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Excitation energies from relativistic coupled-cluster theory of general excitation rank: Initial
implementation and application to the silicon atom and to the molecules XH (X = As, Sb, Bi)
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We present an implementation of four-component relativistic coupled-cluster theory for the treatment of
electronically excited states of molecules containing heavy elements, allowing for a consistent and accurate
treatment of relativistic effects such as the spin-orbit interaction and electron correlations as well as their
intertwining. Our approach uses general excitation ranks in the cluster operator and, moreover, allows for the
definition of active-space selected excitations of variable excitation rank. Initial applications concern the silicon
atom and the heavier pnictogen monohydride molecules, where we focus on the first vertical excitation energy to
the � = 1 electronic state. We discuss the problem of adequately choosing a reference state (Fermi vacuum) and
addressing electron correlation in the presence of effects of special relativity of increasing importance. For the
heaviest homolog, BiH, where dynamic electron correlation is of major importance, we obtain vertical excitation
energies with a deviation of less than 1% from the experimental value.
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I. INTRODUCTION

Electronically excited states of small molecules containing
heavy atoms play an important role in many research areas
of modern physics. In the (ultra)cold molecular sciences [1]
there is an increasing interest in experimentally generating
molecules in their electronic and rovibrational ground state
by photoassociation via an electronically excited state [2].
In astrophysics of stars [3], the understanding of collision
processes in stellar atmospheres [4] involves the knowledge
of molecular excited states, including both main group
and transition-metal atoms. As an example from fundamen-
tal physics, various extensions to the standard model of
elementary-particle physics postulate electric dipole moments
(EDM) of leptons [5]. Modern experiments search for the
electron EDM in an electronically excited state of diatomic
molecules and molecular ions containing a heavy atom [6]. The
accurate determination of the electronic structure in excited
states of the relevant molecules is of crucial importance in all
of these and other research fields.

At present, the most accurate electronic-structure approach
to the calculation of electronically excited states in atoms
and molecules is the coupled-cluster (CC) method. Recent
progress, including developments for excited states [7], has
been documented in a monograph [8] covering this highly ac-
tive field of many-body theory. When turning to the treatment
of heavy elements where relativistic generalizations of these
methods are required, the general challenge of implementing
such methodology becomes manifest in their scarcity (see [9],
and references therein). To date, the only relativistic CC
methods for the treatment of molecular excited states are the
intermediate Hamiltonian Fock-space CC method (IH FSCC)
[10,11] by Visscher, Eliav, and co-workers and higher-order

correlation methods [12] by Hirata and co-workers using the
equation-of-motion (EOM) CC formalism [13,14]. IH FSCC
is limited in that it is not generally applicable and the treatment
of excitation ranks higher than doubles in the wave operator is
currently not possible. The method of Hirata et al. is restricted
to the use of two-component valence pseudospinors based on a
relativistic effective core potential (RECP) including spin-orbit
interaction [15]. Such an approach lacks both the rigor and the
flexibility of all-electron four-component methods which use
a frozen-core approximation for the electrons of atomic cores.

Our developments aim at a rigorous assessment of the elec-
tronically excited states of small molecules including heavy
elements, a general challenge in the relativistic electronic
many-body problem until today [9]. Central elements of our
methodology are (1) a rigorous treatment of special relativity
using four-component all-electron Dirac Hamiltonians at all
stages of the calculation; (2) methods of general excitation rank
in the wave operator; and (3) methods based on developments
of the wave function in a basis of strings of particle creation
operators in second quantization, so-called string-based meth-
ods [16].

In this paper we present a relativistic coupled-cluster
implementation based on linear-response theory and four-
component relativistic Hamiltonian operators for the calcu-
lation of molecular excited states. In the following section
on general theory (Sec. II) we review the description of
electronically excited states in CC theory (Sec. II A) and
our previous relativistic CC approach for electronic ground
states (Sec. II B). Section III describes our implementation,
in particular, the algorithm for calculating the relativistic
CC Jacobian matrix. Here we also present an analysis of
the computational scaling of our approach. Section IV is
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concerned with initial applications of the method. We have
chosen an atomic case (Si) featuring excited states of two
different kinds: excited states due to the first-order spin-orbit
splitting within a spectroscopic term, and states corresponding
to a different spectroscopic term. As a second and molecular
example we apply our approach to the second-order spin-
orbit splitting of the 3� ground state of heavier pnictogen
hydrides, a notoriously difficult problem [17,18] requiring the
treatment of static and dynamic electron correlation as well as
spin-dependent magnetic interactions accurately. In the final
section (Sec. V) we summarize and draw conclusions from our
findings.

II. THEORY

A. Excited states in coupled-cluster theory

Response theory comprises a general and powerful frame-
work for the calculation of atomic and molecular properties
[19] as well as excitation energies based, e.g., on CC wave
functions [20]. Here, the simple poles of the linear response
function correspond to the excitation energies and occur at the
eigenvalues of the CC Jacobian matrix.

An alternative way of deriving the CC Jacobian proceeds by
an analogy to configuration interaction (CI) theory. Using CC
language the CI Schrödinger equation with subtracted ground-
state energy E0 can be rewritten as

(Ĥ − E0)(t01̂ + T̂ )|�〉 = 0, (1)

where |�〉 is the reference (or Fermi vacuum) state,
T̂ = ∑

μ tμτ̂μ is the cluster excitation operator with τ̂μ ∈
{τ̂ a

i ,τ̂ ab
ij , . . .}, τ̂ a

i = â
†
aâi a single-replacement operator in

equal-time second-quantization representation, and tμ the
corresponding expansion coefficient.

Projection with the CI excitation manifold 〈ψμ| = 〈�|τ̂ †
μ

onto Eq. (1) yields a set of CI coefficient equations for the CI
vector function

�CI
μ = 〈ψμ|(Ĥ − E0)(t01̂ + T̂ )|�〉 = 0. (2)

Taking the derivative with respect to all expansion parameters
defines an Hermitian CI Jacobian, the matrix elements of which
become

ACI
μν = ∂

∂tν
�CI

μ = 〈ψμ|(Ĥ − E0)τ̂ν |�〉

= 〈ψμ|Ĥ |ψν〉 − E0δμν. (3)

Obviously, diagonalization of the matrix ACI yields excitation
energies from CI theory. It is straightforward to construct
the analogy in CC theory. Here, the amplitude equations
corresponding to Eq. (2) are cast (in linked form) as

�CC
μ = 〈ψμ|e−T̂ Ĥ eT̂ |�〉 = 0, (4)

with the same excitation manifold 〈�|τ̂ †
μ, and the derivative

matrix is obtained as

ACC
μν = ∂

∂tν
�CC

μ = 〈ψμ|e−T̂ [Ĥ ,τ̂ν]eT̂ |�〉. (5)

Consequently, diagonalization of the matrix ACC yields excita-
tion energies from CC theory. The difference between Eqs. (3)
and (5) can be reduced to the difference in parametrization of

the wave function, linear in CI theory and exponential in CC
theory, respectively. The excitation energies ωA obtained from
the eigenvalue equations

ACC|ψf 〉 = ωAf |ψf 〉 (6)

are equivalent to those from the EOM CC theory [13,21].
For reasons of computational efficiency, Eq. (6) is solved

iteratively by algorithms similar to direct CI techniques, but
in the present case for a non-Hermitian matrix ACC. It has
been shown earlier [22] how such linear transformations with
the CC Jacobian can be evaluated for CC theory with general
excitation levels of the cluster operator. This becomes possible
by performing subsequent CI expansions using a general CI
program.

B. Four-component relativistic approach

We have in the present work generalized the nonrelativistic
implementation of Ref. [22] to a relativistic formalism where
four-component or two-component relativistic Hamiltonian
operators may be used from the outset, and our implementation
will be described in Sec. III. Our approach to treating special
relativity is identical to the one presented in Refs. [23–25]. In
summary, the cluster operators T̂ = ∑

m T̂m are generalized
to include the possibility of flipping the Kramers projection
of the underlying spinors along with the excitation, e.g., for
singles replacements:

T̂1 =
∑
ia

{
tai τ̂ a

i + ta
i
τ̂ a

i
+ tai τ̂ a

i + ta
i
τ̂ a

i

}
. (7)

The same generalization of excitation operators also applies
to the operators τ̂ν in the CC Jacobian matrix, Eq. (5). The
approach is therefore Kramers restricted, in the sense that the
underlying four-component spinors {ϕi,ϕi} form time-reversal
partners (Kramers pairs)

K̂ϕi = ϕi, K̂ϕi = −ϕi, (8)

and that this symmetry is exploited for reducing the number
of unique Hamiltonian one- and two-particle integrals [16].
An arbitrary number of spinor spaces with arbitrary oc-
cupation restraints may be used [generalized active spaces
(GAS)] [25,26], which allows for the description of the
multireference character of electronic states via active-space
selected higher excitations. Double point group symmetry has
been implemented for the real-valued [27,28] matrix groups
D�

2h,D
�
2, and C�

2v . This ensures for these cases a completely
real-valued formalism, also when spin-orbit interaction is
included. Our implementation is interfaced to a local version
of the DIRAC relativistic electronic-structure package [29].
Currently, this local version limits the present method to the
use of the four-component Dirac-Coulomb Hamiltonian (in
Born-Oppenheimer approximation)

Ĥ DC =
∑
A

∑
i

[c(�α · �p)i + βim0c
2 + ViA] +

∑
i,j>i

1

rij

114

+
∑

A,B>A

VAB, (9)

where ViA is the potential-energy operator for electron i in the
electric field of nucleus A, and VAB represents the potential
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energy due to the internuclear electrostatic repulsion of the
clamped nuclei.

