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Universality and the three-body parameter of 4He trimers
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We consider a system of three 4He atoms, which is so far the simplest realistic three-body system exhibiting the
Efimov effect, in order to analyze deviations from the universal Efimov three-body spectrum. We first calculate
the bound states using a realistic two-body potential, and then analyze how they can be reproduced by simple
effective models beyond Efimov’s universal theory. We find that the nonuniversal variations of the ground and
first excited states can be well reproduced by models parametrized with only three quantities: the scattering
length and effective range of the original potential, and a small three-body force. Furthermore, the three-body
parameter, which fixes the origin of the infinite set of three-body levels, is found to be consistent with recent
experimental observations in other atomic species.
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I. INTRODUCTION

The universal attraction found by Efimov [1] for any
quantum system of three particles interacting through short-
range interactions with a large scattering length has now been
evidenced in many experiments using ultracold atoms [2–17].
In particular, Efimov trimers, i.e., three-body bound states
resulting from this attraction, were observed as a function
of the scattering length. Because these trimers are unusually
large compared with the range of the interactions, they
have universal properties determined solely by the universal
attraction and a few parameters. In particular, their spectrum
has a simple structure with discrete scale invariance. This was
confirmed experimentally to some degree, but there appeared
quantitative deviations from this universal structure.

One of the main reasons is the fact that at most the ground
and first-excited states of the spectrum could be observed so
far. It is known that these first states do not follow accurately
the universal behavior expected for the higher excited states
(more loosely bound states) because their size is not very large
compared to the range of the interactions and therefore they
still depend on the details of these interactions. However, it is
quite involved to correctly describe these interactions for three
atoms because of their complex hyperfine structure and the
lack of knowledge of the three-body potential surfaces. For this
reason, experimental results have been interpreted so far using
either corrections to the universal theory of Efimov [15,16,
18,19] or by other effective models reproducing the two-body
physics in the energy range of the observed trimers [20–22].

While these effective approaches can reproduce the ex-
perimental results to some extent, it remains unclear on a
theoretical basis why they can do so. For example, corrections
to the Efimov universal theory sometimes require one to
introduce an ad hoc variation of a three-body parameter to
explain the data [15,16,22]. Another puzzling fact is that
effective two-body model approaches could reproduce some
of the deviations from universal theory observed in the
experimental data, suggesting that they could be explained by
two-body interactions only [20–22]. While it is established that
in general the knowledge of two-body interactions only is not
enough to accurately determine the energy of Efimov trimers
[23], the contribution from realistic two-body interactions to

the short-range three-body phase and nonuniversal deviations
is not fully understood.

The purpose of this paper is to clarify these issues by testing
the effective approaches with respect to the numerically exact
solution of a realistic theoretical model. We choose 4He3, as it
is the simplest triatomic system with van der Waals interactions
that exhibits the Efimov attraction [24–28].

The paper is organized as follows. In Sec. II, we review
some of the effective models used to describe Efimov trimer
experiments. In Sec. III, we present realistic calculations for
4He3, and show how they are reproduced by these effective
models.

II. EFFECTIVE MODELS FOR EFIMOV PHYSICS

A. Efimov’s universal theory

The essence of the Efimov effect is the appearance of an
effective attractive potential −s2

0/R
2 between three particles

with very large scattering length. Here, s0 is a number
approximately equal to 1.00624 for identical bosonic particles
and R denotes the hyper-radius (average distance between
particles),

R2 = 1
3

(
r2

12 + r2
23 + r2

31

)
, (1)

where r12, r23, and r31 are the relative distances between the
three particles. This attraction can lead to the existence of
three-body bound states, the so-called Efimov trimers. Because
it is a long-range attraction, trimers with sufficiently small
binding energy extend to large distances where the interactions
are negligible. The effect of interactions is therefore captured
by simply setting two types of short-distance boundary
conditions on the three-body wave function. The first type of
boundary condition is applied when two particles come close
to one another, but within a distance r larger than the range of
their interaction. There, the wave function ψ has to satisfy the
Bethe-Peierls boundary condition,

ψ ∝
rij →0

1

rij

− 1

a
, (2)

where a is the s-wave scattering length of the two-body
interaction, which fixes the phase of the two-body wave
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function accumulated at low energy within the range of the
interaction. The second type of boundary condition is applied
when three particles come close together, but still at distances
R larger than the range of their interactions. The wave function
has to satisfy the Efimov boundary condition,

ψ ∝
R→0

1

R
sin[s0 ln(�R)], (3)

where � is the so-called Efimov three-body parameter, which
fixes the accumulated phase of the three-body wave function
at low energy.

