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High-precision multipole polarizabilities, α� for � � 4 of the 1s ground state of the hydrogen isoelectronic
series, are obtained from the Dirac equation using the B-spline method with Notre Dame boundary conditions.
Compact analytic expressions for the polarizabilities as a function of Z with a relative accuracy of 10−6 up
to Z = 100 are determined by fitting to the calculated polarizabilities. The oscillator strengths satisfy the sum
rules

∑
i f

(�)
gi = 0 for all multipoles from � = 1 to � = 4. The dispersion coefficients for the long-range H-H and

H-He+ interactions are given.
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I. INTRODUCTION

The present paper reports calculations of the polarizabilities
of the hydrogen atom and isoelectronic ions using the Dirac
equation to describe the underlying dynamics. Such calcula-
tions are now topical since some atomic polarizabilities can
directly impact the definitions of two fundamental quantities,
the Kelvin and the second [1]. The new generation of optical
frequency standards have reached such precision that they
are sensitive to the black-body radiation of the apparatus
itself [2]. The resulting black-body radiation shift is largely
determined by the differences in polarizabilities of the two
atomic states involved in the clock transition. Additionally,
very-high-precision measurements of the helium dielectric
constant have been recently reported [3]. In conjunction with
high-precision calculations of the static dipole polarizability
[4], these measurements can result in improved determinations
of Boltzmann’s constant and thus the Kelvin [3,5].

Another reason for doing such calculations is that they
can be used to verify the accuracy of computational methods
and tests of fundamental theory. The polarizabilities of the
hydrogenic ions are properties of the ground state of a set of
systems that are often used to test the fundamental principles of
physics. It is rather surprising that the first explicit calculations
of the quadrupole polarizabilities of the hydrogenic ions based
on the Dirac equation have only just been reported [6].

An important advance in the topic of the dipole and
higher multipole polarizabilities was an investigation based
on the Pauli approximation that gave expressions for the
static multipole polarizabilities up to O(α2Z2) [7]. This was a
generalization of an earlier work which gave the O(α2Z2)
expression for the dipole polarizability [8]. The work on
dipole polarizabilities was extended to (αZ)4 [9], (αZ)6 [10],
and to all orders in terms of a generalized hypergeometric
function [11]. Apart from a very recent calculation [6], the
expressions for the quadrupole and higher-order polarizabili-
ties have not had independent confirmation. There have been a
number of independent calculations of the dipole polarizability
and related sum rules. Many of these investigations have

been computational in nature. Drake and Goldman derived
expressions for some dipole oscillator-strength sum rules as
well as performing some explicit calculations of the dipole
polarizability [12] by expanding the wave function as a
linear combination of exponential type functions. Goldman
[13] extended the basis-set approach to calculate the dipole
polarizability of hydrogenic ions from Z = 1 to Z = 115
using a Gauge-invariance method. A fit to the calculated
polarizabilities was used to create an (αZ)n expansion of
the polarizability, including terms up to (αZ)8. There have
been a number of other computational investigations of the
dipole polarizabilities of hydrogenic ions based on the Dirac
equation [14–20].

The present calculations used the B-spline Galerkin method
with Notre Dame (ND) boundary conditions [19]. Other
approaches to the B-spline boundary conditions have been
proposed [17,18,21–23]. There is at present no overwhelming
reason for adopting more complicated boundary conditions
in preference to the ND boundary conditions. The B-spline
approach to atomic structure has a number of advantages
[24,25]: it does not lead to linear dependence, the basis can
be made effectively complete in a finite region of space,
the details of the basis are easily adjustable, and results are
numerically stable. However, like all basis-set approaches, the
energy spectrum also has a sea of negative-energy states (the
Dirac sea) and it is also possible for spurious states to appear
in the positive energy spectrum [18]. These issues have been
discussed extensively [17–19,24].

The present B-spline calculations of the multipole polariz-
abilities give numerical values that are more precise than any
previous calculation. Values of associated oscillator-strength
sum rules are also given. The nuclear mass was set to be
infinite, and the point nucleus model was adopted. Values
are reported for intermediate sums, including the entire set
of states, and also for a set of calculations that omitted
the negative-energy states from the Dirac sea. Analytic
expressions for the polarizabilities are constructed that are
accurate to a relative precision of 10−6 for Z � 100. The
static multipole polarizabilities for quadrupole, octupole, and
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hexadecupole transitions have been computed and found to be
compatible with the O(α2Z2) expressions of Kaneko [7]. The
sum rules

∑
i f

(�)
gi = 0 provide a valuable consistency check

on the reliability of our calculations. Finally, the dispersion
coefficients that describe the long-range interaction of the H-H
and H-He+ dimers in their ground states are presented. All
results are reported in atomic units, and the value of fine-
structure constant 1/α = c = 137.035 999 074 [26] was used
in all calculations reported in this work, unless specifically
mentioned.

II. FORMULATION

A. Dirac equation of single-electron atomic system

The single-electron Dirac equation is

HDψ(r) = Eψ(r), (1)

where HD is the Dirac Hamiltonian

HD = cα · p + βmc2 + V (r) , (2)

m is the electron mass, c is the light velocity, p is the
momentum operator, and α and β are 4 × 4 matrices of the
Dirac operators [7].

The wave function for the hydrogenlike ion can be written

ψ(r) = 1

r

(
iPnκ (r)�κm(r̂)

Qnκ (r)�−κm(r̂)

)
, (3)

where Pnκ (r) and Qnκ (r) present the larger and small com-
ponents of radial wave function, and �κm(r̂) and �−κm(r̂)
correspond to the angular components. The angular quantum
number κ are connected with j and �:

κ = �(� + 1) − j (j + 1) − 1/4 . (4)

Substituting Eqs. (2) and (3) into Eq. (1) and separating the
radial and angular components gives the following coupled
first-order differential equations for radial components Pnκ (r)
and Qnκ (r):

[V (r) + mc2]Pnκ (r) + c

(
d

dr
− κ

r

)
Qnκ (r)=EPnκ (r) ,

(5)

−c

(
d

dr
+ κ

r

)
Pnκ (r) + [V (r) − mc2]Qnκ (r)=EQnκ (r) .