III. IMPLEMENTATION: ALGORITHM FOR THE
RELATIVISTIC COUPLED-CLUSTER JACOBIAN

We now proceed to an outline of our implementation of the
eigenvalue equation (6). It may be regarded as a combination
of the algorithms described in Refs. [22,23]. Based on the
techniques developed for general relativistic CI expansions
[30] we evaluate the linear transformation of a coefficient trial
vector x with the CC Jacobian

J CC
μ =

∑
ν

ACC
μν xν =

∑
ν

〈ψμ|e−T̂ [Ĥ ,τ̂ν]eT̂ |�〉xν. (10)

Following Refs. [22,23] Eq. (10) is solved in four steps:
(1) |a〉 = eT̂ |�〉 = (

∑
n=0

1
n! T̂ n)|�〉. The individual terms

in the Taylor expansion comprise repeated transformations
of the form T̂ |ψ〉. We here employ the modified relativistic
GAS CI implementation of Refs. [23,30] and the final ground-
state cluster amplitudes in T̂ . The Taylor expansion truncates
naturally upon exhausting the possible excitations on a given
reference vector.

(2) |b〉 = [Ĥ ,τ̂ν]|a〉 = (Ĥ τ̂ν − τ̂νĤ )|a〉. Here, Ĥ τ̂ν |a〉 cor-
responds to the calculation of a sigma vector [30] from the
reference vector τ̂ν |a〉. In the second term −τ̂ν is applied to
the sigma vector Ĥ |a〉, and the resulting vectors from the two
terms are added yielding the commutator.

(3) |c〉 = e−T̂ |b〉 = (
∑

n=0
(−1)n

n! T̂ n)|b〉. These transforma-
tions are evaluated in the same manner as those in step 1.

(4) J CC
μ = 〈ψμ|c〉 = 〈�|τ̂ †

μ|c〉. This final step corresponds
to the evaluation of a general transition density, which is
also possible employing the modified relativistic GAS CI
implementation in Refs. [23,30].

Therefore, since the underlying relativistic CI program [30]
can treat general excitation levels, we are here immediately
able to compute a relativistic CC Jacobian at general excitation
rank, both with respect to the cluster operators and the
excitation operators.

However, as has been discussed in Refs. [22,23], the present
algorithm suffers from an increased operation count compared
to conventional (and nonrelativistic) CC implementations for
excited states [31]. The increased operation count of CI-
based CC has been analyzed earlier [23,32] for ground-state
calculations and amounts to a computational scaling of the
method as On+2V n+2, where O is the number of occupied
orbitals, V is the number of virtual orbitals, and n is the highest
excitation rank of the cluster operators. In order to elucidate the
scaling of the present algorithm for excited-state calculations,
we rewrite the right-hand side of Eq. (5) as

ACC
μν = 〈ψμ|e−T̂ Ĥ τ̂νe

T̂ |�〉 − 〈ψμ|e−T̂ τ̂νĤ eT̂ |�〉. (11)

Starting with the second term on the right-hand side of Eq. (11),
we reexpress the term

e−T̂ τ̂ν = τ̂ν −
∑

μ

tμτ̂μτ̂ν + 1

2

(∑
μ

tμτ̂μ

)2

τ̂ν − · · · , (12)

which is seen to be a pure deexcitation operator acting on the
bra vector 〈ψμ|. Therefore, the highest excitation rank n of the

excitation manifold 〈ψμ| is reduced to n − m, where m is the
excitation rank of an individual term in Eq. (12). Since m � 1,
the highest excitation rank in 〈ψμ|e−T̂ τ̂ν is n − 1. This means
that in order for Ĥ eT̂ |�〉 to be connected to this modified
excitation manifold, eT̂ |�〉 has to contain excitations up to rank
n + 1 since the Hamiltonian has a maximum down rank of 2.
The second term on the right-hand side of Eq. (11) therefore
exhibits a computational scaling of On+1V n+2, since in general
the highest excitation rank k present in the excitation manifold
entails a scaling with the number of occupied orbitals as Ok+2.

In contrast to this, the first term on the right-hand side of
Eq. (11) has no additional cluster operator to the left of the
Hamiltonian. This means that for Ĥ τ̂νe

T̂ |�〉 to be connected
to the original excitation manifold with rank n, τ̂νe

T̂ |�〉 has
to contain excitations up to rank n + 2. Thus, this term is the
highest-scaling term of the algorithm and the total algorithm
for the CI-based Jacobian scales as On+2V n+2, exactly as does
the CI-based algorithm for the ground-state vector function
[23,32]. In typical applications, the dimension of the extended
space defined by Ĥ τ̂νe

T̂ |�〉 is one to three orders of magnitude
larger than the dimension of the excitation manifold. The fact
that the cluster operators T̂ , τ̂ν , and the Hamiltonian are now
relativistic operators has no bearing for the present discussion
concerning the orders for the computational scaling. There
are, however, increased scaling prefactors in a relativistic
algorithm which has been analyzed for commutator-based CC
in Ref. [25].

IV. APPLICATION AND ANALYSIS

In this section we present applications to the silicon atom
and to heavier pnictogen hydrides. The silicon atom has
been chosen as an initial test case to verify the applicability
of our method. We focus on all Russell-Saunders terms
originating from the atomic configuration 3p2, i.e., 3P2,1,0,
1D2, and 1S0. Therefore, the problem comprises excited
states arising from the same term due to first-order spin-
orbit splitting (3P2,3P1,3P0) and excited states from different
terms corresponding to the same electronic configuration. We
define the Fermi vacuum determinant as the one where the
energetically lowest Kramers pairs are all doubly occupied,
i.e., the configuration 1s22s22p63s23p2

1/2. The purpose here
is to show in a simple way the coupled-cluster description of
several different excited states by taking into account spin-orbit
interaction.

Turning to the molecules, the pnictogen hydrides are char-
acterized by two valence electrons occupying the (π1/2,π−1/2)
and (π3/2,π−3/2) Kramers pairs which are here denoted as the
spin-orbit split π orbitals assigning λω quantum numbers. λ

is an approximate quantum number as spin-orbit interaction
mixes orbitals of different angular momentum projection
m�, e.g., σ character into the π orbitals, σ1/2 − π1/2. Their
occupation and character therefore differ depending on the
pnictogen atom. Since we describe the systems in a spinor basis
{ϕω} our natural choice of Fermi vacuum is the closed-shell
valence occupation π1

1/2,π
1
−1/2. Such a reference state is a

good approximation to the wave function in the case of
BiH where spin-orbit interaction is strong. However, the
multireference (MR) character is expected to become more
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and more important toward the lighter homologs where the
π1/2 and π3/2 spinors become quasidegenerate. The first
excited state, with � = 1, is predominantly described by
π1

3/2,π
1
−1/2 and the excited state with � = −1 is predominantly

π1
1/2,π

1
−3/2.

Dynamic correlation and relativistic effects are treated
on the same footing. The multireference character of states
is taken into account via active-space selected higher exci-
tations. Since the GAS-CC method is not strictly invariant
to the choice of Fermi vacuum state, we expect a bias of
the CC wave function depending on the chosen reference
determinant.

A. Computational details

All calculations were performed with the DIRAC relativistic
electronic-structure program package, using the latest version
[29] for the Hartree-Fock calculations and integral transforma-
tions, and a local development version for the CC calculations.

For our initial test calculations on the silicon atom
we have tested different basis sets and resorted to us-
ing the atomic-natural-orbital (ANO) Relativistic and Core-
Correlating (RCC) basis set [33] and to include only the four
valence electrons in the correlation treatment. We employed
Dyall’s triple-ζ and quadruple-ζ basis sets in uncontracted
form [34,35] for Bi, Sb, and As. The listed valence and
core-correlating functions for the Bi 5d, 6s, and 6p shells,
for the Sb 4d, 5s, and 5p shells, and for the As 3d, 4s, and
4p shells have all been included. For H we used Dunning’s
cc-pVTZ-DK and cc-pVQZ-DK basis sets in uncontracted
form [36]. The internuclear distances for AsH, SbH, and BiH
are the experimental ones [37,38].

