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The primary dynamical Dirac relativistic effects can only be seen in hydrogenic systems without the
complications introduced by electron-electron interactions in many-electron systems. They are known to be
the contraction towards the origin of the electronic charge in hydrogenic systems and the nodal disappearance
(because of the raising of all the nonrelativistic minima) in the electron density of the excited states of
these systems. In addition we point out the (largely ignored) gradient reduction of the charge density near
and far from the nucleus. In this work we quantify these effects by means of single (Fisher information)
and composite [Fisher-Shannon complexity and plane, López-Ruiz, Mancini, and Calbet (LMC) complexity]
information-theoretic measures. While the Fisher information measures the gradient content of the density, the
(dimensionless) composite information-theoretic quantities grasp twofold facets of the electronic distribution:
The Fisher-Shannon complexity measures the combined balance of the gradient content and the total extent of
the electronic charge, and the LMC complexity quantifies the disequilibrium jointly with the spreading of the
density in the configuration space. Opposite to other complexity notions (e.g., computational and algorithmic
complexities), these two quantities describe intrinsic properties of the system because they do not depend on the
context but are functionals of the electron density. Moreover, they are closely related to the intuitive notion of
complexity because they are minimum for the two extreme (or least complex) distributions of perfect order and
maximum disorder.
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I. INTRODUCTION

A major goal of the information theory of atomic and
molecular systems is the quantification of multiple facets of
its internal disorder which manifests in the electron density
of the system, as recently reviewed [1–3]. First, various
single (one-component) information-theoretic measures were
used to grasp single facets of the rich variety of complex
three-dimensional geometries of the system in a nonrelativistic
framework, such as the spread of electronic distribution all
over the configuration space (Shannon, Rényi, and Tsallis
entropies), the gradient content (Fisher information), and other
manifestations of the nonuniformity of the electron density
(disequilibrium). Later, composite (two-component) measures
have been proposed to jointly grasp various facets of the
electron density. They are called complexity measures because
they are minimum for the two extreme distributions of perfect
order and maximum disorder (approaching the intuitive notion
of complexity), such as the Crámer-Rao, Fisher-Shannon,
and LMC (López-Ruiz, Mancini, and Calbet) complexity
measures. Opposite to the single-component measures, they
are dimensionless (which lets them be mutually compared)
and moreover they fulfill a number of invariance properties
under replication, translation, and rescaling transformations.
In addition, contrary to other notions of complexity previously
encountered and used in the scientific literature [4–7], such
as the computational and logarithmic complexities which
depend on the context, these three complexity measures are
intrinsic properties of the system since they are described by
density-dependent functionals. Let us also point out that these
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complexity measures have been bounded from below [8,9]
and from above [10]. For further properties of these statistical
complexities see the recent monograph of Sen [1].

Most of these single and composite information-theoretic
quantities have been numerically determined in position space
for a great deal of atomic and molecular systems in a Hartree-
Fock-like framework (see [1–3], and references therein). On
the contrary, the information theory of relativistic quantum
systems is a widely open field [11–13]; indeed, only a few
recent works have been done for single-particle systems
[11,14,15] and neutral atoms [16–19] in various relativistic
settings. Let us here mention that the comparison of some
Hartree-Fock and Dirac-Fock ground-state results in neutral
atoms shows that Shannon entropy is able to characterize
the atomic shell structure but it hardly grasps any relativistic
effects [16], while the disequilibrium and the LMC complexity
measure [16], as well as the Fisher information [20], strongly
exhibits them. Moreover, it has been recently shown that
these quantities are good relativistic indicators for ground-state
hydrogenic systems in a Dirac setting [11] and for ground and
excited states of pionic systems in a Klein-Gordon setting
[14,15].

In this work we use the Fisher information and the Fisher-
Shannon and LMC complexity measures to characterize and
quantify some fundamental features [21,22] of the stationary
solutions of the Dirac equation of hydrogenic systems; namely,
the well-established charge contraction towards the nucleus
in both ground and excited states, the raising of all the
nonrelativistic minima, and the (largely ignored) gradient
reduction near and far from the nucleus of the electron density
of any excited state of the system.

