 − γ10

2
(ρ11 + ρ00) − γ12

2
ρ20, (1d)

ρ̇20 = iV01ρ21 − iV12ρ10 −
(

γ2 + γ0

2
− iω02

)
ρ20

− γ20

2
(ρ22 + ρ00) − γ12

2
ρ10 − γ10

2
ρ21, (1e)

ρ̇00 = iV01ρ01 − iV10ρ10 − γ0ρ00 − γ20

2
(ρ02 + ρ20)

− γ10

2
(ρ01 + ρ10), (1f)

ρ̇bb = γ1→bρ11 + γ2→bρ22 + γ0→bρ00 + γ12→b(ρ21 + ρ12)

+ γ10→b(ρ01 + ρ10) + γ20→b(ρ02 + ρ20), (1g)

where Vij = 〈i|U (t)|j 〉/h̄; and τ1 = γ −1
1 , τ2 = γ −1

2 , and τ0 =
γ −1

0 are the lifetimes of states |1〉, |2〉, and |0〉. In terms of the
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FIG. 2. (Color online) Timing for the microwave pulses. (a) A
single microwave pulse is considered. (b, c) The in-phase and 180◦-
out-of-phase cases for two pulses are represented. The difference of
signal obtained in (b) and (c) allows for subnatural line widths using
the Ramsey SOF technique. A switching time of ts = 1 ns is included
in the calculations.

partial decay rates of the radiative decay paths shown in Fig. 1,
γi = γi→a + γi→b + γi→c. Similarly, we define γij = γij→a +
γij→b + γij→c, where (in the electric dipole approximation)

γi→b = 4e2|ωPS |3
3h̄c3

〈i|�r |b〉 · 〈b|�r |i〉, (2a)

and

γij→b = 4e2|ωPS |3
3h̄c3

〈i|�r |b〉 · 〈b|�r |j 〉. (2b)

Since ωPS � ω12,ω01 (as shown in Fig. 1), γ1 = γ2 = γ0,
and all are equal to γ = 1/τ , where τ = 97.9 ns. Also, due
to cancellations, γ12 = γ10 = γ20 = 0, and, due to a zero
dipole matrix element, γ1→b = γ12→b = γ10→b = 0. From the
electric-dipole matrix elements, one obtains γ2→b = 2γ /3,
γ0→b = γ /3 and γ20→b = −√

2γ /3. The nonzero γ20→b term
in Eq. (1) results directly from quantum-mechanical interfer-
ence of the radiative decay.

Furthermore, from the ratio of the magnetic dipole matrix
elements, V10 = V01 ≡ V and V21 = V12 = V/

√
2, where

V = V0g(t) cos (ωt + φ), with V0 = (μB/h̄)
√

2/3B0. Thus,
Eq. (1) simplifies to

ρ̇11 = iV√
2

(ρ12 − ρ21) + iV (ρ10 − ρ01) − γρ11, (3a)

ρ̇12 = iV√
2

(ρ11 − ρ22) − (γ − iω21)ρ12 − iVρ02, (3b)

ρ̇22 = iV√
2

(ρ21 − ρ12) − γρ22, (3c)

ρ̇10 = iV (ρ11 − ρ00) − iV√
2
ρ20 − (γ − iω01)ρ10, (3d)

ρ̇20 = iVρ21 − iV√
2
ρ10 − (γ − iω02)ρ20, (3e)

ρ̇00 = iV (ρ01 − ρ10) − γρ00, (3f)

ρ̇bb = 2γ

3
ρ22 + γ

3
ρ00 −

√
2γ

3
(ρ02 + ρ20). (3g)

Note that neither Eq. (1) nor Eq. (3) use the rotating-wave
approximation and that V in Eq. (3) is time dependent.

Equation (3), along with the complex conjugate equations
for ρ̇21, ρ̇02, and ρ̇01, can be used to obtain ρ11, ρ22, ρ00, and
ρbb (i.e., the populations of states |1〉, |2〉, |0〉, and |b〉). The
other density matrix equations for ρ̇ai , ρ̇bi , ρ̇ci , ρ̇ia , ρ̇ib, and ρ̇ic

are not needed since these ρjk do not appear on the right-hand
side of Eq. (1), and therefore are decoupled from the system
of equations given in Eq. (3).