(6)

In this equation V (r) is the interaction potential between the
electron and nucleus,

V (r) = −Z

r
, (7)

with Z being the number of nuclear charges.
In order to compare with nonrelativistic calculations, we

replace the energy E by ε = E − mc2 and the radial Dirac
equation can be written in matrix form:(

V (r) c( d
dr

− κ
r
)

−c( d
dr

+ κ
r
) −2mc2 + V (r)

) (
Pnκ (r)

Qnκ (r)

)

= ε

(
Pnκ (r)

Qnκ (r)

)
. (8)

B. B-spline Galerkin method

The radial wave functions Pnκ (r) and Qnκ (r) are expanded
in an N -dimensional basis of B splines of order k,

P (r) =
N∑

i=1

piB
k
i (r) , (9)

Q(r) =
N∑

i=1

qiB
k
i (r) , (10)

where the subscripts n,κ have been omitted from the functions
Pnκ (r) and Qnκ (r) for notational simplicity. The function Bk

i (r)
only takes nonzero values for the knot intervals ti � r � ti+k .
The normalization condition is∫ ∞

0
[P 2(r) + Q2(r)]dr = 1 . (11)

The details of the B splines and ND boundary conditions
have been discussed in detail elsewhere [18,19]. The large
and small radial components are independently expanded in
a B-spline basis with the boundary conditions P (R) = Q(R)
and P (0) = 0, where R is the radius of the confining cavity.

B splines of k = 9 order were used with the endpoints
of multiplicity 9. An exponential knot distribution for the B

splines is adopted, e.g.,

ti+k−1 = R × exp
[
γ
(

i−1
N1−1

)] − 1

exp(γ ) − 1
, (12)

where i = 1,2, . . . ,N1 and N1 = N − k + 2 is the maximal
value of i. The exponential knot parameter γ depends on the
radius of confining cavity R,

γ = G(Z)R . (13)

The function G(Z) for Z � 2 satisfies the recurrence relation

G(Z) = G(Z − 1) + 0.055

Z
, (14)

where G(1) = 0.055 is an optimized value for the hydrogen
atom. The confining cavity radius R (which is different for
different Z) was chosen to reproduce the exact ground-state
energy [27] of the hydrogenlike ions to at least 20 significant
digits:

εExact
n = c2

[
1 + (αZ)2

[n − |κ| +
√

κ2 − (αZ)2]2

]−1/2

− c2,

(15)

where n is the main quantum number.

C. Polarizabilities for the single-electron atoms

In a weak external electric field, the static 2�-pole polariz-
ability for an atom is usually defined in terms of a sum over
all intermediate states including the continuum:

α� =
∑

i

f
(�)
gi

(Ei − Eg)2
. (16)

The initial state ψg(r) with energy Eg is excluded from the
summation over i. The 2�-pole oscillator strength f

(�)
gi from

012505-2



COMPUTATIONAL INVESTIGATION OF STATIC . . . PHYSICAL REVIEW A 86, 012505 (2012)

ground-state g to excited-state i is defined

f
(�)
gi = 2(Ei − Eg)|〈ψg(r)‖r�C(�)(r̂)‖ψi(r)〉|2

(2� + 1)(2jg + 1)
, (17)

where jg is the total angular momentum for the ground state.
The wave function and energy of the excited states are ψi(r)
and Ei . C(�)(r̂) is the �-order spherical tensor.

Using Eq. (3), the radial and angular parts of matrix element
in Eq. (17) are

〈ψg(r)|r�|ψi(r)〉 =
∫ ∞

0
r�[Pg(r)Pi(r) + Qg(r)Qi(r)]dr ,

(18)

〈�κg
(r̂)‖C(�)‖�κi

(r̂)〉 = (−1)jg+ 1
2
√

(2jg + 1)(2ji + 1)

×
(

jg ji �

−1/2 1/2 0

)
. (19)

Polarizabilities that are computed including both the physical
states and negative-energy states of the Dirac sea in Eq. (16) are
denoted by α±

� . Polarizabilities that are computed by omitting
the negative-energy states of the Dirac sea in Eq. (16) are
denoted by α+

� . The states of the Dirac sea are energetically
distinct from the physical states. The polarizabilities computed
using the O(α2Z2) expressions of [7] are denoted as αK

� .
The polarizabilities can be expanded as a series in powers

of (αZ)2. The series is written

αRel
� = αNR

�

[
1 +

n∑
i=1

λ2i(αZ)2i

]
, (20)

where the nonrelativistic multipole polarizabilities αNR
� for the

ground-state hydrogenlike ions have the exact values [28]

αNR
� = (2� + 2)!(� + 2)

�(� + 1)22�+1Z2�+2
. (21)

D. Oscillator-strength sum rules

There are a number of oscillator-strength sum rules besides
those which define the multipole polarizabilities. We make the
definition

S�(n) =
∑

i

f
(�)
gi (Ei − Eg)n . (22)

The expression with � = 1 and n = −2 is the dipole po-
larizability. The case when � = 1 and n = 0 is called the
Thomas-Reiche-Kuhn (TRK) sum rule. In the nonrelativistic

FIG. 1. (Color online) The convergence of ground-state energy
(a.u.) relative to the exact Dirac equation energy of the hydrogen
ground state. The number of B-spline basis functions is N , while the
radius of confining cavity is R = 400 a.u.

calculation, S1(0) should be equal to the number of the
electrons. The case with � = 1 and n = −3 is related to
the nonadiabatic dipole polarizability [29]. One finds that
S1(−3) = 43/(4Z6) for nonrelativistic hydrogenic atoms. The
S1(−1) coefficient [30] is related to the long-range atom wall
dispersion coefficient [31]. One finds that S1(−1) = 2/Z2 for
nonrelativistic hydrogenic atoms. The relativistic sum rules are
useful in testing the completeness of basis sets for variational
representations of the Dirac spectrum [32] and set a foundation
for testing other methods.