The structure of the paper is as follows. In Sec. II,
we briefly discuss the two information-theoretic quantities
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needed for this work, and we give the known relativistic
(Dirac) and nonrelativistic (Schrödinger) electron densities
of a hydrogenic system, which are factorizable in both
frameworks. In Sec. III, we carry out a detailed study of
the dependence of the previous complexity measures on the
nuclear charge in the ground state, as well as the quantification
of the main dynamical relativistic effects (charge contraction
towards the nucleus, minima raising, or nodal disappearance,
and gradient reduction near and far from the nucleus) by
means of the Dirac-Schrödinger complexity ratios of LMC and
Fisher-Shannon types. In Sec. IV, we analyze the dependence
of the complexity measures on the energy and the relativistic
quantum number as well as the associated information planes
for the ground and various excited states. Finally, In Sec. V
some conclusions are given.

II. COMPLEXITY MEASURES AND DIRAC
HYDROGENIC DENSITIES: BASICS

In this section we briefly discuss the concepts of LMC shape
complexity [23,24] and Fisher-Shannon complexity [25,26] of
a general probability density ρ(r) used in this paper, which
turn out to be good indicators of the Dirac relativistic effects
in hydrogenic systems. Then, we collect the known Dirac wave
functions of the hydrogenic bound states and their associated
probability densities together with their nonrelativistic limits
(Schrödinger densities).

The LMC shape complexity [23,24] is defined by the
product of the so-called disequilibrium D[ρ] (which quantifies
the departure of the probability density from uniformity)
and the exponential of the Shannon entropy S[ρ] (a general
measure of the uncertainty of the density):

CLMC[ρ] = D[ρ]eS[ρ], (1)

where

D[ρ] =
∫

[ρ(r)]2dr, S[ρ] = −
∫

ρ(r) ln ρ(r)dr. (2)

The Fisher-Shannon complexity [25,26] is given by

CFS[ρ] = I [ρ]J [ρ], (3)

where

I [ρ] =
∫ |∇̄ρ(r)|2

ρ(r)
dr, J [ρ] = 1

2πe
e(2/3)S[ρ] (4)

are the (translationally invariant) Fisher information [27] and
the Shannon entropic power [28] of the probability density,
respectively. The latter quantity, which is an exponential
function of the Shannon entropy, measures the total extent
to which the single-particle distribution is in fact concentrated
[28]. The Fisher information, I [ρ], which is closely related
to the kinetic energy [29], is a local information-theoretic
quantity; i.e., it is very sensitive to strong changes on the
distribution over a small-sized region of its domain.

On the other hand, the Dirac wave functions of the
stationary states of a hydrogenic system with nuclear charge
Z are described by the eigensolutions (E,ψD) of the Dirac
equation of an electron moving in the Coulomb potential
V (r) = − Ze2

4πε0r
, namely,

[E + ih̄cα · ∇ − βm0c
2 − V (r)]ψD = 0, (5)

where α ≡ (α1,α2,α3), β denotes the 4 × 4 Dirac matrices,
and m0 denotes the rest mass of an electron.

The stationary eigensolutions are most naturally obtained
by working in spherical polar coordinates and taking into
account that the Dirac Hamiltonian commutes with the oper-
ators {J2,Jz,K}, where the total angular momentum operator
J = L + S and the Dirac operator K = β(� · L + h̄), where
L and S ≡ h̄

2� are the orbital and spin angular momenta,
respectively. So, the stationary states are to be characterized
by the quantum numbers (n,k,mj ), where n ∈ N, the Dirac
or relativistic quantum number k = ±1, ± 2, . . . , − n, and
−j � mj � j with j = 1

2 , 3
2 , . . . ,n − 1

2 . In addition, let us
note that k = ∓(j + 1

2 ) for j = l ± 1
2 , so that k = −(l + 1) if

j = l + 1
2 and k = l if j = l − 1

2 ; in other terms, k = ±(j +
1
2 ), to which there corresponds (upper component) angular
momentum l = j ± 1

2 and (lower component) l′ = j = ∓ 1
2 .