III. NUMERICAL INTEGRATION

Equations (3a) through (3g) are numerically integrated
using a fourth-order Runge-Kutta method. The value of ρbb

at t = tf of Fig. 2 is a direct measure of the probability
that a microwave transition has been made. This method
of detecting microwave transitions follows the experimental
technique used in [39–42]. The numerical integrations are
repeated for a range of frequencies near the resonance to
trace out the resonance line shape. These line shapes are then
fit to determine the shifts caused by the distant neighboring
resonance. The integrations are started at a time ti that is 50 ns

012510-2



SHIFTS DUE TO NEIGHBORING RESONANCES FOR . . . PHYSICAL REVIEW A 86, 012510 (2012)

(a)

10 5 0 5 10
0

10 3

MHz

Ρ b
b

t f

(b)

10 5 0 5 10

10 5

0

10 5

MHz

ΡS
O

F
bb

t f

FIG. 3. (Color online) Line shapes of the |1〉 → |2〉 resonance obtained from numerical integrations for (a) a single microwave pulse with
a duration D = 200 ns, and for (b) SOF with two microwave pulses of D = 100 ns, separated by T = 500 ns. These line shapes are for a
microwave magnetic field amplitude of B0 = 0.2 gauss and show that the initially empty |b〉 state of Fig. 1 is populated when the microwave
transition is driven. The fits (solid lines) are obtained using Eqs. (4) and (5). The fits are used to determine small shifts in the resonance line
centers, as shown in Fig. 4 and Tables I and II.

before the start of the first microwave pulse and continued
until a time tf that is 500 ns after the end of the last pulse
(see Fig. 2). The 500 ns allows almost all of the 2 3P atoms
to decay back down to the 2 3S states. As indicated in Fig. 2,
the microwave pulses used have a time constant ts for turn on
and turn off. The shifts obtained are found to be essentially
independent of ts for ts between 1 and 10 ns, which corresponds
to experimentally realizable turn-on and turn-off times, and
ts = 1 ns is used for all integrations presented here. For much
shorter ts , the high frequencies associated with the sudden
turn on and turn off, modify the shifts by approximately
10%.

The numerical integrations use 30-fs time steps to ac-
curately integrate through the approximately 30-GHz fre-
quencies of the applied microwave field and the complex
phase factor of the atomic wave function. The numerical
integrations are checked by using both higher-precision arith-
metic and shorter time steps and further checked by compar-
ing to numerical integrations using a Runge-Kutta-Fehlberg
method.

Sample line shapes obtained from these integrations are
shown in Fig. 3, where the final |b〉 state population [ρbb(tf )]

is shown for an initial population in the |1〉 state [ρbb(ti) = 1].
In Fig. 3(a), a line shape is shown for a single microwave pulse
of duration D = 200 ns. Figure 3(b) shows the Ramsey SOF
line shape obtained from two microwave pulses of duration
D = 100 ns that are separated by a time T = 500 ns. This line
shape is obtained by subtracting the line shape obtained from
integrations using the 180◦-out-of-phase microwave pulses
of Fig. 2(c) from the line shape obtained using the in-phase
microwave pulses of Fig. 2(b).

IV. SHIFTS

To determine the shifts of the numerically generated line
shapes (such as those shown in Fig. 3), least-squares fits are
performed. The fit functions used for a single microwave pulse
and for SOF are (respectively)

ρbb = C

∫ ∞

t=0

[
s(tL)

	

]2

e−γ tdt, (4)

and

ρSOF
bb = C

∫ ∞

t=0
s(D)s(tL)f (tL)e−γ t cos(	T )dt, (5)

(a)

0 1 2

100

0

100

200

B0 gauss

S
h

H
z

(b)

0 1 2

10

0

10

20

30

40

50

B0 gauss

S
h

S
O

F
H

z

FIG. 4. (Color online) Shifts of the |1〉 → |2〉 resonance versus microwave field strength. The shifts for (a) a single microwave pulse with
a duration D = 200 ns and for (b) SOF with two microwave pulses of D = 100 ns, separated by T = 500 ns, are obtained by fits similar to
those shown in Fig. 3. On each plot, the squares represent the full shift and the circles the shifts that would result in the absence of the γ20→b

interference term in Eq. (1). The quadratic fits shown [Eq. (6)] are used to extrapolate to zero microwave power.
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where

f (t) = s(D)s(t) − c(D)c(t) + tan(	T )s(D + t),

with

s(t) =
sin

(√
	2 + V 2

0 t/2
)