As with the polarizabilities, the sum rules can be evaluated
by summing over all states, or just the positive energy states.
Sum rules that are computed including both positive and
negative-energy states in Eq. (22) are denoted by S±

� (n). Sum
rules that omit the negative-energy states are denoted by S+

� (n).

III. RESULTS AND DISCUSSIONS

A. Polarizabilities and sum rules for hydrogen

The difference of the B-spline ground-state energy
from the exact energy given by Eq. (15) (this is
−0.500 006 656 596 553 596 900 786 4298 a.u.) as a function
of the dimension of the B-spline basis is plotted in Fig. 1.
This calculation was performed with a confinement radius
of R = 400 a.u. This ensures that none of the atomic sum
rules reported in this paper are influenced by the size of
the confinement radius. The energy was converged to 25
significant digits for a basis with N = 400.

TABLE I. The convergence of the static multipole polarizabilities α±
� (units of a.u.) for the hydrogen atom ground state as the dimension

N of the B-spline basis set was increased. The radius of the confining cavity is R = 400 a.u.

N α±
1 α±

2 α±
3 α±

4

100 4.499 751 495 18 14.998 829 821 131.2379
150 4.499 751 495 177 64 14.998 829 822 856 41 131.237 821 447 83 2126.028 674 4992
200 4.499 751 495 177 639 27 14.998 829 822 856 441 76 131.237 821 447 844 63 2126.028 674 499 1281
250 4.499 751 495 177 639 267 48 14.998 829 822 856 441 70 131.237 821 447 844 661 2126.028 674 499 128 81
300 4.499 751 495 177 639 267 398 14.998 829 822 856 441 699 67 131.237 821 447 844 662 144 2126.028 674 499 128 831 0
350 4.499 751 495 177 639 267 396 1 14.998 829 822 856 441 699 61 131.237 821 447 844 662 150 7 2126.028 674 499 128 831 4
400 4.499 751 495 177 639 267 396 02 14.998 829 822 856 441 699 608 131.237 821 447 844 662 151 0 2126.028 674 499 128 831 46
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TABLE II. The comparison of dipole sum rules, S±
1 (n) and S+

1 (n), for the H(1s) ground state. The exact expressions of the sum rule are
also presented in the fifth column with γ1 = √

κ2 − α2Z2 [12]. The ratio �S1(n)/Sexact
1 (n) = [Sexact

1 (n) − S±
1 (n)]/Sexact

1 (n). The nonrelativistic
values are in the column SNR

1 (n). The value of S±
1 (0) is not stable and gets smaller as the B-spline basis dimension is increased. The notation

a[b] means a × 10b.

Sum rule S+
1 (n) S±

1 (n) SNR
1 (n) Sexact

1 (n) [12]
�S1(n)

Sexact
1 (n)

S1(−3) 10.749 260 777 454 106 9 10.749 260 777 454 125 8 10.75
S1(−2) 4.499 751 495 886 496 76 4.499 751 495 177 639 27 4.50

S1(−1) 1.999 911 249 278 034 15 1.999 937 873 065 244 31 2.0
(γ1 + 1)(2γ1 + 1)

3Z2
7[−19]

S1(0) 0.999 955 631 350 807 45 1[−29] 1.0 0 −1[−29]

S1(1) 0.666 563 210 276 996 94 3.755 773 008 441 865 7[4]
2

3
2/α2 2[−18]

S1(2) 1.298 802 722 313 −1.410 595 609 170 78[9]
4

3
− 4

3α4

(
γ1 + 2

γ1

)
7[−16]

S1(3) — 5.298 017 989 97[13] —
8

3α6

[
2(γ 2

1 − 1)(γ1 − 2)

γ1(2γ1 − 1)
+ 3

]
−2[−12]

Table I shows the convergence of the static multipole
polarizabilities α±

� for the H(1s) state as the dimension of
the B-spline basis was increased from N = 100 to N = 400.
The radius of the confining cavity is R = 400 a.u. The static
dipole polarizability α±

1 is computed to a precision of 22 digits.
The higher-order polarizabilities α±

2 , α±
3 , and α±

4 have not
achieved the same degree of precision but are still computed
to a precision of 21, 20, and 20 effective figures, respectively.
The present α±

1 = 4.499 751 495 177 639 267 396 02 a.u. is
4 × 10−11 a.u. larger than the result 4.499 751 495 142 92 a.u.
of Goldman [13]. This is due to the different fine-structure con-
stant used. When the fine-structure constant α is set to the value
used by Goldman, namely, 1/α = 137.035 989 5, the B-spline
polarizability changed to α±

1 = 4.499 751 495 142 916 a.u. This

is in perfect agreement with that of Goldman. All hydrogen-
atom sum rules reported from now on use the N = 400,
R = 400 a.u. B-spline basis.