The energy eigenvalues are known (see, e.g., [22,30–32]) to
be

E = M

(
1 + (αZ)2

[n − |k| +
√

k2 − (αZ)2]2

)−1/2

, (6)

where α denotes the fine-structure constant, M = m0c
2, and

Z < 137. For Z > 137 the Klein paradox [33] comes into play
and the eigenenergies become complex beyond that point;
the resolution of this paradox is known to be related with
the creation of electron-positron pairs from the Dirac-Fermi
sea [34]. Note that, because of the smallness of the binding
energies, E is only slightly less than m0c

2. The corresponding
eigensolutions of the bound relativistic hydrogenic states are
given by the four-component spinors

ψD
nkmj

(r) =
(

gnk(r)	kmj
(θ,φ)

ifnk(r)	−kmj
(θ,φ)

)
, (7)

where the symbol 	k,mj
(θ,φ) denotes the (two-component)

spin-orbital harmonics

	kmj
=

⎛
⎝− k

|k|

√
k+ 1

2 −mj

2k+1 Y|k+(1/2)|−(1/2),mj −(1/2)(θ,φ)√
k+ 1

2 +mj

2k+1 Y|k+(1/2)|−(1/2),mj +(1/2)(θ,φ)

⎞
⎠ , (8)

and the so-called large (g) and small (f ) radial components
with the normalization

∫ ∞
0 (g2 + f 2)r2 dr = 1 are known to

be

gnk(r)
fnk(r)

}

= ±(2λ)3/2

(2γ + 1)

√
(M ± E)(2γ + n′ + 1)

4M
(n′+γ )M

E

( (n′+γ )M
E

− k
)
n′!

(2λr)γ−1e−λr

×
[ (

(n′ + γ )M

E
− k

)
F (−n′,2γ + 1; 2λr)s

∓ n′F (1 − n′,2γ + 1; 2λr)

]
, (9)

where n′ = n − |k|, γ =
√

k2 − (αZ)2, λ = 1
h̄c

(M2 − E2)1/2,
and F (a,b; z) denotes the Kummer confluent hypergeometric
function. Notice that the lower components of the Dirac
wave function have an opposite parity to that of the upper
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ones. Moreover, the binding energy B = |ED
n,|k|| = m0c

2 − E

depends on the principal quantum number n and on the
absolute value of the Dirac quantum number k, but not on its
sign. This means that states with the same angular momentum
quantum number j which belongs to different pairs of orbital
quantum numbers (l, l′) are degenerated in energy. In addition
we should point out that we will often identify ψD

nljmj
with

ψD
nkmj

, although the Dirac relativistic states are no longer
eigenfunctions of the orbital angular momentum because the
Dirac Hamiltonian does not commute with L; so, the orbital
quantum number is not a good quantum number. Indeed,
each relativistic state contains two values: l and l′ = l ± 1.
However, since the component with the radial function gnk(r)
is large as compared to its partner fnk(r), the value l pertaining
to the large component may be used to denote the state.
Then, although we use the nonrelativistic notation |nljmj 〉,
we should keep in mind that it stands for |nkmj 〉.

Then, the Dirac probability density ρD
nljmj

(r) = |ψD
nljml

(r)|2
of the hydrogenic state |nljmj 〉 can be written in the following
separable form:

ρD
nljmj

(r) = ρD
radial(r)ρangular(θ ), (10)

where the radial and angular parts are given by

ρD
radial(r) = |gnk(r)|2 + |fnk(r)|2 (11)

and

ρangular(θ ) = 〈
l,mj − 1

2 ; 1
2 , + 1

2

∣∣j,mj

〉2∣∣Yl,mj −(1/2)

∣∣2

+ 〈
l,mj + 1

2 ; 1
2 , − 1

2

∣∣j,mj

〉2∣∣Yl,mj +(1/2)