We employed the four-component Dirac-Coulomb Hamil-
tonian, Eq. (9), throughout. Thus, our models describe one-
and two-electron spin-own-orbit coupling and spin-own-orbit-
correlation coupling rigorously. We currently do not include
spin-spin coupling and spin-other-orbit interactions due to lim-
itations in the implemented Hamiltonian operators. Kramers-
paired spinors for the subsequent GAS-CC calculations
were obtained from all-electron closed-shell Dirac-Coulomb-
Hartree-Fock calculations. In addition, we performed for com-
parison exemplifying CI and CC calculations based on open-
shell average-of-configuration Dirac-Coulomb-Hartree-Fock
(DCHF) wave functions. In the open-shell DCHF calculations
fractional occupation numbers are introduced in the Fock op-
erator using minimal spaces of Kramers pairs (two electrons in
the three 3p Kramers pairs in the case of Si, and two electrons
in the two π valence Kramers pairs in the molecular cases).

Electron correlations are described in various fashions. On
the one hand, we apply the standard CC hierarchy [39] up
to full iterative quintuple excitations [CCSDTQP; S = single
excitations with respect to the reference state |�〉, D = double
excitations, T = triple, Q = quadruple, and P = pentuple
(fivefold) excitations] in the case of SbH. The construction of
active spaces is done in an efficient manner by exploiting the
GAS concept [26]. In the present case, important subsets of
the possible model spaces are denoted as CC(nm) models [40]
(see Fig. 1).

The silicon atom is treated with the standard CC series
CCSD to CCSDTQ (the latter of which in this case corresponds
to full valence CC), a series of models excluding the correlation

N : Total number
of active electrons

Virtual

Spinors

Fermi Vacuum :
Occupied

Valence Spinors

Valence Spinors

GAS III

GAS II

GAS I N

NN

N

Core Spinors
Frozen

nCC(     )m

N−

N−

m

n

SDT...

SDT...m

n

Accumulated # of el. 

Min. # Max. #

FIG. 1. CC(nm) (n > m) as a subset of GAS excitation manifolds.
n is the maximum number of holes in the occupied subspace; m is
the maximum number of particles in the virtual subspace.

of the 3s electrons among each other (S2CC), and different
CC(nm) schemes. The detailed definitions of these models are
to be found in the Appendix.

For all molecular systems we choose to correlate the six
valence electrons. The correlation of 3d electrons of As, 4d

electrons of Sb, and 5d electrons of Bi does play a role in
assessing the ground-state spin-orbit splitting, as studied for
the case of BiH by Knecht et al. [41], but the effect is only
on the order of +75 cm−1 for this latter molecule. Also here,
we use various electron correlation models, the details for the
specification of which are to be found in the Appendix.

Comparative four-component generalized-active-space
configuration interaction (GAS-CI) calculations were per-
formed with the KR-CI module [18,42] of the DIRAC program
package [29]. This approach makes use of the GAS concept
in the same way as our presented GAS-CC method [23].
Closed-shell CI calculations have been performed using the
newly-implemented linear symmetry double groups [43,44].

B. Results and discussion

We present and discuss in this section our results for Si,
AsH, SbH, and BiH. The bulk of the GAS-CC and GAS-CI
calculations was carried out with a virtual spinor space size
for which the total energy has been converged (see Sec. 3 of
the Appendix). The principal purpose here is to show for the
case of a few representative model systems the performance of
standard CC and CC(nm) models, and to compare these with
a genuine-but linearly parametrized—MR approach, MRCI.

1. Silicon atom

First of all, we performed benchmark CI and MRCI
calculations (which are subsets of GAS-CI; see the Appendix)
to guide our CC study and to assess the leading effects on
excited-state energies. These calculations are presented in
Table I. Whereas the os-MRCI calculations consistently yield
results close to the FCI values, the truncated closed-shell
approaches fail in describing the excited states correctly. Given
a balanced starting point for the different electronic states by
using average-of-configuration DCHF these are already well
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TABLE I. Excitation energies T in cm−1 for the 3P1,
3P2,

1D2, and 1S0 excited states of the Si atom, with different relativistic CC models
(defined in Tables V and VI), the Dirac-Coulomb Hamiltonian, and a closed-shell Dirac-Hartree-Fock reference state. MRCI calculations based
on an open-shell multireference state (os) and a closed-shell single-reference state (cs). We used a complete active space of two electrons in
the three 3p orbitals. MRCI models are defined in Table VII. All calculations were performed including single and double excitations of the
3s electrons, except where marked otherwise (S2, only singles from the 3s shell). The basis sets are of ANO-RCC quality; the cutoff for the
virtual spinors is set to 10 a.u. (see text).

Method
os-MR cs

State CISD CISDT FCI CISD CISDT FCI Expt. [52]

3P1 79 79 79 5275 1768 89 77.1
3P2 229 228 228 7368 1519 258 223.2
1D2 6475 6441 6413 13447 7595 6435 6299.8
1S0 15606 15691 15551 20917 18821 15574 15394.4

Method (all cs)

State S2CCSD S2CC(32) S2CCSDT CCSD CC(42) CCSDT CC(43) FCCa Expt. [52]

3P1 −1225 −86 180 −784 −128 −438 81 89 77.1
3P2 1318 687 277 1750 666 −222 276 258 223.2
1D2 10422 6648 6610 10726 6504 5942 6446 6435 6298.8
1S0 22392 20108 19745 20121 15926 17188 15591 15574 15394.4

aValues obtained by an equivalent full CI calculation due to an unresolved instability of our FCC calculation at a 10 a.u. cutoff value. We have
obtained identical FCC and FCI values for smaller dimensions of the virtual space confirming the proper functionality of the new CC code.

described by MR-CISD, and higher excitations hardly play a
role for energy differences.

In the case of a cs reference state we observe that the
results at low excitation levels are largely off the mark, and
higher excitations gradually lead to improvements, with only
the Full (F) CI and Full (F) CC and CC(43) models yielding
accurate results. We rationalize and explain this behavior first
by analyzing the Fermi-vacuum determinant of our reference
state. The problem is simplified by considering only the two
valence p electrons. Since we use four-component spinors
throughout, we write the determinant in terms of good quantum
numbers for the two particles |j (i),mj (i)〉 and further express
this determinant in terms of Russell-Saunders coupled states
MLJ , giving∣∣∣∣1

2
,
1

2
;

1

2
,−1

2

∣∣∣∣ = −
√

2

3
3P0 − 1√

3
1S0, (13)

the details of which are to be found in the Appendix, Sec. 4.
The reference determinant is therefore biased toward the J = 0
state of the 3P0 term and contains a significant admixture from
the 1S0 term. In order to interpret the excitation energies we ex-
pand the singly excited determinants in the same manner, e.g.,∣∣∣∣3

2
,
1

2
;

1

2
,
1

2

∣∣∣∣ = −1

2
3P1 − 1

2
3P2 + 1√

2
1D2,

(14)∣∣∣∣3

2
,
3

2
;

1

2
,
1

2

∣∣∣∣ =
√

2

3
1D2 + 1√

3
3P2.

Based on a closed-shell model we ensuingly expect a CISD
calculation to strongly overestimate the excitation energies of
the 3P1, 3P2, and 1D2 states, since a single excitation is required
for their description, leaving them uncorrelated, in contrast to
the ground state. The data clearly confirms this. Furthermore,
the overestimation for the 1S0 state is smaller than, e.g., the

one for the 1D0 state, since the former is partially represented
in the reference state.

Continuing the argument, a CISDT calculation introduces
triple excitations, in addition to the already present single and
double excitations. Now, Eqs. (14) show that, for example, the
1D2 state is largely represented by singly excited determinants
relative to our reference determinant. Since some of the
triple excitations in the CISDT model are double excitations
combined with single excitations required to qualitatively
describe the 1D2 excited state, dynamic electron correlation
effects are taken into account for the 1D2 state, in contrast
to the CISD model. We therefore expect the 1D2 excitation
energy to be much closer to the experimental value in the
CISDT model, which the data confirms.