Exact expressions exist for a number of the dipole
sum rules given by Eq. (22). For example, the expres-
sions for the exact nonrelativistic electric-dipole sum rules
S1(n) have been derived for n = −5, − 4, . . . ,2 [30,33]. The
nonrelativistic dipole sum rule diverges for n � 3. Expres-
sions for some dipole sum rules for the Dirac hydrogen
atom have been given by Drake and Goldman [12]. The
Dirac equation sum rules were derived by using closure
to sum over the complete set of positive and negative-
energy states and the expressions are given in Table II.
The Dirac equation sum rule for S1(3) is convergent due to

TABLE III. The comparison of the H(1s) static multipole polarizabilities and sum rules with and without the negative-energy states. Values
for S±

� (0) are not numerically stable and tend to decrease as the basis is enlarged. The notation a[b] means a × 10b.

Sum rule S+
� (n) S±

� (n) Nonrelativistic

S2(−3) 26.747 582 450 922 508 1 26.747 582 450 922 621 3 26.750
S2(−2) 14.998 829 827 109 609 3 14.998 829 822 856 441 7 15.0
S2(−1) 8.999 384 961 848 033 62 8.999 544 703 293 683 54 9.0
S2(0) 5.999 605 961 023 935 20 −1[−28] 6.0
S2(1) 4.799 574 122 244 155 50 2.253 393 804 665 723 66[5] 4.80
S2(2) 5.598 084 401 298 530 18 −8.463 168 026 239 51[9] 5.60
S2(3) 20.043 653 259 626 3.178 616 122 279 928[14] 20.80
S3(−3) 204.041 400 069 326 002 204.041 400 069 327 276 204.06250
S3(−2) 131.237 821 495 692 427 131.237 821 447 844 662 131.250
S3(−1) 89.992 366 277 948 754 1 89.994 163 347 335 786 6 90.0
S3(0) 67.494 445 945 723 638 3 6[−24] 67.50
S3(1) 57.851 751 717 231 297 2 2.535 018 531 367 228 21[6] 405

7 = 57.8571428

S3(2) 61.704 978 988 083 113 1 −9.520 821 387 020 48[10] 432
7 = 61.7142857

S3(3) 100.225 824 655 056 308 3.575 836 136 347 471[15] 702
7 = 100.2857142

S4(−3) 3043.342 638 220 471 07 3043.342 638 220 494 85 3043.687 50
S4(−2) 2126.028 675 392 279 56 2126.028 674 499 128 83 2126.25
S4(−1) 1574.846 608 527 950 22 1574.880 153 465 178 52 1575.0
S4(0) 1259.880 083 503 994 17 9[−19] 1260.0
S4(1) 1119.885 837 666 203 30 4.731 967 094 641 248 23[7] 1120.0
S4(2) 1159.848 826 903 744 95 −1.777 189 196 560 64[12] 1160.0
S4(3) 1530.311 794 804 461 6.674 763 648 090 144[16] 4591

3 = 1530.33333333
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TABLE IV. The static dipole polarizabilities for the ground state of selected hydrogenlike ions. The present values are listed in the second
to fourth columns for two sets of c = 1/α. All the tabulated digits of the present work are insensitive to further enlargement of the basis. The
notation a[b] means a × 10b.

α+
1 α±

1 α±
1 α±

1

Z c = 137.035 999 074 c = 137.035 999 074 c = 137.035 989 5 Goldman [13]

1 4.499 751 495 886 496 765 8 4.499 751 495 177 639 267 4 4.499 751 495 142 915 967 2 4.499 751 495 142 92
2 0.281 187 875 627 153 384 5 0.281 187 874 918 503 235 4 0.281 187 874 909 822 724 5 0.281 187 874 909 82
5 7.190 061 953 255 011 860[−3] 7.190 061 246 047 617 463[−3] 7.190 061 244 659 087 6[−3] 7.190 061 244 659 0[−3]
10 4.475 171 382 242 160 041[−4] 4.475 164 360 625 272 209[−4] 4.475 164 357 157 090 8[−4] 4.475 164 357 157[−4]
15 8.778 661 031 860 895 31[−5] 8.778 591 625 838 392 08[−5] 8.778 591 610 447 560 3[−5] 8.778 591 610 447[−5]
20 2.750 591 823 590 310 61[−5] 2.750 523 499 062 579 08[−5] 2.750 523 490 423 618 6[−5] 2.750 523 490 424[−5]
25 1.112 456 189 324 034 04[−5] 1.112 389 181 457 920 41[−5] 1.112 389 175 944 142 1[−5] 1.112 389 175 944[−5]
30 5.281 595 642 877 009 9[−6] 5.280 940 730 404 758 7[−6] 5.280 940 692 243 592 6[−6] 5.280 940 692 243[−6]
35 2.798 031 223 308 353 9[−6] 2.797 393 149 766 563 6[−6] 2.797 393 121 842 089 7[−6] 2.797 393 121 842[−6]
40 1.604 622 695 629 832 0[−6] 1.604 002 839 548 263 7[−6] 1.604 002 818 268 128 9[−6] 1.604 002 818 268[−6]
45 9.767 839 136 814 269[−7] 9.761 833 945 433 110[−7] 9.761 833 778 188 453 4[−7] 9.761 833 778 187[−7]
50 6.226 889 347 856 944[−7] 6.221 086 480 106 640[−7] 6.221 086 345 451 685 9[−7] 6.221 086 345 451[−7]
55 4.116 918 654 470 464[−7] 4.111 325 157 474 914[−7] 4.111 325 046 935 820 5[−7] 4.111 325 046 936[−7]
60 2.802 469 149 798 750[−7] 2.797 090 474 417 353[−7] 2.797 090 382 223 343 9[−7] 2.797 090 382 224[−7]
65 1.953 091 120 155 380[−7] 1.947 931 407 519 126[−7] 1.947 931 329 604 639 5[−7] 1.947 931 329 604[−7]
70 1.387 222 340 637 801[−7] 1.382 284 686 111 543[−7] 1.382 284 619 529 769 8[−7] 1.382 284 619 530[−7]
75 1.000 397 933 028 34[−7] 9.956 846 315 732 27[−8] 9.956 845 741 359 051 6[−8] 9.956 845 741 359[−8]
80 7.301 102 574 925 93[−8] 7.256 230 363 582 21[−8] 7.256 229 864 059 587 8[−8] 7.256 229 864 060[−8]
85 5.376 751 290 435 41[−8] 5.334 153 759 283 73[−8] 5.334 153 321 793 719 5[−8] 5.334 153 321 795[−8]
90 3.984 403 901 650 36[−8] 3.944 093 881 570 48[−8] 3.944 093 496 045 404 3[−8] 3.944 093 496 045[−8]
95 2.962 871 397 452 10[−8] 2.924 863 256 366 13[−8] 2.924 862 914 773 842 2[−8] 2.924 862 914 774[−8]
100 2.204 334 865 912 88[−8] 2.168 647 587 493 68[−8] 2.168 647 283 324 507 9[−8] 2.168 647 283 325[−8]