∣∣2
, (12)

respectively.
Finally, it is well known that in the nonrelativistic limit of

the hydrogenic system the large component gnk(r) tends to the
corresponding radial function of the Schrödinger equation,
while the small component fnk(r) tends to zero. So, the
Schrödinger probability density ρS

nljmj
(r) which describes the

state |nljmj 〉 of the system is

ρS
nljmj

(r,θ ) = ∣∣ψS
nljmj

(r,θ,φ)
∣∣2 = ρS

radial(r)ρangular(θ ), (13)

where

ρS
radial(r) = (n − l)

2n(n + l + 1)

(
2Z

a0n

)2l+3

× e−(2Z/a0n)r r2l

∣∣∣∣L2l+1
n−l−1

(
2Z

a0n
r

)∣∣∣∣
2

(14)

gives the radial part of the wave function, and ρangular(θ ) is the
same angular part as in the Dirac case given by Eq. (12). The
corresponding energy of the nonrelativistic system is known
to be ES

n = − h̄2Z2

2a2
0n2 .

III. COMPLEXITY QUANTIFICATION
OF DIRAC EFFECTS

In this section we quantify the two main dynamical
Dirac relativistic effects (charge contraction towards the
origin and raising of all nonrelativistic minima), as well
as the gradient reduction near and far from the origin, in
hydrogenic systems by means of the LMC and Fisher-Shannon
complexity measures. This is done by studying the comparison
between the Schrödinger and Dirac values of the LMC and
Fisher-Shannon complexities of ground and excited states of
hydrogenic systems. Specifically we show the dependence of
these quantities, as well as the Fisher-Shannon information
plane, on the nuclear charge Z and the principal quantum
number n. For simplicity and convenience we will use atomic
units hereafter.

A. Dependence on the nuclear charge

First, let us present and discuss the dependence on the
nuclear charge Z of the LMC (see Fig. 1, left) and Fisher-
Shannon (see Fig. 1, right) complexity measures in the ground
state of the hydrogenic system in the Schrödinger and Dirac
settings described in the previous section. We find that for
both complexity measures (i) the Schrödinger values remain
constant for all Z’s (as recently proved in an analytical way
[8,35]) and (ii) the Dirac values enhance when the nuclear
charge is increasing, in accordance with the corresponding
Klein-Gordon results found in pionic systems [15].
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FIG. 1. (Color online) Dependence of the ground-state hydrogenic LMC (left) and Fisher-Shannon (right) complexity measures on the
nuclear charge Z.
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state and the excited states (n,l,j,mj ) = (2,0, 1

2 , 1
2 ) and (3,1, 1

2 , 1
2 ) (right).

This enhancement is provoked by the contraction of the
electron density towards the origin, a phenomenon similar
to that observed for Klein-Gordon single-particle systems
[14,15]. To quantify it we have defined the relative ratios

ζLMC = 1 − CS
LMC

CD
LMC

and ζFS = 1 − CS
FS

CD
FS

. They are shown in the

inner windows of Fig. 1 (left and right) in terms of Z. We
observe that both complexity ratios behave similarly in the
ground state. This is not, however, the case for other states, as
illustrated in Fig. 2 (left) for the LMC measure in three circular
states with n � 3, and in Fig. 2 (right) for the Fisher-Shannon
complexity in the ground state and two excited states. Therein
we observe that while the LMC ratio is always positive and has
an increasing behavior as a function of Z, this is not always the
case for the Fisher-Shannon ratio. Indeed, notice that the latter
ratio can reach negative values for the excited states, indicating
that the Dirac value of the Fisher-Shannon complexity is lower
than the Schrödinger value.

