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Application of partition density-functional theory to one-dimensional models
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We have carried out calculations for one-dimensional model systems using the self-consistency algorithm of
the recently published partition density-functional theory. The issues of uniqueness of occupation numbers and a
relation to the self-consistent atomic deformation model are addressed. Possibilities for obtaining more accurate
representations of the kinetic-energy functional and its potential are discussed.
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I. INTRODUCTION

The most efficient methods for application of density-
functional theory (DFT) need more accurate expressions of
the kinetic-energy functional Tk to achieve accuracy in total
energy comparable to results obtained by the method of
Kohn and Sham [1]. Elliott et al. [2], hereafter referred
to as EBCW, have proposed a “formally exact procedure,”
called partition DFT (PDFT), for defining fragments of a
larger problem. They illustrate their method for noninteracting
electrons in a one-dimensional model potential and emphasize
that they obtain “correct” occupation numbers for electrons on
the various fragments. We find that this result comes with
a caveat, described in Sec. II. Nevertheless, the partition
theory (PT) iteration method produces a unique result for
the total-kinetic-energy functional and its functional derivative
that may be useful for deriving specific approximations to it.
This is discussed in Sec. III, where we relate the PDFT method
to the self-consistent atomic deformation (SCAD) method of
Boyer et al. [3]. In Sec. IV we discuss problems associated
with approximating the kinetic-energy functional using data
for both Tk and its functional derivative.

II. PDFT CALCULATIONS IN ONE DIMENSION

For our discussion of the PDFT method, we rewrite
equations from the EBCW paper in a simplified, less general
manner, sufficient for one-dimensional models with potentials
given by

v(x) =
Nw∑

i=1

vi(x − xi) (1)

in Hartree atomic units, where, in general, Nw is an even
number of identical potential wells spaced such that v(x) =
v(−x). To illustrate the PDFT method EBCW chose N = 12
noninteracting electrons bound by Nw = 12 wells of the form
vi(x) = −1/ cosh2(x), with |xi − xi−1| = 3.

The PT iteration method determines fragment potentials
vf,i using Eq. (14) in EBCW,

v
(k+1)
f,i (x) = v−W

[
n

(k)
i (x)

] + v(x) − v
(L)
−W (x), (2)
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Eq. (16) in EBCW,

v
(l+1)
−W (x) = v

(l)
−W (x) + γ [η(l)(x) − n(k)(x)], (3)

and an equation in the text following Eq. (16) in EBCW,

N
(k+1)
i = N

(k)
i − �

(
μ

(k)
i − μ̄(k)

)
. (4)

Here v−W = −δTW [n]/δn is the negative of the functional
derivative of the Weizsäcker kinetic energy, n

(k)
i is the number

density for Ni electrons on the ith fragment, obtained by
solving Schrödinger’s equation for the potential v

(k)
f,i(x), and

η(l)(x) is the number density for N = ∑
Ni electrons bound

by the potential v
(l)
−W (x). The v−W terms in Eq. (3) are

so labeled only because the l iterations are started using
the −W potential; specifically, v

(l)
−W (x) = v−W [n(k)(x)] for

l = 1, where n(k) = ∑
i n

(k)
i is obtained from the solutions of

Schrödingers’ equations for the kth set of fragment potentials
[Eq. (2)]. As long as Ni � 2 the correct kinetic-energy
functional is the Weizsäcker form. In Eq. (4) μ

(k)
i is the

eigenvalue of Schrödinger’s equation for the kth potential of
the ith fragment, and μ̄(k) is the average of the Nw fragment
eigenvalues. The overall convergence is governed by the
number of k and l iterations (K and L) and the values of
parameters � and γ . As K and L become large, this PT
iteration method yields v

(L)
−W (x) → v(x) + C, where C is a

constant, and η(L)(x) → n(K)(x), the exact number density for
the molecule, a remarkable result. EBCW also stress that this
method provides unique, correct, and exact results for ni and
Ni , a point that requires further discussion.

Using a simple Runge-Kutta-based algorithm to solve
Schrödinger’s equation for the total and fragment potentials,
we were able to repeat the results of EBCW for the N =
Nw = 12 model. Obtaining the exact total energy necessitates
using the kinetic energy produced by solving Schrödinger’s
equation for the potential from v

(L)
−W . We find that convergence

of the total energy takes place very slowly with increasing L.
Specifically, L ∼ 100 is needed to obtain accuracy in the total
energy to within ∼0.001. Doubling L approximately halves the
error, so L ∼ 800 is needed to reduce the error to ∼0.0001.