cancellations between the terms with positive and negative
energies.

Table II compares the dipole sum rules of the H(1s) with
and without the contributions of the states in the negative-

TABLE V. Relativistic multipole polarizabilities (in a.u.) for the ground states of the hydrogen isoelectronic series. All the figures listed are
accurate. The notation a[b] means a × 10b.

Z α±
2 α±

3 α±
4

1 14.998 829 822 856 441 699 131.237 821 447 844 662 2126.028 674 499 128 83
2 0.234 301 867 935 791 210 0 0.512 505 037 523 770 47 2.075 551 546 061 205 19
5 9.581 285 372 324 045 392[−4] 3.352 210 608 787 016 2[−4] 2.171 618 426 945 541 1[−4]
10 1.488 319 383 913 411 04[−5] 1.300 352 899 787 624[−6] 2.104 187 645 750 314[−7]
15 1.293 852 351 688 892 4[−6] 5.014 877 480 967 07[−8] 3.601 503 954 501 5[−9]
20 2.271 146 583 050 793[−7] 4.938 640 072 269 2[−9] 1.991 062 443 017[−10]
25 5.847 845 585 737 33[−8] 8.110 859 162 392[−10] 2.087 370 771 99[−11]
30 1.915 515 761 865 58[−8] 1.837 296 630 650[−10] 3.273 123 521 7[−12]
35 7.397 473 245 589 1[−9] 5.186 973 978 69[−11] 6.763 105 560[−13]
40 3.218 326 876 369 0[−9] 1.717 671 116 72[−11] 1.707 067 337[−13]
45 1.531 561 509 916 7[−9] 6.415 324 043 1[−12] 5.011 809 33[−14]
50 7.812 859 401 235[−10] 2.630 602 571 9[−12] 1.654 931 37[−14]
55 4.210 472 655 409[−10] 1.161 555 467 5[−12] 5.999 556 2[−15]
60 2.371 147 053 044[−10] 5.443 579 080[−13] 2.345 208 2[−15]
65 1.383 617 655 412[−10] 2.677 457 400[−13] 9.748 095[−16]
70 8.309 087 512 23[−11] 1.369 821 733[−13] 4.261 037[−16]
75 5.106 469 950 92[−11] 7.235 969 19[−14] 1.940 914[−16]
80 3.196 013 748 39[−11] 3.921 694 89[−14] 9.141 67[−17]
85 2.028 253 121 49[−11] 2.168 463 36[−14] 4.421 83[−17]
90 1.299 794 490 85[−11] 1.216 900 77[−14] 2.182 71[−17]
95 8.376 878 675 0[−12] 6.895 117 0[−15] 1.092 81[−17]
100 5.405 559 183 5[−12] 3.923 335 2[−15] 5.514 2[−18]

012505-5



TANG, ZHANG, ZHANG, JIANG, AND MITROY PHYSICAL REVIEW A 86, 012505 (2012)

energy sea. All the digits listed are converged with respect
to further enlargement of the B-spline basis. The sum rules,
S±

1 (0), S±
1 (1), and S±

1 (2), agree with the exact expressions to
better than 15 digits. Agreement is not so good for S1(3), but
in this case the sum is more sensitive to terms that occur at
larger positive and negative energies. There was no evidence of
convergence for S1(3) when the states of the negative-energy
sea were omitted from the intermediate sum. This is consistent
with the nonrelativistic result of Lamm and Szabo [34].

The value S+
1 (0), which omits the states from the Dirac

sea, is close to the nonrelativistic value of nuclear charge
Z = 1. Upon making the substitution 〈p2〉 = Z2 in existing
expressions [35,36], we obtain the result

S
+Levinger
1 (0) = 1 − 5α2Z2

6
+ · · · , (23)

Evaluating this expression for Z = 1 gives S1(0) =
0.999 955 6238, which is only 8 × 10−9 different from the
B-spline evaluation. The degree of difference between SNR

1 (n)
and S+

1 (n) gets larger as n increases. The difference is 3% for
S1(2).

The contribution that the negative-energy states make to
the dipole sum rules depends on n. The negative-energy states
of the Dirac sea contribute less than 2 × 10−5 to S±

1 (−1),
2 × 10−10 to S±

1 (−2), and 2 × 10−15 to S±
1 (−3). This is not

surprising. The negative-energy states are located at energies
of order −2c2, so the contributions of the negative-energy
states decrease as n in Eq. (22) becomes increasingly negative.
Conversely, the differences between the S±

1 (n) and the S+
1 (n)

sum rules can be expected to increase as n increases. Table II
shows that this indeed does happen. The difference between
S±

1 (2) and S+
1 (2) is nine orders of magnitude.