The positivity of the LMC ratio can be understood because
it measures the charge contraction towards the nucleus by
means of two global concentration information-theoretic
quantities: the disequilibrium and the Shannon entropy. We
observe that although these two factors work in the same

sense, the contribution of the disequilibrium turns out to be
much greater than that of the Shannon entropy. The negative
behavior of the Fisher-Shannon ratio is more difficult to
explain because it quantifies the combined balance of the
spreading (via the Shannon entropy) and the gradient content
(via the Fisher information) of the charge distribution of
the hydrogenic system. To understand this phenomenon
we analyze the behavior of the two components of the
Fisher-Shannon complexity (3). Keeping in mind that the
Shannon entropy is not very sensitive to the relativistic effects,
the former analysis boils down to a careful determination of
the Fisher information which can be written as

I [ρ] = Iradial + 〈r−2〉Iangular, (15)

where Iradial denotes the Fisher information of the radial
probability function ρi

radial(r) (i = D or S in the Dirac
and Schrödinger case, respectively), and Iangular denotes the
Fisher quantity associated to the angular probability function,
ρangular(θ ). Let us point out that the Fisher information presents
a singularity at Z = 118.68, as pointed out by Katriel and
Sen [11], which explains why we do not go to the extreme
relativistic limit. Since the angular density is the same function

FIG. 3. (Color online) Radial density Di(r) and radial Fisher information kernel I i
kernel(r) in the Dirac (i = D) and Schrödinger (i = S)

settings for the hydrogenic states n = 5, l = 2, j = 1
2 (left) and n = 6, l = 1, j = 1

2 (right) with nuclear charge Z = 50. Atomic units have
been used.
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FIG. 4. (Color online) Contribution of g(r) and f (r) to the total probability density for the hydrogenic state n = 5, l = 2, j = 2.5 with
nuclear charge Z = 90. Atomic units have been used.

in both relativistic and nonrelativistic descriptions and 〈r−2〉 is
slightly higher in the relativistic case, the main reason for the
negativity of the Fisher-Shannon complexity ratio arises from
the difference between the Dirac and Schrödinger radial proba-
bility densities. This is clearly shown in Fig. 3, where we have
plotted the Dirac and Schrödinger radial densities, Di(r) ≡
ρi

radial(r)r2, and the corresponding Fisher kernel, I i
kernel(r) ≡

1
ρi

radial(r)
( ∂ρi

radial(r)
∂r

)2r2, for the excited states (n,l,mj ) = (5,2,3/2)

and (6,1,3/2) of the hydrogenic atom with nuclear charge
Z = 50 in the left and right sides, respectively.

Therein we notice that while the Schrödinger radial density
DS(r) vanishes at various points (nodes), the Dirac radial
density DD(r) only vanishes at the origin and the infinity. This
means that the Dirac density has finite values also at the radial
positions of the nonrelativistic nodes (this is the relativistic
minima-raising effect). Hence, the Fisher information kernel
is zero at these points because although the radial density
does not vanish, its derivative does (see Fig. 3), and this is
the reason for the high negative values of ζFS detected in
Fig. 2.

This relativistic effect of nodal disappearance (or existence
of non-nodal minima) in the Dirac density, first pointed out
by Burke and Grant [21,22], is indeed due to the different

behavior of the two components g(r) and f (r) of the Dirac
wave function. Both functions vanish at different values
of r as we can observe in Fig. 4, where the contribution
of g and f to the total probability density for the state
n = 5, l = 2, j = 2.5 of the system with Z = 90 has been
plotted for illustrative purposes. As we can see in Fig. 4,
the largest contribution to the total probability density is
indeed due to the component g(r) of the Dirac spinor (7).
The contribution of the f component, although very small, is
sufficiently significant as to make the Dirac density not vanish
for all radial values except for r = 0 and ∞.

For illustrative purposes we show in Fig. 5 the Dirac and
Schrödinger radial distributions and the Fisher information
kernels of the ground state and the circular state with n = 5
of the hydrogenic system with Z = 50. Therein it is observed
that (i) in the two states the Dirac (solid red) radial density
is always above the Schrödinger (dashed blue) curve when r

is less than the radial expectation value (centroid), and below
otherwise, and (ii) the behavior of the Fisher kernel in the
excited state is different from that of the ground state: the
Dirac values are smaller than the Schrödinger values not only
when r is bigger than the radial expectation value, but also in
the neighborhood of the nucleus.
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FIG. 5. (Color online) Radial density Di(r) and radial Fisher information kernel I i
kernel(r) in the Dirac (i = D) and Schrödinger (i = S)