A similar reasoning applies to explain the obtained results
for the 1S0 state and the 3P1 and 3P2 components of the
ground-state term. For example, the CISDT model shows the
smallest correction for the 1S0 state which is already partially
correlated in the CISD model. A final, but smaller, correction
is obtained by adding quadruple excitations, this correction
now being largest for the 1S0 state which appears in doubly
excited determinants∣∣∣∣3

2
,
3

2
;

3

2
,−3

2

∣∣∣∣ = 1√
3

3P2 + 1√
6

1D2 − 1√
6

3P0 + 1√
3

1S0,

(15)∣∣∣∣3

2
,
1

2
;

3

2
,−1

2

∣∣∣∣ = 1√
3

3P2 + 1√
6

1D2 + 1√
6

3P0 − 1√
3

1S0,

relative to the reference determinant.
Turning to the CC results in the light of these findings,

the CCSD model, containing higher excitations than doubles
in disconnected terms (which contribute to the CC energy
indirectly due to the coupling of excitations in the CC
amplitude equations), yields results of accuracy between CISD
and CISDT for the 1D0 and 1S0 states, but the correction
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overshoots for the 3P1 and 3P2 components of the ground-state
term. CC(42) includes the important higher excitations to give
qualitatively correct results except for the first-order spin-orbit
splitting, where there is a residual error of several hundred
cm−1. Notably, CCSDT does not improve upon the CC(42)
results. CC(43) brings about a significant correction for the
two first excited states making all of them qualitatively correct,
although the excitation level in the active space is the same as
in CC(42). FCC (CCSDTQ) yields only a minor correction to
this last model.

The slightly different values obtained with closed-shell and
open-shell FCC models reflect the differently polarized core
and virtual spinors of the atom depending on the DCHF model
used.

We conclude that due to the specific choice of coupling
picture, here j − j , a Fermi vacuum determinant represented
in this coupling picture may not comprise a good description
of the electronic ground state. As a consequence, CC models
based on this vacuum state and truncated at low excitation
ranks may yield large errors in calculated excitation energies.
Active-space selected higher excitations largely correct for the
ensuing errors in atomic excitation energies. High accuracy in
the spin-orbit splitting of the Si atomic ground state (excited
states 3P1,2) is only achieved if in addition dynamic electron
correlations are accounted for through at least triple excitations
into the virtual spinor space. CCSDT alone, however, is not
accurate enough in describing these states which according to
Table IV in Ref. [22] means that for the given case of a poor
Fermi vacuum state the excitation energy has to be described
at least through fifth order in the fluctuation potential. This is
approximately the case for the CC(43) model which includes
important quadruple excitations.

2. The individual pnictogen hydrides

(a) Arsenic monohydride—AsH. This system exhibits a
small spin-orbit splitting of the π Kramers pairs and, therefore,
the � = 0 ground state is likely to have strong MR character.
Indeed, closed-shell CCSD gives a qualitatively wrong energy
estimation and even a state inversion which can been seen in
Table II. We rationalize this failure of CCSD by again closely
analyzing the Fermi vacuum determinant in the molecular case
(see the Appendix, Sec. 5). Based on the analysis, our reference
state can be qualitatively described as

|(mj )1; (mj )2|� =
∣∣∣∣
(

1

2

)
;

(
−1

2

)∣∣∣∣
0

≈ c3|3�0〉 + c1|1�0〉,
(16)

where c3 ≈ −c1 = 1√
2

in the case of AsH. This in turn

means that the true ground state |3�0〉 is best represented
by a linear combination of the determinants |( 1

2 ); (− 1
2 )|0 and

|( 3
2 ); (− 3

2 )|0. It therefore requires higher CC excitations in our
single-reference approach to describe the presence of such
strongly contributing determinants in the ground state.

A true MR method such as truncated MRCI, as we apply
it here for comparison, gives qualitatively correct results but,
being a method with a linear wave function parametrization,
is limited by its intrinsic properties. CC(42) with open-shell
spinors describes the MR character qualitatively, but still
produces an error of about 80 cm−1 compared with experiment.

TABLE II. Vertical excitation energies (T v) in cm−1 for the � = 1
state of the AsH molecule at the experimental bond length of R(0+)

e ≈
R(1)

e ≈ 1.5349 Å [37] with different relativistic CC models (defined
in Tables VIII and IX), the Dirac-Coulomb Hamiltonian, and a
closed-shell Dirac-Hartree-Fock reference state. “os” refers to an
average-of-configuration reference state with an averaging for two
electrons in the two π orbitals. MRCI calculations are based on an
open-shell multireference state except if indicated otherwise (cs). We
used a formal core space of four electrons in the 4s,σ orbitals and
a complete active space of two electrons in the two π orbitals. The
model SD_CISD corresponds to a = 2, b = 4 in Table X. The basis
sets are of TZ quality (see text), except where marked otherwise.
Converged cutoff for virtual spinors is 10 a.u. except if indicated
otherwise.

Method �SO (cm−1) No. CC amplitudes/CI det.

csCISD 11231 36.015
csCISDT −2899 1.556.976
csCISDTQ 170 28.650.840
SD_CISD 104 123.472
SD_CISDT 103 2.123.792
SDT_CISDT 102 3.875.024
SDTQ_CISDTQ 106 50.672.784
CCSD −2661 36.016
CCSD-10000 a.u. −2666 162.240
CCSD-26 a.u. (QZ) −2707 147.015
CCSD-59 a.u. (QZ) −2707 191.535
CC(42) −139 123.471
osCC(42) 39 123.471
CC(42)-26 a.u. (QZ) −258 511.771
osCC(42)-26 a.u. (QZ) 39 511.771
CCSDT −71 1.556.975
osCCSDT −79 1.556.975
CC(43) 68 2.123.791
osCC(43) 71 2.123.791
CCSDTQ 116 28.650.839
osCCSDTQ 107 28.650.839

Expt. [37] (Te = 2�0) 117.7

(We deduce Te from the spin-splitting constant �0 given
in Ref. [37]: Te = 2�0). CCSDT is still not qualitatively
correct, but including higher internal excitations, CC(43), we
observe a positive and qualitatively correct first AsH excitation
energy. Comparing osCCSDT, osCC(42), and osCC(43) we
conclude that the quadruple excitations including the double
excitations π2

1/2 → π2
3/2 combined with double excitations

into the virtual spinors are essential to describe the relative
energies of the � = 0 and � = 1 states. This is confirmed
by examining the double-excitation cluster amplitude t

π3/2π3/2

π1/2π1/2
,

which is ≈0.45 for csCCSD and ≈0.79 for csCCSDTQ in
the ground state. With higher excitation ranks, open-shell and
closed-shell LRCC results become quite the same, as expected.
Since the excited state � = 1 is essentially obtained by a single
excitation π1

1/2 → π1
3/2 from our closed-shell Fermi vacuum

state, the excitation energy is again correct to the 5th pertur-
bation order for our higher correlated calculation CCSDTQ,
according to Table IV in Ref. [22]. CCSDTQ describes both
the MR character and dynamic electron correlation accurately.
SDTQ-CISDTQ and osCCSDTQ results are almost identical,
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as expected, the difference with csCCSDTQ being due to the
difference in the molecular orbital basis (see also Sec. IV B3 c).
Corresponding closed-shell CI calculations exhibit the same
deterioration at lower excitation levels as in the case of the two
lowest excited states of the Si atom.

Turning to errors from the employed Dirac-Coulomb
Hamiltonian, we estimate the effect of the Gaunt term to be
around −4 cm−1 and correlation effects from the As 3d atomic
shell to be +2 cm−1, according to recent exact two-component
MRCISD calculations [45]. Our results indicate that basis-set
errors are very small which, however, could be nonzero
at CC(43) or CCSDTQ levels. The experimental excitation
energy is well reproduced in our best calculation (csCCSDTQ)
with a deviation of less than 1.5%.

(b) Stibylene—SbH. SbH is an intermediate case between
AsH and BiH in the sense that the spin-orbit splitting of

TABLE III. Vertical excitation energies (T v) in cm−1for the
� = 1 state of the SbH molecule at the experimental bond length of
R(0+)

e ≈ R(1)
e ≈ 1.7226 Å [37] with different relativistic CC models

(defined in Tables VIII and IX), the Dirac-Coulomb Hamiltonian, and
a closed-shell Dirac-Hartree-Fock reference state. “os” refers to an
average-of-configuration reference state with an averaging for two
electrons in the two π orbitals. MRCI calculations are based on an
open-shell multireference state except if indicated otherwise (cs). We
used a formal core space of four electrons in the 5s,σ orbitals and
a complete active space of two electrons in the two π orbitals. The
model SD_CISD corresponds to a = 2, b = 4 in Table X. The basis
sets are of TZ quality (see text), except where marked otherwise.
Converged cutoff for virtual spinors is 4 a.u. except if indicated
otherwise.