Table III gives the sum rules for the higher-order multipoles
for the hydrogen-atom ground state. The S2(−2), S3(−2),
and S4(−2) are the multipole polarizabilities α2, α3, and α4,
respectively. The sum rules S+

� (n), omitting the states from the
Dirac sea, are within 0.1% of the nonrelativistic values with
the exception of S2(3). This is also true for the sum rules S±

� (n)
with n < 0, that include the Dirac sea.

The most striking results from Table III are the S±
� (0)

sum rules, which do not exceed 10−18. Levinger et al. [35]
have pointed out that the Dirac Hamiltonian involves terms
linear in the particle momentum p and that, as a consequence,
the Bethe sum rule for exp(iq · r) should be identically
zero. The expansion of exp(iq · r) implicitly involves dipole,
quadrupole, and octupole matrix elements. Therefore, it is
expected that S±

� (0) = 0 for all �.
The contributions of the negative-energy Dirac sea to the

S±
� (n) sum rules are actually greater than the contributions

from the physical states for n � 1. They exceed the contribu-
tion from the physical states by amounts from 4 to 14 orders
of magnitude.

B. Polarizabilities for the hydrogen isoelectronic series

Table IV presents the static dipole polarizabilities for
a number of hydrogenlike ions in their ground state. All
the digits listed in this table are converged with respect
to further enlargement of the B-spline basis. In order to
facilitate comparison of the present polarizabilities with those

FIG. 2. (Color online) The impact of relativistic effects on the
multipole polarizabilities for the hydrogen isoelectronic series. The
ratio (α±

� − αNR
� )/αNR

� is plotted.

of Goldman [13], we repeated the calculations but used the
same speed of light, c = 137.035 989 5 (in atomic units),
as Goldman. The agreement with the polarizabilities of
Goldman could hardly have been better. At Z = 10 we got
α±

1 = 4.475 164 357 157 0908 × 10−4 a.u., in agreement with
all published digits of Goldman. The same is true for the
polarizability at Z = 90, namely, 3.944 093 496 045 4043 ×
10−8 a.u. This level of agreement was achieved for all values
of Z from 1 to 100. The only disagreements amounted to ±1
in the last significant digit reported by Goldman [13].

The higher-order polarizabilities α±
� of the ground states of

some selected hydrogenlike ions are presented in Table V. All
the reported digits are insensitive to further enlargement in the
B-spline basis. Figure 2 shows the influence of relativistic
effect on multipole polarizabilities. The relativistic effect
becomes larger as the nuclear charge Z is increased. The
relative size of the relativistic effect is smallest for the dipole
polarizability and largest for α4.

The difference of the α±
1 and α+

1 polarizabilities from the
Kaneko polarizabilities are illustrated in Fig. 3. We define
�α±

1 = (α±
1 − αK

1 ) with a similar relation used to define �α+
1 .

Figure 3 plots 109�α1 as a function of Z. These are seen to
go to a constant value as Z → 0. From Eq. (20) we deduce

�α±
1 = 9

2Z4

[(
λ2 + 28

27

)
(αZ)2 + O(α4Z4)

]
. (24)

This expression can only go to a constant in the Z → 0 limit
when λ2 = − 28

27 . Figure 3 demonstrates that α±
1 , α+

1 , and αK
1

FIG. 3. (Color online) Plot of 109�α1 as a function of nuclear
charge, Z.
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FIG. 4. (Color online) Plot of 1015(α±
1 − αZon

1 )/Z2 as a function
of nuclear charge, Z.

are equal to order O(α2Z2). The different Z → 0 asymptotes
for �α±

1 and �α+
1 indicate that the O(α4Z4) terms are different

for α±
1 and α+

1 .
Expressions for α±

1 giving terms to O(α4Z4) [9], O(α6Z6)
[10], and to all orders [11] have been derived. The O(α4Z4)
expression of Zon et al. [9] is

αZon
1 = 9

2Z4

[
1 − 28

27
(αZ)2 + 31 + 2π2

432
(α4Z4) + · · ·

]
.

(25)

Figure 4 plots 1015(α±
1 − αZon

1 )/Z2 as a function of Z. The
Z → 0 limit of this difference demonstrates that the present
calculations are in agreement with the analytic expression to
O(α4Z4). This provides a mutual validation of the B-spline
calculations and the analytic expressions.

Figure 5 plots 109Z4�α3 as a function of Z. These are seen
to go to a constant value as Z → 0. By an analysis similar to
that performed for the dipole polarizability, one can deduce
that α±

3 , α+
3 , and αK

3 are equal to order O(α2Z2). The different
Z → 0 asymptotes for �α±

3 and �α+
3 indicate that O(α4Z4)

terms are different for α±
3 and α+

3 .
An analysis demonstrating that the differences between α±

2
and α+

2 only appear at O(α4Z4) has already been reported [6].
It has previously been shown that these polarizabilities are
agreement with the Kaneko O(α2Z2) [6]. It is also possible
to plot 109Z6�α4 as a function of Z, giving plots similar to
Figs. 3 and 5. This demonstrates that α±

4 and α+
4 agree with

αK
4 at the O(α2Z2) level, and the difference between α±

4 and
α+

4 occurs at the O(α4Z4) order.

FIG. 5. (Color online) Plot of 109Z4�α3 as a function of nuclear
charge, Z.

TABLE VI. Comparison of the S+
1 (0) sum rules. All digits are

stable with respect to further enlargement of the B-spline basis.