settings for the ground state (left) and the circular state n = 5 (right) with nuclear charge Z = 50. Atomic units have been used.
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We have observed that the latter effect (hereafter called the
gradient reduction effect) is present in all bound states other
than the ground state, although in excited noncircular states
this effect is hidden by the nodal disappearance or minima-
raising effect. In circular states other than the ground state,
this effect gives rise to the small negativity of the Fisher-
Shannon ratio, as we can also observe in Fig. 7 discussed in
Sec. III B.

Finally let us emphasize that while the LMC ratio quantifies
the charge contraction towards the nucleus (mainly by means
of its disequilibrium ingredient), the Fisher-Shannon ratio
quantifies the combined balance of this charge concentration,
the gradient reduction in the regions near and far from the
origin, and the minima raising or nodal disappearance of
the charge distribution. This balance is very delicate, so that
the latter ratio is positive in all ground-state systems and
in all excited states of heavy hydrogenic states. However,
the Fisher-Shannon ratio is negative for all excited states of
hydrogenic systems with nuclear charge less than a critical
state-dependent value; in these cases the relativistic minima-
raising and gradient reduction joint effects are greater than the
charge-contraction effect.

All in all, the Fisher-Shannon ratio quantifies (a) the charge
contraction towards the nucleus in the ground state, (b) the
charge contraction together with the gradient reduction effect
for circular states other than the ground state, and (c) the com-
bined effect due to the charge contraction, the gradient reduc-
tion, and the minima raising for the remaining excited states.

B. Dependence on quantum numbers

First, the quantification of the Dirac effects for all excited
states with n � 6 in hydrogenic systems with Z = 19 and
Z = 90 is examined by means of the LMC (see Fig. 6) and
Fisher-Shannon (see Fig. 7) complexity ratios. In Fig. 6 (left)
for Z = 19 and Fig. 6 (right) for Z = 90, the LMC ratio shows
a common general structure. For given quantum numbers (n,l)
the ratio has higher values for states with j = l − 1

2 than for
states with j = l + 1

2 . Moreover, it does not depend on the
magnetic quantum number mj , which can be theoretically
understood from Eqs. (1), (2), (10), and (13) which allow
us to separate the LMC complexity as a product of a radial
complexity (associated to the radial density) and an angular
complexity (associated to the angular density, which is the
same in both Dirac and Schrödinger frameworks); then, the
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FIG. 7. (Color online) Dependence of the Fisher-Shannon complexity on mj for Z = 19 (left) and Z = 90 (right).
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FIG. 8. (Color online) LMC (left) and Fisher-Shannon (right) complexities for excited s states in n with Z = 55.

LMC ratio has no dependence on any angular property. In
addition, the LMC ratio (i) decreases when the orbital quantum
number l is increasing for fixed n and (ii) increases with
the principal quantum number n for fixed values of (j,l).
As already pointed out in Sec. III A, for large values of Z,
the bigger the nuclear charge, the higher the ratio due to the
common electronic charge contraction.

The Fisher-Shannon ratio presents a different behavior with
respect to the quantum numbers than that of the LMC ratio,
as we show in Fig. 7 (left) for Z = 19 and in Fig. 7 (right)
for Z = 90. Indeed, it has negative values except in a few
s and p states. Moreover, although the relativistic effects
are stronger in the system with nuclear charge Z = 90, the
qualitative dependence of the ratio on the quantum numbers is
similar in the two systems: it has higher values for states with
j = l + 1

2 than for states with j = l − 1
2 when (n,l) are fixed.

For states with l < n − 1 the ratio severely decreases because
of the minima raising, as previously discussed. Moreover, for
penetrating states (mainly states s) the charge contraction
effect counterbalances the minima-raising effect and causes
the ratio to become positive. In addition, the ratio hardly
depends on the magnetic quantum number mj because the
Fisher-Shannon complexity, opposite to the LMC quantity,
cannot be separated into radial and angular parts.