After many attempts to reproduce the EBCW results, we
noticed that the Ni are unique if the potentials resulting from
Eq. (2) are each shifted so that they approach zero for large |x|.
This does not happen automatically because the Weizsäcker
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FIG. 1. Total density and fragment densities obtained for Nw =
4 by the PDFT method using shifted and unshifted Weizsäcker
potentials (sW and � = 0.5)

potential generally approaches a nonzero constant value for
large |x|. While we see no physical reason to make this shift, we
found it necessary to reproduce the EBCW results. If they are
not so shifted, then Ni converge to other values that depend on
the choice of �. Nevertheless, the central result of convergence
of the sum of the fragment densities to the exact total density
remains valid. In fact, we find that convergence to the same
level of accuracy in the total energy is achieved in less than
half as many k iterations using unshifted potentials. Results
for n and ni shown in Fig. 1 were obtained using shifted.
Weizsäcker potentials, labeled sW, and unshifted potentials,
labeled by the value of � used. Both calculations produce
the same n(x), different occupation numbers notwithstanding:
N1 = 0.955 and 0.865, respectively, for � = 0.5 and sW. We
obtain N1 = 0.931 using � = 1.0 in a non-sW calculation.
The differences are more apparent in the fragment potentials
vf,i , as illustrated in Fig. 2 for the i = 2 well of the Nw = 4
model.
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FIG. 2. Fragment potentials for i = 2 and Nw = 4 obtained using
sW, � = 1.0, and � = 0.5 calculations.
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FIG. 3. Partition potentials vp,i for Nw = 4 obtained using sW
and � = 0.5 calculations.

In an sW calculation all of the converged fragment
potentials vf,i contain a contribution that is the same for
all fragments, dubbed the partition potential. Noting that
v

(L)
−W (x) → v(x) + C and v−W [n(K)

i (x)] differ from zero at
large |x| by the same constant C, Eq. (12) of EBCW simplifies
to

vp,i(x) = vf,i(x) − vi(x). (5)

In a non-sW calculation the partition potentials for any given
pair of sites differ by only a constant value that depends on the
specific pair and the value of �. This is illustrated in Fig. 3,
where vp,i is plotted as a function of x for the two types of
calculations. Since the large |x| values of n and ni are nearly
the same for the outermost wells (i = 1 and i = Nw), the first
and third terms of Eq. (2) nearly cancel for large |x|. Hence,
vp,1 is approximately zero at large |x|, as seen in Fig. 3. Clearly,
the differences between sW-vp and �-vp,i are more than just
constant shifts.

It may appear that the uncertainty in the occupation
numbers could be eliminated by selecting two wells per
fragment. Then, perhaps, Ni would be two for all fragments.
We have verified this is the case for our model with Nw = 8
when the non-sW method is used. Assuming two electrons
per fragment, the non-sW calculation yields energy levels of
−0.673 and −0.518 (−0.674 and −0.527) for i = 1 (i = 2),
implying that our assumption of Ni = 2 was correct. And we
note that since Ni = 2 for all i, the results do not depend on
the value of �.

However, if we attempt to perform the same calculation
using the sW approach, then the PT method does not converge.
The problem results because the second eigenvalue of fragment
i = 2 decreases to the point of going below the first eigenvalue
of i = 1, implying a need to put more than two electrons
on the i = 2 fragment, tending to spoil the Weizsäcker
approximation for this fragment. Nevertheless, if we continue
to employ the Weizsäcker potential for the i = 2 density, then
even an infinitesimal amount of charge moved to the new
lower-level state produces a finite change in the large-|x|
Weizsäcker potential, and the resulting W shift moves the
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second eigenvalue of the i = 2 fragment well above that of the
first level of i = 1 fragment. After a few more iterations the
levels again try to cross, and the cycle repeats ad infinitum.

While application of the sW-PT method does produce
unique Ni values for the models with one well per fragment,
we believe it is wrong to say they are “correct” values or
the PDFT method is “formally exact.” The uniqueness results
from the unphysical shift of the Weizsäcker potentials so they
approach zero as |x| → ∞.

Attempts to determine overlapping-fragment models
should strive to select fragments that have either empty or
fully occupied levels, permitting a straightforward calculation
of dipole moments and polarization [4]. If such is not possible,
then either the model is flawed, or it models a metallic-like
system that conducts electricity by moving electrons from one
site to another.

III. PDFT AND SCAD

We write Eqs. (4) and (5) of the SCAD expression [3] of
DFT,

T [n(x)] =
∑

i

T0[ni(x)] + Tk[n(x)] −
∑

i

Tk[ni(x)] (6)

and

vf,i(x) = v(x) + vk[n(x)] − vk[ni(x)], (7)

for this one-dimensional model. Here, T0[ni(x)] is the kinetic
energy derived from Schrödinger’s equation for vf,i , and Tk

is some approximation to the kinetic-energy functional. If Tk

were the exact kinetic-energy functional, then the first and
third terms of Eq. (6) cancel.