Method �SO (cm−1) No. CC amplitudes/CI det.

csCISD 11474 30.376
csCISDT − 1347 1.205.176
csCISDTQ 705 20.370.586
SD_CISD 577 103.856
SD_CISDT 572 1.640.160
SDT_CISDT 563 2.987.792
SDTQ_CISDTQ 582 35.857.552
SDTQ_CISDTQP 582 192.560.560
CCSD − 1070 30.375
CCSD-100 a.u. − 1071 69.360
CCSD-6 a.u. (QZ) − 1073 82.140
CCSD-116 a.u. (QZ) − 1074 226.935
CC(42) 476 103.855
osCC(42) 555 103.855
CC(42)-6 a.u. (QZ) 434 284.496
CCSDT 485 1.205.175
osCCSDT 436 1.205.175
CCSDT-6 a.u. (QZ) 482 5.376.100
CC(43) 599 1.640.159
osCC(43) 575 1.640.159
CC(43)-6 a.u. (QZ) 627 7.397.616
CCSDTQ 641 20.370.585
osCCSDTQ 584 20.370.585
CCSDTQP 645 152.218.389
osCCSDTQP 612 152.218.389

Expt. (T e) [37] 654.97

the π spinors becomes appreciable. However, based on our
analysis in the Appendix, Sec. 5, we still expect the MR
character of the ground state to be large, which is confirmed
by the results. These results for stibylene are compiled in
Table III. CCSD fails in much the same manner as for AsH,
but the error has become smaller. We interpret this behavior
by the coefficient c3 now becoming larger than c1 [in Eq. (16)]
due to increased spin-orbit effects. Ensuingly, CC(42) gives
a drastic amelioration with a qualitatively correct value and
reveals an important contribution of the quadruple excitation
including π1/2 → π3/2. In contrast to AsH, CCSDT no longer
improves upon CC(42) in this case. A value of acceptable
accuracy with an error of less than 10% is already achieved
with CC(43), which was not the case in AsH. Nevertheless,
quadruple excitations still play a significant role and largely
correct for this residual error. Our most accurate value at the
CCSDTQP level of 645 cm−1 deviates by less than 2% from
the experimental result (654.97 cm−1 [37]). Comparing with
the CI results in Table III the SDTQ-CISDTQP value is already
leveled by CC(43), which is computationally significantly
cheaper to perform. Thus, we here encounter a turning point
where the advantage of the MRCI method of being a genuine
MR approach is surpassed by the CC method due to its superior
efficiency in treating higher excitations.

We now turn to residual errors from sources other than the
correlation expansion. Considering errors from the truncated
Hamiltonian operator, we estimate the effect of the Gaunt
term to be −13 cm−1 and correlation contributions from the
Sb atomic 4d shell to be +5 cm−1 according to recent exact-
two-component (X2C)-MRCISD calculations [45]. From our
most accurate CC model using different basis sets, CC(43),
we infer a TZ-QZ basis-set error of +28 cm−1. Adding these
estimated residual errors to our single most accurate result,
CCSDTQP, the splitting amounts to 665 cm−1, comprising a
deviation of roughly 1.5% from the experimental value.

(c) Bismuth monohydride—BiH. The heaviest pnictogen
homolog, BiH, is a quasi-single-reference case. The spin-orbit
splitting of the π spinors is significantly larger compared to
AsH and SbH, as relativistic effects are sizable in this system.
The weak MR character of the ground state renders the closed-
shell Fermi vacuum a much better starting point in this case.
The results for bismuth monohydride are compiled in Table IV.
Despite the fact that BiH is a quasi-single-reference case in the
present description, closed-shell CISD is insufficient, because
a single excitation is required for describing the excited
state, leaving it uncorrelated relative to the ground state. This
interpretation is corroborated by the cs-CISDT model where
the triple excitations correlating the excited state are added
(doubles on top of singles). As expected, and in accord with
the cs-CI results CCSD gives qualitatively good results and
CC(42) brings about a large amelioration resulting in an error
of less than 1%. It should be noted, however, that CCSD still
displays an absolute error of nearly 700 cm−1, indicating the
remaining bias in our chosen Fermi vacuum state. Again, the
importance of the quadruple excitation including π1/2 → π3/2

contribution is observed. However, a quite accurate value is
obtained at this level, in contrast to SbH. Also here, CCSDT
does not improve on CC(42). Our most accurate value at the
CC(43) level is 4931 cm−1 with a deviation of less than 0.3%
from experiment (4917.1 cm−1 [37]). In contrast to the CI

012503-7



HUBERT, SØRENSEN, OLSEN, AND FLEIG PHYSICAL REVIEW A 86, 012503 (2012)

TABLE IV. Vertical excitation energies (T v) in cm−1 for the � =
1 state of the BiH molecule at an internuclear distance of 1.80 Å (the
experimental bond lengths are R0+

e = 1.805 and R1
e = 1.7912 Å) [37]

with different relativistic CC models (defined in Tables VIII and IX),
the Dirac-Coulomb Hamiltonian, and a closed-shell Dirac-Hartree-
Fock reference state. “os” refers to an average-of-configuration
reference state with an averaging for two electrons in the two π

orbitals. MRCI calculations are based on an open-shell multireference
state except if indicated otherwise (cs). We used a formal core space
of four electrons in the 6s,σ orbitals and a complete active space of
two electrons in the two π orbitals. The model SD_CISD corresponds
to a = 2, b = 4 in Table X. The basis sets are of TZ quality (see text),
except where marked otherwise. Converged cutoff for virtual spinors
is 10 a.u. except if indicated otherwise.

Method �SO (cm−1) No. CC amplitudes/CI det.

csCISD 16710 61.441
csCISDT 4163 3.475.201
csCISDTQ 4854 83.488.225
SD_CISD 4595 212.137
SD_CISDT 4569 4.769.137
SDT_CISDT 4515 8.738.389
SDTQ_CISDTQ 4596 149.525.014
CCSD 4239 61.440
osCCSD 4103 61.440
CCSD-104 a.u. 4243 168.540
CCSD-11 a.u. (QZ) 4300 144.060
CCSD-86 a.u. (QZ) 4302 277.440
CC(42) 4867 212.136
osCC(42) 4763 212.136
CC(42)-11 a.u. (QZ) 4892 501.408
CCSDT 4855 3.475.200
CC(43) 4931 4.769.136

Expt. [37] (T e) 4917.1

results given in Table IV, the SDTQ-CISDTQ value does not
reach the quality of the computationally significantly cheaper
CC(42). A highly accurate description of both effects due to
special relativity and electronic correlation is given here with
the CC(43) model.

There are still some residual errors from different sources.
A TZ-QZ basis-set correction of +25 cm−1 is obtained
by comparing CC(42) results. Considering errors from the
truncated Hamiltonian operator, we estimate the effect of the
Gaunt term to be −60 cm−1 and correlation contributions from
the Bi atomic 5d shell to be +75 cm−1 according to exact-
two-component (X2C) -MRCISD calculations performed by
Knecht et al. [41]. The remaining deviation may be attributed
to the fact that the potential curves for the 0+ and 1 states are no
longer parallel in the case of BiH, thus our vertical excitation
energies slightly overshoot the experimental values for Te.
Therefore, residual errors are expected to largely compensate
each other, which confirms the accuracy of our highest-level
results.

3. Discussion of theoretical aspects across the series

In this section we draw a comparison between the three
molecules focusing on selected theoretical issues.

(a) CC(nm) models and excitation rank of T̂ . In Fig. 2 we
show the convergence evolution of the various CC models

for the vertical excitation energy of the � = 1 state of the
three molecules. CC(42) is set between CCSD and CCSDT
and brings some essential quadruple excitations. It roughly
equals CCSDT in quality, but at a lower cost. CC(43) is a
good compromise between CCSDT and CCSDTQ; it provides
a high accuracy and avoids full quadruple excitations into
the virtual space. For BiH, high accuracy is reached using
this model (deviation of 0.3%). These CC models depend on
the excitation rank of the operator T̂ , which for the standard
models CCSD to CCSDTQP is 2 to 5, respectively. For the
CC(nm) model, the rank of T̂ depends on the active-space
structure. As we elucidate in Table IX, for GAS I (core spinors)
we use a maximum rank of 2 to perform double core excitations
toward the virtual spinors. In GAS II the maximum rank is 4
(n = 4), but those quadruple excitations are restricted to the
π3/2 spinors. Finally, in GAS III the rank is 2 or 3 (m = 2 or 3)
in order to perform double or triple excitations toward virtual
spinors. The CC(nm) approach enables a flexible adaptation
for ground-state and excited-state calculations by taking into
account important classes of excitation in the T̂ operator for a
system-tailored description.

(b) Multireference problem—Comparison of GAS-CC and
MRCI. The multireference character on these three systems
decreases toward the heaviest homolog BiH. This character is
linked to the energy difference between the π1/2 and the π3/2

spinors. With GAS-CC, which is not a true MR CC approach,
we have to impose a single-reference Fermi vacuum π1

1/2π
1
−1/2.