The gradient reduction effect is increasingly higher for
states with j = l − 1

2 than for states with j = l + 1
2 when the

nuclear charge is increasing. For excited states with l < n − 1,
the minima-raising effect (which grows with Z) decreases
the ratio. For large values of Z, the charge-contraction effect
is so powerful that it makes the gradient reduction and
minima-raising effects negligible, producing a global positive
Fisher-Shannon ratio.

Second, we have done a similar analysis for states ns, which
all have j = l + 1

2 , as shown in Fig. 8 for the hydrogenic
system with Z = 55. Contrary to the other excited states
wherein the LMC (Fisher-Shannon) ratio decreases (increases)
asymptotically to a constant value, the LMC ratio grows up
to a maximum at n = 3, and then slowly decreases towards
a constant asymptotic value as shown in Fig. 8 (left). On
the other hand, the Fisher-Shannon ratio [see Fig. 8 (right)]
shows an opposite behavior as a function of n; that is, initially
it decreases down to a minimun at n = 4 and then it slowly
increases towards a constant asymptotic value. For large values
of Z, both LMC and Fisher-Shannon ratios of ns states
behave like in the other states. Notice, in addition, that LMC
and Fisher-Shannon complexities of states ns have different
behavior: while the LMC remains practically constant, the
Fisher-Shannon increases monotonically. The latter is because

FIG. 9. (Color online) LMC (left) and Fisher-Shannon (right) complexities for some excited states in n and l with Z = 90 and mj = j as
a function of the energy (a.u.).
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FIG. 10. (Color online) LMC (left) and Fisher-Shannon (right) complexities for some excited states in n and k with Z = 90 and mj = j as
a function of the relativistic quantum number k.

the charge density oscillates more and more when the principal
quantum number n is increasing, which makes the Fisher-
information factor of the Fisher-Shannon complexity grow in
a monotonic manner.

IV. COMPLEXITY DEPENDENCE ON ENERGY
AND DIRAC QUANTUM NUMBER

In this section we study the dependence of the LMC and
Fisher-Shannon complexities on both the binding energy B and
the Dirac or relativistic quantum number k of various excited
states of the hydrogenic system with nuclear charge Z = 90,
as well as discuss the associated Fisher-Shannon (I − J ) and
disequilibrium-Shannon (D − eS) information planes.

A. Dependence on energy

In Fig. 9 we show the values of LMC [Fig. 9 (left)] and
Fisher-Shannon [Fig. 9 (right)] complexities for all excited
states (n � 6, mj = j ) of the hydrogenic system with nuclear
charge Z = 90. Therein we observe that when the energy is
increasing, the LMC complexity (a) decreases for states with

the same quantum number j and (b) increases parabolically
for states with l = n − i and fixed i (i = 1, . . . ,n). Moreover,
the LMC complexity of the states ns have significantly bigger
values, mainly because of the relativistic sensitivity of the
disequilibrium ingredient previously discussed.

Furthermore, the behavior of the Fisher-Shannon com-
plexity as a function of the energy is similar to the LMC
complexity for states with the same j , but it is slightly varying
within a narrow interval for states with l = n − i and fixed i

(i = 1, . . . ,n).

B. Dependence on the relativistic quantum number k

In Fig. 10 we show the dependence of the LMC (left) and
Fisher-Shannon (right) complexity measures on the relativistic
quantum number k for the ground state and all excited states
(n � 6, l,j,mj = j ) of the hydrogenic system with nuclear
charge Z = 90.

We observe that the LMC complexity (a) has a global
maximum for states ns (i.e., k = −1) and (b) presents a
quasisymmetric decreasing behavior around the line with
k = −1 (i.e., for states ns). Moreover, the Fisher-Shannon

FIG. 11. (Color online) LMC or disequilibrium-Shannon (left) and Fisher-Shannon (right) information planes of hydrogenic states with
n � 6, mj = j = l + 1

2 , and Z = 90. Atomic units have been used.
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complexity has no global maximum at ns states but it shows
a monotonically decreasing behavior for the l-manifold states
with a given principal quantum number n, mainly because of
the decreased number (n − l) of maxima of the density.