√
	2 + V 2

0 /	

, c(t) = cos

(√
	2 + V 2

0

t

2

)
,

T = T − D, 	 = f − f0, f = ω/2π , and tL being the lesser
of t and D [i.e., tL = min(t,D)]. Equations (4) and (5) are
the exact line shapes in the rotating-wave approximation,
assuming that the fields turn on and off suddenly and ignoring
the effects of nonresonant states. In the fits (examples of which
are shown by the solid lines in Fig. 3), only f0 of Eqs. (4) and
(5) is allowed to float, and the fit value for f0 determines the
shift caused by the quantum-mechanical interference (and also
the ac shift). Alternate methods for determining the shifts based
on the positions and slopes at the half maximum positions in
Fig. 3(a) and of the zero-crossing points in Fig. 3(b) lead to
nearly identical shifts. The very small differences between
shifts obtained from the different methods is due to very small
distortions in the line shape caused by the γ20→b interference
term.

The shifts obtained by the fits are shown in Fig. 4. The
circles in the figure show the shifts that result when the
γ20→b interference term in Eq. (1) is excluded. These shifts
scale as the square of the microwave field strength due to the
expected ac power shifts, and extrapolate to zero for zero field
intensity. The square symbols in the plots represent the full
shift (including the γ20→b interference term). These shifts do
not extrapolate to zero, but rather have the form

Sh = Sh(0) + kB2
0 , (6)

where B0 is the amplitude of the applied microwave field, k

is the ac shift rate, and Sh(0) is the remaining shift at zero
intensity. The shifts Sh(0) are listed in Tables I and II and
are almost identical for the 2 3P1-to-2 3P0 and 2 3P1-to-2 3P2

intervals. For the single-pulse shifts (Table I), the shifts are
approximately inversely proportional to the pulse duration D,
while for the SOF measurements (Table II), the much smaller

TABLE I. Frequency shifts [extrapolated to zero microwave
intensity using Eq. (6), as shown in Fig. 4(a)] for helium 2 3P1-to-2 3P0

(|1〉 → |0〉) and 2 3P1-to-2 3P2 (|1〉 → |2〉) single-microwave-pulse
transitions.

Sh
(0)
single-pulse (Hz)

D (ns) |1〉 → |0〉 |1〉 → |2〉
50 −429 −429
100 −224 −224
200 −129 −129
400 −87 −88
800 −82 −82

TABLE II. Frequency shifts [extrapolated to zero microwave
intensity using Eq. (6), as shown in Fig. 4(b)] for helium 2 3P1-to-2 3P0

(|1〉 → |0〉) and 2 3P1-to-2 3P2 (|1〉 → |2〉) SOF transitions.

Sh
(0)
SOF (Hz)

D (ns) T (ns) |1〉 → |0〉 |1〉 → |2〉
50 200 −41 −41
50 300 −27 −27
50 400 −20 −20
50 500 −16 −16
50 600 −14 −14
50 800 −10 −10
100 300 −27 −28
100 400 −20 −21
100 500 −16 −17
100 600 −14 −14
100 800 −10 −10
150 400 −21 −22
150 500 −16 −17
150 600 −14 −14
150 800 −10 −11

shifts are approximately inversely proportional to the pulse
separation T .

V. CONCLUSION

Although the shifts shown in Tables I and II are small,
microwave measurements of the intervals are now approaching
an accuracy where the shifts will need to be considered. The
most accurate single-pulse microwave measurements [40,41]
have uncertainties of 900 and 1400 Hz. These measurements
have a pulse duration D determined by the travel time through
the microwave region. Since this D is typically 950 and 1700 ns
for the two measurements, it can be seen from Table I that the
interference corrections are less than 10% of the measurement
uncertainties. The most accurate SOF measurement [42] of the
helium 2 3P fine structure has an uncertainty of 350 Hz. This
measurement uses D = 50, 100, and 150 ns and T = 300,
400, 500, and 600 ns. From Table II, it is evident that the
corrections that need to be applied are again less than 10%
of the measurement uncertainty. The corrections shown in the
|1〉 → |0〉 columns of Tables I and II indicate shifts of 0.5 to
15 ppb of the 29.6 GHz interval and these will be important in
the anticipated next generation of microwave measurements
and are a necessary step towards a ppb determination of α

from helium 2 3P fine structure.
Interference shifts similar to those calculated here are also

expected to be significant for other precision measurements,
and calculations similar to those presented here should be
applied to these other measurements to ensure that this
systematic correction is properly applied.
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