For lighter systems than BiH, we ensuingly introduce a certain
bias into CC wave function. However, we can compensate for
this flawed point of departure with higher excitation ranks.
In Fig. 3 we show a comparison between comparable CI and
CC models in terms of deviation from experiment for the
three molecules. In AsH where MR effects are strong, MR-CI
remains superior to GAS-CC up to the level of triple excitations
into the virtual spinor space. For SbH, multireference effects
are still significant but we obtain a slightly better description
at CC(43) level surpassing MR-CISDT (see Table III). The
single-reference dominated system BiH is significantly better
described with CC(42) already, improving on MR-CISD by
more than 250 cm−1 (see Table IV) with the same number of
wave function parameters.

(c) Spinors from closed-shell or open-shell optimization. In
closed-shell optimizations on a system with a near degeneracy
of states, the energy gap between the occupied and the
unoccupied valence spinors is largely overestimated. This
gap becomes much more realistic in the open-shell models.
Open-shell spinors could be used in cases of strong near
degeneracy and where the excitation level must be kept low.
For AsH, it gives a significant amelioration for CC(nm) models
(see Table II). However, as the near degeneracies decrease,
closed-shell approaches become the better choice in our
molecular series (see Tables III and IV). A systematic
difference between cs and os approaches remains even at
very high excitation ranks, due to the fact that the different
valence models lead to different polarization of the core
and virtual spinors. Since the spinor basis is truncated both
in the occupied and virtual space, the two models do not
yield identical results in the FCI/FCC limit. In the cs case
the spinors are optimized for the reference determinant used
in the correlated approach. In contrast to this, os spinors
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FIG. 2. Convergence of various closed-shell CC models for the three molecules. T values are T v taken from Tables II, III, and IV;
experimental values are T

expt.
e from [37].

comprise an averaging over several states and therefore do
not correspond to the reference state used in the correlation
approach. Due to this inconsistency, we consider os-CC as a
pragmatic approach in certain cases, but csCC results at high
excitation ranks our qualitatively best values.

V. CONCLUSION

An implementation of a general excitation rank relativistic
coupled cluster is presented with which electronically excited
states can be calculated at high accuracy using linear response
theory. It has been demonstrated that the relativistic GAS-CC
approach is applicable to atomic and molecular electronically
excited states, for which we have chosen showcase systems
exhibiting strong effects of both relativistic and electron

correlation origin. We regard these findings largely as proof of
principle for our method.

We conclude from the present study that within the GAS-
CC approach both the multireference character and the im-
portance of dynamic electron correlation on relative energies
can be addressed efficiently. The former is achieved by adding
active-space selected higher excitations to the standard CC
expansion. For BiH (and to some degree also SbH) where
the ground state is dominated by a single Slater determinant
in the relativistic picture the quality of the GAS-CC results
surpasses that of a linear wave-function expansion such as
relativistic CI theory, even if the latter is applied as a genuine
multireference approach. In cases where our chosen Fermi
vacuum determinant is no longer the dominant contributor to
the electronic ground state (Si atom, AsH, to some degree SbH)
we find that higher CC excitations, at least up to full triples,
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FIG. 3. Deviation from experiment [37] in percent for MRCI and closed-shell CC models for the three molecules. Values are taken from
Tables II, III, and IV. �T values are calculated from T v taken from Tables II, III, and IV and experimental values T
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e from [37]. MRCI

models are built according to Table X with a = 2, b = 4 for SD_CISD, a = 1, b = 3 for SDT_CISDT, a = 0, b = 2 for SDTQ_SDTQ, and
a = 0, b = 1 for SDTQ_SDTQP.

have to be included for achieving high accuracy. In such cases
true multireference CC (such as Mukherjee’s Mk-CC [46])
where a number of reference determinants is treated on equal
footing would seem to be the better choice. It is planned to
implement such a genuine MR approach into our relativistic
methodology.

In ongoing work we are generalizing a computationally
more efficient commutator-based evaluation of the CC Ja-
cobian matrix to the four-component relativistic formalism.
This improvement will lead to a code with the optimal
computational scaling of conventional CC theory also in the
calculation of excited states, and will allow us to increase the
number of explicitly correlated electrons. On the technical side
this is carried out by merging the relativistic commutator-based
GAS-CC [25] with the approach described in this paper and
including the new and more efficient code for the relativistic
CC Jacobian.

ACKNOWLEDGMENTS

This work was granted access to the HPC resources of
CALMIP under the allocation 2010-p1050 and 2011-p1050.
We furthermore acknowledge technical support by Anthony
Scemama with the calculations on the local computing cluster.
L.K.S. acknowledges the Villum Fonden for financial support.
We thank Radovan Bast for some helpful comments on the
calculation of expectation values with DIRAC.

APPENDIX: TECHNICAL DETAILS ON
ACTIVE SPINOR SPACES

1. The Si atom

For the silicon atom four different correlation model
hierarchies are defined. We use three GAS for the active spinors
(see Table V with 3s spinors in GAS I, 3p1/2 spinors in GAS II,
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TABLE V. General active space models for Si with three GAS
for the standard CC hierarchy. “Min. el.” represents the minimum
accumulated number and “Max. el.” the maximum accumulated
number of electrons after consideration of a given GAS. a = 0,1 for
SD2CC and S2CC, respectively. b ∈ {a, . . . ,2} for CCSDTQ (FCC),
CCSDT, and CCSD, respectively. X: Number of virtual Kramers
pairs.

Kramers pairs
GAS per irrep. E1/2 Min. el. Max. el. Shell types

I 1 a 2 3s

II 2 b 4 3p1/2

III X 4 4 3p3/2,3p3/2+
virtual Kr. pairs

and virtual spinors in GAS III). This first specification allows
for defining the standard CC hierarchy and another hierarchy
where only up to one hole in the space of the 3s spinors is al-
lowed (S2CC). The third specification allows for the definition
of various CC(nm) correlation models, for which we use four
GAS (see Table VI). This particular GAS structure accounts for
a selected set of higher excitations, here up to quadruple excita-
tions which decompose, for instance, in the case of CC(42) into
double excitations from 3s to the virtual spinors combined with
double excitations from the 3p1/2 to the 3p3/2 spinors. Finally,
for MRCI calculations, which are genuine MR calculations, we
use a specific GAS configuration as shown in Table VII, since
here there is no need to define a Fermi vacuum determinant.

2. The pnictogen monohydrides

In the molecular cases we use three different correlation
model hierarchies. The standard CC series (CCSD through
CCSDTQP) is defined by two GAS for the active spinors
(see GAS Table VIII). For the CC(nm) correlation methods,
the minimum number of GAS required is four (see GAS
Table IX). Similar to the atomic case, the more pronounced
the MR character of the state in question, the more important
the amplitude t

π3/2π3/2

π1/2π1/2
becomes. The CC(nm) models partially

account for the MR character by introducing such higher
excitations which are expected to give large contributions
to the states in question. We finally use an extra GAS
configuration suited for MRCI calculations (see GAS Table X).
These complete-active-space (CAS)-MRCI calculations were
performed to provide results from more standard approaches
which are compared with CC models.

TABLE VI. Si general active space models with four GAS for
the CC(nm) hierarchy (see Fig. 1). a = 1 for S2CC(32). if a = 0 :
b = 1,2 for SD2CC(43) and SD2CC(42), respectively. X: Number of
virtual Kramers pairs.

Kramers pairs
GAS per irrep. E1/2 Min. el. Max. el. Shell types

I 1 a 2 3s

II 2 a 4 3p1/2

III 4 b 4 3p3/2,3p3/2

IV X 4 4 Virtual Kr. pairs

TABLE VII. Si general active space models with three GAS for
MRCI hierarchy. All are MRCISD2_CAS2in3 type. a = 0,1,2 for
SDTQ-4 (FCI-4), SDT-4, and SD-4, respectively. X: Number of
virtual Kramers pairs.

Kramers pairs
GAS per irrep. E1/2 Min. el. Max. el. Shell types

I 1 0 2 3s

II 4 a 4 3p1/2,3p3/2,3p3/2

III X 4 4 Virtual Kr. pairs

3. Virtual spinor spaces

GAS-CCSD and CAS-MRCI calculations were performed
with increasing sizes of virtual spinor spaces. It is a standard
procedure in four-component electronic-structure calculations
with uncontracted Gaussian basis sets to use a truncation
energy value for the virtual spinors (see, e.g., Ref. [47]) and to
perform the correlation calculation in the resulting subspace.
We have in all cases converged the excitation energies with
respect to this subspace dimension using the CCSD model.

4. Coupling pictures and determinants

a. L-S coupling.

For the sake of simplicity we adopt a two-particle approx-
imation, i.e., we restrict ourselves to the electronic configura-
tion np2. All states will be written as (2S+1)LJ (mJ ) in accord
with the Russell-Saunders convention, and determinants as
|LmL

mSLmL
mS |. In addition, we will use the shorthand

notation |α〉 = |S = 1
2 ,mS = 1

2 〉 and |β〉 = |S = 1
2 ,mS = − 1

2 〉
for spin states, and |P+〉 = |L = 1mL=1〉, |P0〉 = |L = 1mL=0〉,
and |P−〉 = |L = 1mL=−1〉.