Z Present Ref. [12]

1 0.999 955 631 350 807 0.999 9556
2 0.999 822 612 102 297
5 0.998 894 823 187 627
10 0.995 622 481 263 678 0.995 62
15 0.990 287 581 618 103
20 0.983 023 671 163 131 0.9830
25 0.973 973 703 862 452
30 0.963 278 628 607 378 0.9633
35 0.951 070 787 251 835
40 0.937 470 188 595 043 0.9375
45 0.922 582 481 520 977
50 0.906 497 887 620 449 0.9065
60 0.871 018 387 592 671 0.8710
70 0.831 424 017 561 149 0.8314
80 0.787 815 483 542 815 0.7878
90 0.739 933 345 752 064 0.7399
100 0.686 987 401 548 771 0.69

C. Sum rules for the hydrogen isoelectronic series

The nonrelativistic TRK sum rule S1(0) gives a value of
unity [30,33,37] for all hydrogenlike atoms and ions. However,
S±

1 (0) is exactly zero, while the sum rule S+
1 (0) is almost equal

to 1. The appropriate method to choose for the evaluation
of the TRK sum rule has generated considerable discussion
[12,35,36,38–43]. Table VI compares the present B-spline
values of S+

1 (0) and compares them against the earlier
calculation of Drake and Goldman [12]. Keeping in mind the
limited precision of the earlier calculation, the agreement with
the Drake and Goldman calculation is perfect.

Figure 6 shows

�S1(0) = S+
1 (0) − S

+Levinger
1 (0), (26)

plotted as a function of Z. It is noticed that �S1(0)/Z4 goes
to a constant as Z → 0. This demonstrates that the present
S+

1 (0) is in agreement with the expression of Levinger to
order O(α2Z2). It also demonstrates that the next term in the
expression for S+

1 (0) occurs at the O(α4Z4) level. The near
linear behavior of �S1(0)/Z4 at small Z indicates that the
expansion for S+

1 (0) contains a term of O(α5Z5).

FIG. 6. (Color online) Plots of 109�S1(0)/Z4 versus nuclear
charge, Z.
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FIG. 7. (Color online) Plots of �S1(−1) and �S1(−3) versus
nuclear charge, Z.

While the B-spline calculations of S+
1 (0) are compatible

with O(α2Z2) expressions [35,36], they cannot be reconciled
with the O(p4) expression of Cohen. A simple analysis near
Z = 0 suggests that

S+
1 (0) ≈ 1 − 5α2Z2

6
+ 2.71 α4Z4 − 6α5Z5 + O(α6Z6).

(27)

It has not been possible to reconcile the coefficient of 2.71 with
Eq. (8) of Cohen [36], but it is unclear how to interpret
〈p2〉 and 〈p4〉 of Eq. (8) in [36]. The plot of S+

1 (0) depicted
in Fig. 3 of [36] is certainly compatible with the present
B-spline calculation. However, Fig. 3 of [36] plots the O(〈p2〉)
approximation to S+

1 (0), and this is certainly not equal to
1 − 5α2Z2

6 .
Figure 7 shows the difference,

�S1(n) = S±
1 (n) − S+

1 (n), (28)

plotted against Z for n = −1 and n = −3. It is noticed that
limZ→0 �S1(−1) and �S1(−3) both go to a constant as Z →
0. Figure 3 established that �S1(−2) also has the same Z → 0
limiting behavior. Writing either of the S1(n) in the form

S1(n) = SNR
1 (n)(1 + c2α

2Z2 + c4α
4Z4 + · · ·) (29)

FIG. 8. (Color online) Relative difference between α±
� and the fits

to this using Eq. (20) as a function of nuclear charge, Z.

allows one to deduce that the c2 coefficients are different for
S±

1 (−1) and S+
1 (−1), since SNR

1 (−1) = 2/Z2. However, one
deduces that the c2 and c4 coefficients are actually the same
for S±

1 (−3) and S+
1 (−3), since SNR

1 (−3) = 43/(4Z6).

D. Analytic expressions for the multipole polarizabilities of
hydrogenlike ions

Analytic expressions were derived for α±
� by performing

a least-squares fit of the polarizabilities to Eq. (20). The
polarizabilities were divided by the nonrelativistic values
prior to the fit. The value of λ2 was fixed at the values
of Kaneko for � = 1,2, and 3. The λ2 value for � = 4 was
determined by evaluating Eq. (36) of Ref. [7]. The value of
λ4 for α±

1 was set to the value from Zon et al. [9]. Table VII
lists the numerical values of λ2i coming from the fit. These
coefficients give a more precise representation of the exact
dipole polarizabilities than the two previous representations
[12,13], and the expressions for the quadrupole and octupole
polarizabilities are novel.

The quality of the fit to the B spline α±
� can be seen from

Fig. 8. The quality of the fits are of very high accuracy at the
smaller values of Z. This occurs since the leading λ2α

2Z2 term
uses the exact value of λ2. The quality of the fit is degraded

TABLE VII. The Eq. (20) fits to the multipole polarizabilities of hydrogen isoelectronic series ground states.

Term α±
1 [13] α±

1 α±
2 α±

3 α±
4

αNR 9

2Z4

9

2Z4

15

Z6

525

4Z8

8505

4Z10

λ2 −28

27
−28

27
−879

600
−5123

2940
−33251

17010
λ4 0.117 451 87(1) 0.117 451 870 668 402 0.502 471 315 0.854 144 263 1.177 235 432

λ6 0.007 482(1) 0.007 692 784 −0.014 151 521 −0.102 874 518 −0.228 232 960
λ8 0.0010(1) −0.003 271 333 0.002 052 103 0.001 434 636 0.011 629 938
λ10 — 0.006 117 861 −0.000 261 805 0.001 019 239 −0.000 189 306
λ12 — −0.013 528 604 — — —

α+
1 α+

2 α+
3 α+

4

λ2 −28

27
−879

600
−5123

2940
−33251

17010
λ4 — 0.171 953 291 0.601 241 304 0.981 404 521 1.323 923 421
λ6 — −0.069 671 936 −0.164 544 588 −0.321 798 414 −0.506 146 068
λ8 — 0.075 248 612 0.118 942 451 0.171 613 014 0.236 007 349
λ10 — −0.051 443 668 −0.057 448 561 0.073 735 494 −0.093 122 365
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TABLE VIII. The second-order dispersion coefficients (in a.u.) for the H(1s)-H(1s) and H(1s)-He+(1s) systems. Results are given for the
sum rules evaluated with and without the states of the Dirac sea. All tabulated digits are accurate. The notation a means a × 10b.