C. Information planes

Finally, it is interesting to note that the previous be-
havior can be studied by means of the associated rela-
tivistic information-theoretic planes. In Fig. 11 we show
the disequilibrium-Shannon (left) and Fisher-Shannon (right)
information planes which include the ground state and all
excited states (n � 6, l,j = l + 1

2 , mj = j ) of the hydrogenic
system with nuclear charge Z = 90. Notice that the scale in
both axes is logarithmic.

First of all, we observe that in both cases all the complexity
values lie down the allowed region; that is, they are on the
right side of the rigorous border (see the continuous line in
the two graphs) defined by the known analytic LMC and
Fisher-Shannon lower bounds [8–10]: CLMC[ρ] � 1 and
CFS[ρ] � 3. Moreover while the LMC values remain closer to
the borderline, the Fisher-Shannon ones move away from this
bound when the principal quantum number is increasing. This
is a clear indication that the Fisher-Shannon values of a given
state (a) are higher than the corresponding LMC values and
(b) this enhancement is greater when the principal quantum
number is increasing, mainly because the gradient content
(the Fisher-information ingredient) rises in a faster manner
than the disequilibrium.

V. CONCLUSIONS

This work extends the information-theoretic study of the
hydrogenic systems recently done in the Schrödinger [35] and
relativistic Klein-Gordon [14,15] and Dirac [11] frameworks.
Indeed, previous efforts have analyzed not only the single and
composite information-theoretic measures of both ground and
excited states in the Schrödinger [35,36] and Klein-Gordon
[14,15] settings, but also the single entropic measures of
the ground state in the Dirac setting [11]. Here we have
studied the LMC and Fisher-Shannon complexities of both
ground and excited states of these systems by means of the
Dirac relativistic wave functions. First we have shown the
enhancement of these composite measures when the nuclear
charge is increasing and we have compared these values
with the corresponding nonrelativistic (Schrödinger) values,

which has allowed us to (i) illustrate that these complexity
measures are good indicators of the Dirac relativistic effects
and (ii) quantify the three primary dynamical Dirac effects
(electronic charge contraction, minima raising, and gradient
reduction) by means of a Schrödinger-Dirac ratio. We have
observed that the LMC ratio is always positive and it has an
increasing behavior as a function of Z (mainly because its
disequilibrium ingredient enhances when Z is increasing). In
contrast, the Fisher-Shannon ratio can reach negative values
for the excited states although it finally enhances when Z is
increasing. Moreover, the global enhancement phenomenon
of the two complexities is mainly due to the electronic charge
contraction, and the Fisher-Shannon negativity in the excited
states is associated to the raising of the nonrelativistic minima.
The latter phenomenon is mainly due to the Fisher-information
ingredient of the Fisher-Shannon complexity, because it is the
only factor that is very sensitive to the fact that the Dirac
relativistic radial density cannot vanish except at the origin
and infinity, keeping in mind that it is a gradient functional of
the density. The (largely ignored) gradient reduction effect is
present in all excited states although it is, at times, hidden by
the minima-raising effect.

Furthermore, we have shown in a large-Z hydrogenic
system the dependence of the two previous statistical com-
plexities as a function of the following parameters of the Dirac
states: the energy, the principal quantum number (n), and the
relativistic quantum number (k). We have observed that for
the l-manifold states of a given quantum number n, the LMC
complexity parabolically enhances and the Fisher-Shannon
complexity varies within the same interval when energy is
increasing; this is mainly because of the delicate balance
of the charge contraction and the minima-raising effects. In
addition, beyond the ground state, we have observed that
for j = mj the behavior of the two complexity measures
of the l-manifold states in terms of the relativistic quantum
number k is quasisymmetric around the line with k = −1
(i.e., states s).
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[35] J. S. Dehesa, S. López-Rosa, and D. Manzano, Eur. Phys. J. D

55, 539 (2009).
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