In order to find the expansion of states (2S+1)LJ (mJ ) in
terms of determinants |LmL

mSLmL
mS | we start out from the

state with max(mJ ) for a given (2S+1)LJ and apply shift
operators Ĵ− to construct the states up to min(mJ ). All mJ

states are individually normalized. We obtain
1S0:

1S0(0) = 1√
3

(|P−αP+β| − |P0αP0β| + |P+αP−β|). (A1)

1D2:
1D2(2) = |P+αP+β|, (A2)

1D2(1) = 1√
2

(|P0αP+β| + |P+αP0β|), (A3)

1D2(0) = 1√
6

(|P−αP+β| + 2|P0αP0β| + |P+αP−β|), (A4)

TABLE VIII. AsH, SbH, and BiH general active space models
with two GAS for the standard CC hierarchy. a = 4,3,2,1 for CCSD-
6, CCSDT-6, CCSDTQ-6, and CCSDTQP-6, respectively. n = 4,5,6
for AsH, SbH, and BiH, respectively. X: Number of virtual Kramers
pairs.

Kramers pairs
GAS per irrep. E1/2 Min. el. Max. el. Shell types

I 3 a 6 ns,σ1/2,π1/2

II X 6 6 π3/2 + virtual Kr. pairs
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TABLE IX. AsH, SbH, and BiH general active space models with
four GAS for the SD4_CC(nm) hierarchy (see Fig. 1). a = 3,4 for
CC(43) and CC(42), respectively. n = 4,5,6 for AsH, SbH, and BiH,
respectively. X: Number of virtual Kramers pairs.

Kramers pairs
GAS per irrep. E1/2 Min. el. Max. el. Shell types

I 2 2 4 ns,σ1/2

II 3 2 6 π1/2

III 3 a 6 π3/2

IV X 6 6 Virtual Kr. pairs

1D2(−1) = 1√
2

(|P0αP−β| + |P−αP0β|), (A5)

1D2(−2) = |P−αP−β|. (A6)3P0:

3P0(0) = 1√
3

[
|P0αP−α| + |P+βP0β|

− 1√
2

(|P+αP−β| + |P+βP−α|)
]
. (A7)

3P1:
3P1(1) = 1

2
(
√

2|P+αP−α| − |P+αP0β| − |P+βP0α|), (A8)

3P1(0) = 1√
2

(|P0αP−α| − |P+βP0β|), (A9)

3P1(−1) = 1

2
(−

√
2|P+βP−β| + |P0αP−β| + |P0βP−α|).

(A10)
3P2:

3P2(2) = |P+αP0α|, (A11)

3P2(1) = 1

2
(
√

2|P+αP−α| + |P+αP0β| + |P+βP0α|),
(A12)

3P2(0) = 1√
6

[|P0αP−α| + |P+βP0β| +
√

2(|P+αP−β|
+ |P+βP−α|)], (A13)

3P2(−1) = 1

2
(
√

2|P+βP−β| + |P0αP−β| − |P0βP−α|),
(A14)

3P2(−2) = |P0βP−β|. (A15)

TABLE X. AsH, SbH, and BiH general active space models with
three GAS for MRCI hierarchy. a = 0,1,2 for SDTQ-4, SDT-4, and
SD-4, respectively. b � a,b = 1,2,3,4 for CISDTQP-6, CISDTQ-6,
CISDT-6, and CISD-6, respectively. n = 4,5,6 for AsH, SbH, and
BiH, respectively. X: Number of virtual Kramers pairs.

Kramers pairs
GAS per irrep. E1/2 Min. el. Max. el. Shell types

I 2 a 4 ns,σ1/2

II 4 b 6 π1/2,π3/2

III X 6 6 Virtual Kr. pairs

To find the expansion of a given determinant in terms of
(2S+1)LJ states we have to invert the matrix X in

�s = X �d, (A16)

where �s is a vector of states and �d is a vector of determinants.
X is orthonormal, so solving

�d = X−1�s (A17)

is easy since X−1 = XT .
We then find that the various determinants for the subspace

mJ = 0 can be expressed as

|P0αP−α| = 1√
3

3P0 + 1√
2

3P1 + 1√
6

3P2, (A18)

|P+βP0β| = 1√
3

3P0 − 1√
2

3P1 + 1√
6

3P2, (A19)

|P−αP+β| = 1√
3

1S0 + 1√
6

1D2 + 1√
6

3P0 − 1√
3

3P2,

(A20)

|P+αP−β| = 1√
3

1S0 + 1√
6

1D2 − 1√
6

3P0 + 1√
3

3P2,

(A21)

|P0αP0β| = − 1√
3

1S0 + 2√
6

1D2. (A22)

Notice sign changes for determinants such as |P−αP+β|. For
the other mJ values we find the following expressions:

mJ = 1:

|P+αP−α| = 1√
2

3P1 + 1√
2

3P2, (A23)

|P+αP0β| = 1√
2

1D2 − 1

2
3P1 + 1

2
3P2, (A24)

|P+βP0α| = − 1√
2

1D2 − 1

2
3P1 + 1

2
3P2. (A25)

mJ = −1:

|P+βP−β| = − 1√
2

3P1 + 1√
2

3P2, (A26)

|P0αP−β| = 1√
2

1D2 + 1

2
3P1 + 1

2
3P2, (A27)

|P0βP−α| = − 1√
2

1D2 + 1

2
3P1 + 1√

2
3P2. (A28)

mJ = 2:

|P+αP0α| = 3P2, (A29)

|P+αP+β| = 1D2. (A30)

mJ = −2:

|P0βP−β| = 3P2, (A31)

|P−αP−β| = 1D2. (A32)
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b. J-J coupling

First we want to find the various states (J1,J2)J that arise
from J -J coupled spinors. These five states are

(3/2,3/2)2, (3/2,3,2)0, (3/2,1/2)2, (3/2,1/2)1, (1/2,1/2)0.

(A33)

We expand each spinor (J,mJ ) in terms of nonrelativistic
spin orbitals using the notation introduced above and the
corresponding Clebsch-Gordan coefficients:

J = 3/2:
(3/2,3/2) = P+α, (A34)

(3/2,1/2) = 1√
3

(
√

2P0α + P+β), (A35)

(3/2, − 1/2) = 1√
3

(
√

2P0β + P−α), (A36)

(3/2, − 3/2) = P−β. (A37)

J = 1/2:

(1/2,1/2) = 1√
3

(−P0α +
√

2P+β), (A38)

(1/2, − 1/2) = 1√
3

(P0β −
√

2P−α). (A39)

This allows us to write the mJ components of the various
(J1,J2)J states, denoted as (J1,J2)J,mJ

, as

(1/2,1/2)0,0 = |(1/2,1/2),(1/2, − 1/2)| = 1

3
(−|P0αP0β| +

√
2|P+βP0β| +

√
2|P0αP−α| + 2|P−αP+β|), (A40)

(3/2,3/2)2,2 = |(3/2,3/2),(3/2,1/2)| = 1√
3

(
√

2|P+αP0α| + |P+αP+β|), (A41)

(3/2,3/2)2,1 = |(3/2,3/2),(3/2,−1/2)| = 1√
3

(
√

2|P+αP0β| + |P+αP−α|), (A42)

(3/2,3/2)2,0 = 1√
2

(|(3/2,1/2),(3/2,−1/2)| + |(3/2,3/2),(3/2,−3/2)|) = 1√
2

[
1

3
(2|P0αP0β| +

√
2|P0αP−α|

+
√

2|P+βP0β| + |P−αP+β|) + |P+αP−β|
]
, (A43)

(3/2,3/2)2,−1 = |(3/2,1/2),(3/2,−3/2)| = 1√
3

(−
√

2|P−βP0α| − |P−βP+β|), (A44)

(3/2,3/2)2, −2 = |(3/2,−1/2),(3/2,−3/2)| = 1√
3

(−
√

2|P−βP0β| − |P−βP−α|), (A45)

(3/2,3/2)0,0 = 1√
2

(|(3/2,1/2),(3/2,−1/2)| − |(3/2,3/2),(3/2,−3/2)|)

= 1√
2

[
1

3
(2|P0αP0β| +

√
2|P0αP−α| +

√
2|P+βP0β| + |P−αP+β|) − |P+αP−β|

]
, (A46)

(3/2,1/2)2,2 = |(3/2,3/2),(1/2,1/2)| = 1√
3

(−|P+αP0α| +
√

2|P+αP+β|), (A47)