C+
2n C±

2n Nonrelativistic

H(1s)-H(1s)

C6 6.498 392 250 007 09 6.498 392 245 754 06 6.499 026 705 405 84
C8 1.243 840 307 694 35[2] 1.243 840 306 577 93[2] 1.243 990 835 836 22[2]
C10 3.285 370 791 861 60[3] 3.285 370 788 289 10[3] 3.285 828 414 967 42[3]

H(1s)-He+(1s)

C6 0.657 548 755 759 311 0.657 548 758 416 787 0.657 716 656 238 770
C8 8.335 406 342 724 22 8.335 406 384 081 09 8.337 819 589 166 31
C10 1.588 773 716 759 79[2] 1.588 773 725 479 53[2] 1.589 267 575 526 71[2]

at larger values of Z. However, the maximum relative error in
the analytic expressions only exceeds one part per million for
values of Z close to 100.

Equation (20) was also used to create an analytic expression
for α+

� . In this case, the λ2i parameters with i > 1 were treated
as fitting parameters. The results of the fit are tabulated in
Table VII.

IV. DISPERSION COEFFICIENTS

The long-range dispersion interaction between two spheri-
cally symmetric atoms can be written

Vdisp(R) ∼ −
∞∑

n=3

C2n

R2n
, (30)

where R is the separation of two atoms. The dispersion
coefficients C2n can be evaluated using oscillator-strength sum
rules. The explicit expression is

C2n =
n−2∑
�i=1

n−2∑
�j =1

δn−1,�i+�j

(2n − 2)!

4(2li)!(2lj )!

×
∑
ij

f
(�i )
A,gif

(�j )
B,gj

εA,giεB,gj (εA,gi + εB,gj )
, (31)

where �i + �j + 1 = n and εA,gi is the excitation energy from
state g to state i for atom A. The sum implicitly includes the
continuum, and f

(�i )
A,gi is the oscillator strength of multipole

�i , connecting the state g to the excited state i for atom
A. Considerations of molecular symmetry do not have a
direct effect on Eq. (31) when both atoms are in spherically
symmetric states.

It is surprising that there has not yet been any calculation
of the hydrogen dimer dispersion coefficients based on
oscillator strengths from the Dirac equation. This is rectified
in Table VIII, where the C6, C8, and C10 coefficients are given
for two hydrogen atoms in their ground states. Table VIII also
gives the dispersion coefficients between a hydrogen atom and
a He+ ion.

The use of the Dirac equation leads to the H-H C6 being
reduced by 0.00 063 a.u. or 0.0 098%. The relative difference
is about twice as large as the difference between the relativistic
and nonrelativistic polarizabilities. The reduction in the size
of C6 is larger for the H-He+ system, being about 0.026%.

V. CONCLUSIONS

A computational investigation based on B-spline methods
has been used to investigate the polarizabilities and related
sum rules of the hydrogen isoelectronic series. Dipole polar-
izabilities have been computed to a very high precision. One
distinction from previous calculations is that results were also
reported for calculations where the negative-energy Dirac sea
is excluded from the intermediate sum. The agreement with
previously derived analytic expressions [7,9,10] for the dipole
polarizability could not be better. High-precision calculations
of the multipole polarizabilities for � = 2,3,4 are also given.
The present results provided a computational validation of
the earlier works of Kaneko [7] and Zon et al. [9]. The α±

�

polarizabilities are in agreement with the Kaneko expressions
at the O(α2Z2) level. The α±

1 polarizability is also in agreement
with the expressions of Zon et al. [9]. which include terms at
the O(α4Z4) level.

Precise values for other oscillator-strength sum rules have
also been computed. The sum rule S±

� (0) = ∑
i f

(�)
gi = 0

provides a valuable check of the numerical reliability of the
calculations. The sum rule S+

1 (0) has been shown to be com-
patible with the O(α2Z2) expression of Levinger et al. [35]. It
is also compatible with earlier numerical calculations [12,36].

One aspect of the present work that represents a departure
from earlier work has been the treatment of the states of the
negative-energy sea. Existing practice is that calculations of
polarizabilities include the states of the negative-energy sea,
while calculations of the Bethe sum rule tend to omit these
states. The philosophy of the present work has simply been to
do two calculations for most properties, those that include the
states of the Dirac sea and those that omit them.

Analytic expressions for α±
� and α+

� to relative precisions
not exceeding 10−6 have been obtained by fitting an (αZ)n

expansion to the computed polarizabilities. The C6, C8, and
C10 dispersion coefficients for the long-range H-H and H-He+
interactions were also computed.

Note added in proof. The following work has recently been
brought to our attention since acceptance of this manuscript.
In 1974, Manakov et al. [44], developed an expression for the
multipole polarizability α±

� as a generalized hypergeometric
function and gave polarizabilities for � � 3 and Z < 90 to four
digits. The present polarizabilities are largely compatible with
these earlier tabulations. It is noted that the polarizabilities
in [44] are actually listed in Table I which is labelled as the
magnetic susceptibility. It is also noted that analytic calcula-
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tions of the dipole sum rules S1(−4) and S1(−5) have also been
reported [45].
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