We have compared SCAD to PDFT calculations for
one-dimensional models assuming Bose, rather than Fermi,
occupation. In this case, Tk = TW . Naturally, SCAD and PDFT
produce the same results for total energy and ni , whether or not
sW is employed. Specifically, sW-SCAD gives the same results
as sW-PDFT, and non-sW-SCAD gives the same results as
non-sW-PDFT. Like the Fermi-occupation calculations, results
for fragment densities and occupation numbers differ between
sW and non-sW, and for non-sW calculations they depend on
the value of �. Of course, the convergence problem we found
for the sW method with two wells per fragment is no longer a
problem because, with Bose particles, only the lowest energy
level is occupied. Finally, we note that the first and third terms
of Eq. (6) exactly cancel (term by term for each i), and their
sums are equal, except for the sign, to the value of the second
term.

Previous applications of SCAD employed the Thomas-
Fermi approximation, Tk = TT F . In principle, the accuracy of
SCAD could be improved by making better approximations for
Tk and/or choosing overlapping molecular, rather than atomic,
fragments. Application of SCAD to the water molecule [5]
assumed three fragments, one for each nucleus. Numerous
sets of orbitals for the hydrogen site were tested. In all cases,
the SCAD method gave five energy levels for the oxygen site
lower than the lowest level obtained for the hydrogen site. In
other words, the three-site SCAD model for the water molecule
naturally yields an O2− ion in the potential of two protons.
Consequently, no error results from overlapping electrons

due to an inadequate Tk because there are no overlapping
electrons. We believe it is misleading for EBCW to imply
that occupations used in the SCAD model are chosen by the
user. Technically, the user could change the water molecule
occupations by making a radical change in basis functions, for
example, by removing all orbitals originating on the oxygen
site. Obviously, trying to supplement the loss by adding basis
functions to the hydrogen sites would not be practical.

IV. APPROXIMATING Tk

We have attempted to determine approximations for Tk that
would be suitable for application of SCAD to electrons in the
one-dimensional model of Eq. (1). It turns out to be fairly easy
to come up with formulas that include local and/or nonlocal
terms which give a good approximation to the exact results for
kinetic-energy density. However, in many cases, problems with
convergence revealed that the kinetic-energy density could be
well represented, while the potentials, derived from functional
derivatives of Tk , were not. This led us to consider using
PT-determined fragment potentials to help develop and test
approximations for Tk . On the other hand, it is not clear how to
do this because, as we have seen, fragment potentials depend
on how the PT method is employed.

Another approach results from Eq. (3), which is the crux of
the PT method. Recall that the l = 1 potential is v−W [n] and
v

(L)
−W (x) is, to within a constant, the external potential. In other

words, the potential resulting from the difference between
Tk[n] and the Weizsäcker contribution is the external potential
(to within a constant) minus the potential resulting from the
Weizsäcker contribution. The constant, which originates from
v

(l=1)
−W [n], is canceled by that in −v

(L)
−W (x). Thus, considering

only Eq. (3), which is all about solving Schrödinger’s equation
for the molecule, leads to

vu[n] = −vW [n] − v
(L)
−W, (8)

where vu is the functional derivative of Tu = Tk − TW .

V. SUMMARY

Results of calculations performed for one-dimensional
model systems using the PDFT method imply that, in general,
it does not decompose the charge density into correct or
formally exact fragments. We were unable to reproduce the
occupation numbers reported by EBCW unless we artificially
shifted (sW) the Weizsäcker potentials to approach zero for
large |x|. Non-sW calculations for models with two-well
fragments gave unique results with two electrons per fragment,
while the sW method produced artificial shifts in eigenvalues
that prevented the PDFT algorithm from converging.

In principle, the SCAD method would be exact if Tk

were exact, as was noted above for Bose occupation. In
practice, SCAD calculations can benefit from PDFT in two
ways. First, non-sW calculations can guide selection of
optimum-sized fragments, as was noted for the example above
which suggested using two-well fragments. Use of two-well
fragments would likely reduce SCAD errors resulting from
approximations for Tk . On the other hand, we do not consider
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fragments determined from sW calculations to be a reliable
improvement. Second, the PT method can be used to obtain
important data for use in determining better approximations
for Tk .

Our attempts to find more accurate formulations for Tk

point out the need to include data for δTk/δn in the fitting
procedure. Snyder et al. [6] have emphasized this point using a
machine learning approximation. Data for δTk/δn are obtained

from the PDFT method by making changes in potential values
proportional to charge-density differences [Eq. (3)].
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