(3/2,1/2)2,1 = 1

2
[
√

3|(3/2,1/2),(1/2,1/2)| + |(3/2,3/2),(1/2,−1/2)|]

= 1

2

(√
3|P0αP+β| + 1√

3
|P+αP0β| −

√
2

3
|P+αP−α|

)
, (A48)

(3/2,1/2)2,0 = 1√
2

[|(3/2,1/2),(1/2,−1/2)| + |(3/2,−1/2),(1/2,1/2)|] = 1

3
√

2
(2

√
2|P0αP0β| − |P0αP−α|

− |P+βP0β| + 2
√

2|P−αP+β|), (A49)

(3/2,1/2)2,−1 = 1

2
[
√

3|(3/2,−1/2),(1/2,−1/2)| + |(3/2, − 3/2),(1/2,1/2)|]

= 1

2

(
−

√
3|P0βP−α| − 1√

3
|P−βP0α| +

√
2

3
|P−βP+β|

)
, (A50)

(3/2,1/2)2,−2 = |(3/2,−3/2),(1/2,−1/2)| = 1√
3

(|P−βP0β| −
√

2|P−βP−α|), (A51)

(3/2,1/2)1,1 = 1

2
[|(3/2,1/2),(1/2,1/2)| −

√
3|(3/2,3/2),(1/2,−1/2)|] = 1

2
(|P0αP+β| − |P+αP0β| +

√
2|P+αP−α|),

(A52)

(3/2,1/2)1,0 = 1√
2

[−|(3/2,1/2),(1/2,−1/2)| + |(3/2,−1/2),(1/2,1/2)|] = 1√
2

(|P0αP−α| − |P+βP0β|), (A53)
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(3/2,1/2)1,−1 = 1

2
[−|(3/2,−1/2),(1/2,−1/2)| +

√
3|(3/2,−3/2),(1/2,1/2)|]

= 1

2
(|P0βP−α| − |P−βP0α| +

√
2|P−βP+β|). (A54)

c. J-J coupled states in terms of L-S coupled states and back

Writing the (1/2,1/2)0 state out in terms of the determinants
from Eqs. (A18)–(A32) we find

(1/2,1/2)0 = 1√
3

1S0 +
√

2

3
3P0. (A55)

The remaining states can accordingly be expressed as

(3/2,3/2)2 =
√

2

3
3P2 + 1√

3
1D2, (A56)

(3/2,3/2)0 = 1√
3

3P0 −
√

2

3
1S0, (A57)

(3/2,1/2)2 =
√

2

3
1D2 − 1√

3
3P2, (A58)

(3/2,1/2)1 = 3P1. (A59)

We close this section with the inverse expansion of Russell-
Saunders terms in terms of J -J coupled states:

1S0 = 1√
3

(1/2,1/2)0 −
√

2

3
(3/2,3,2)0, (A60)

3P0 =
√

2

3
(1/2,1/2)0 + 1√

3
(3/2,3,2)0, (A61)

3P1 = (3/2,1/2)1, (A62)

3P2 =
√

2

3
(3/2,3/2)2 − 1√

3
(3/2,1/2)2, (A63)

1D2 = 1√
3

(3/2,3/2)2 +
√

2

3
(3/2,1/2)2. (A64)

The expansion of determinants over relativistic spinors in
terms of Russell-Saunders terms—as referred to in the main
body of the paper—can be deduced by combining Eqs. (A40)–
(A54) with Eqs. (A60)–(A64).

5. Molecular determinants and states—Choice of Fermi vacuum

a. Wave function of molecular states

For the lightest homolog spin-orbit interaction is a pertur-
bation to electrostatic effects. Furthermore, it is known from
similar systems with an approximate valence π2 configuration
that σ−π mixing due to spin-orbit interaction is negligibly
small in 4p element molecules [48]. We therefore start out
from a molecular two-electron valence wave function for the
expected electronic ground state which can be written as

|3�0〉 = c0|3�MJ =0〉 + c′|1�MJ =0〉, (A65)

the |1�〉 state corresponding to the π2 configuration being
the main perturber. We estimate the mixing coefficient c′
for a first-order perturbation correction to the wave func-
tion with the one-electron spin-orbit Hamiltonian in Pauli
approximation:

c′ = 〈3�|Ĥ SO|1�〉
E1� − E3�

≈ 151

7050
. (A66)

The value of 151 cm−1 has been obtained by using an
effective nuclear charge of 7.44 a.u. for a 4p electron
in As [49] and an expectation value 〈 1

r3 〉 = 7.0 a.u. from
Ref. [50] for calculating the spin-orbit matrix element. The
energy difference of 7050 cm−1 has been calculated using the
LUCITA module of the DIRAC program package [29] in Dyall’s
spin-orbit free approximation [51] to the Dirac-Coulomb
Hamiltonian.

Normalizing the total wave function thus gives us an
estimated contribution of roughly 0.03% of the |1�MJ =0〉 to
the molecular ground state, which can safely be neglected,
even if two-electron spin-orbit contributions were accounted
for in addition. This means that the nonrelativistic |(2S+1)�±�〉
wave functions

|3�0〉 = 1
2 [π+(1)π−(2) − π−(1)π+(2)][α(1)β(2)+β(1)α(2)],

(A67)

|1�0〉 = 1
2 [π+(1)π−(2) + π−(1)π+(2)][α(1)β(2) − β(1)α(2)]

(A68)

are a good approximation to the molecular states in AsH,
where we use the notation [symbol]m�

(j ) denoting λm�
(�rj ) for

the spatial wave function of particle j and the spin part in
accordance with the definition in Sec. A 4 a.

We finally expand the results in Eqs. (A67) and (A68) into
Cartesian components, according to π+ = − 1√

2
(πx + ıπy)

and π− = 1√
2
(πx − ıπy), yielding

|3�0〉 = ı

2
[πx(1)πy(2) − πy(1)πx(2)][α(1)β(2) + β(1)α(2)],

(A69)

|1�0〉 = −1

2
[πx(1)πx(2) + πy(1)πy(2)][α(1)β(2)−β(1)α(2)].

(A70)

b. Choice of Fermi vacuum

In order to compare our Fermi vacuum state to the estimated
molecular wave functions we have carried out a Mulliken
population analysis of the AsH valence spinors as a function of
internuclear distance. The results are to be found in Figure 4.
The spinors underlying the figure are those energetically
highest and still doubly occupied (HOMS). At the equilibrium
bond length they are energetically well separated from the
bonding spinors by 0.125 a.u. We therefore construct our
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FIG. 4. Mulliken population analysis of the HOMS spinor mj =
1
2 as a function of internuclear distance. Since the closed-shell DCHF
model does not lead to physically correct dissociation, we exploit the
information from close to the equilibrium bond distance only.

two-electron Fermi vacuum state from the HOMS(
mj = +1

2

)
= 1√

2
(−πx − ıπy)β,(

mj = −1

2

)
= 1√

2
(+πx − ıπy)α,

where we have represented the molecular spinors by
their principal character. The form of the spatial part has
been obtained from the MO-AO expansion coefficients of
the Dirac-Coulomb Hartree-Fock calculation, and the spin
function from computing the expectation value 〈ϕj,mj

|ŝz|ϕj,mj
〉

for the respective spinors ϕj,mj
. The Kramers partner has been

deduced by applying the time-reversal operator to a given
spinor.

Using this information we can rewrite our Fermi vacuum
state as

|(mj )1; (mj )2|

=
∣∣∣∣
(

mj = 1

2

)
;

(
mj = −1

2

)∣∣∣∣
= 1

2
√

2
{[−πx(1) − ıπy(1)]β(1)[πx(2) − ıπy(2)]α(2).

+ [πx(2) + ıπy(2)]β(2)[πx(1) − ıπy(1)]α(1)}

= ı

2
√

2
[πx(1)πy(2) − πy(1)πx(2)][α(1)β(2) + β(1)α(2)]

+ 1

2
√

2
[πx(1)πx(2) + πy(1)πy(2)][α(1)β(2)

−β(1)α(2)]. (A71)

Comparing Eqs. (A67) and (A68) with Eq. (A71) shows
that our Fermi vacuum state from a relativistic calculation
represents the true ground state only to roughly 50% and
contains an equally large contribution from the excited |1�0〉
state.

[1] J. Doyle, B. Friedrich, R. V. Krems, and F. Masnou-Seeuws, Eur.
Phys. J. D 31, 149 (2004).

[2] W. C. Stwalley, P. L. Gould, and E. E. Eyler, in Cold Molecules,
edited by R. V. Krems, W. C. Stwalley, and B. Friedrich (CRC
Press, Boca Raton, 2009), Chap. 5.

[3] M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, Annu. Rev.
Astron. Astrophys. 47, 481 (2009).

[4] P. S. Barklem, A. K. Belyaev, M. Guitou, N. Feautrier,
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