The Efimov theory thus relies on only two parameters, a and
�, to fully describe the three-body physics in the low-energy
and large-a regime. When normalized in units of �, the trimer
energy spectrum exhibits a universal structure as a function
of a�, as represented in Fig. 5. There is an accumulation
point in the spectrum at a = ∞, which is when the two-body
interaction is resonant, and the whole spectrum is invariant
by a discrete scale transformation, namely, multiplying all
distances by eπ/s0 ≈ 22.7, which follows from Eq. (3). The
wave functions and energies can be calculated numerically
by either solving the three-body free Schrödinger equation
with conditions (2) and (3), or equivalently solving its corre-
sponding integral equation, which is known as the Skorniakov-
Ter-Martirosian equation [29],(

1

a
−

√
3

4
p2 − ε

)
F (p)

+ 2

π

∫ P

0
dq ln

p2 + q2 + pq − ε

p2 + q2 − pq − ε
F (q) = 0, (4)

where F is the function to be determined (related to the full
wave function �), and ε = mE

h̄2 is the renormalized energy E,
with m being the mass of the particle. Here, the upper-bound
P of the integral sets the three-body phase, and can be related
to the Efimov three-body parameter by [22]

P = �
2√
3

exp

[
− arctan s0 − Arg[�(is0)] + π

(
n − 1

2

)
s0

]
.

B. Nonuniversal models

1. Nonuniversal corrections

The deviations of two-body physics from universality at
low energy are well known and can be encoded in the energy
variation of the two-body phase shift δ(E), or, equivalently, a
two-body scattering length a(E). At low energy, we have the
following effective-range low-energy expansion:

1

a(E)
≡ −k cot δ(E) = 1

a
− 1

2
rek

2 + · · · , (5)

where k = √
mE/h̄. The universal limit corresponds to the first

term, which is set by the zero-energy scattering length a. The
next term defines the effective range re. It is straightforward
to generalize Eq. (4) to the nonuniversal regime by replacing
the zero-energy scattering length a by the energy-dependent
scattering length a(E) [22,30]. Likewise, the cutoff P is
expected to be replaced by an energy-dependent quantity
P (E) [22]. With these replacements, Eq. (4) corresponds to the

most general contact model with energy-dependent boundary
conditions.

Although the energy dependence of a(E) is generally
known, that of P (E) is presently unknown. It is one of
the purposes of this paper to investigate this dependence
by comparison with other models. As we shall see, this
dependence cannot properly reproduce the full spectrum.

2. Two-body effective interaction

Another approach is to replace the real interaction by
a simple effective interaction with the same low-energy
spectrum. One possible choice is a Gaussian potential [31,32],

V (r) = −V0e
−(r/r0)2

, (6)

which is parametrized by V0 and r0 to reproduce both the
scattering length and effective range. Another convenient
choice is a separable interaction [20–22],

Ŵ = −W0|φ〉〈φ|, (7)

where the state |φ〉 can also be chosen to be a Gaussian function
φ(r) = e−(r/σ0)2

for simplicity. The advantage of separable po-
tentials is that they have formal similarities with contact inter-
actions, and lead to a simple integral equation similar to Eq. (4):(

1

a(E)
−

√
3
4p2 − ε

)
F (p)

+ 2

π

∫ ∞

0
dq ln

G
[
r2

0 (p2+q2+pq−ε)
]

G
[
r2

0 (p2+q2−pq−ε)
]e

3
8 r2

0 (q2−p2)F (q) = 0,

(8)

where G(x) = exp(
∫ ∞
x

e−t

t
dt). One can check that the

integrand of (8) tends to that of (4) at low momenta, but
decays at high momenta q � 1/r0, which removes the need
to introduce an upper cutoff to the integral.

III. REALISTIC AND EFFECTIVE
CALCULATIONS FOR 4He3

A. Realistic calculations with LM2M2 potentials

To model the 4He interactions realistically, we choose the
LM2M2 potential [33] to describe the two-body interactions.
This potential has a repulsive hard core at short distance and a
van der Waals tail −C6/r6 at large distance, as shown in Fig. 1.

FIG. 1. LM2M2 potential [33] used for the realistic calculations.
The dotted curve indicates the van der Waals asymptote −C6/r6.
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FIG. 2. Jacobi coordinates for all of the rearrangement channels
(c = 1 ∼ 3) of the 4He trimer system. The wave function of the three
4He atoms is to be symmetrized.

Its scattering length is 100.01 Å, which is 18.6 times the van der
Waals length lvdW = (mC6/h̄)1/4. The three-body interaction
has been shown to bring only small corrections [34–36], and
we neglect it in this study. Thus, in our calculation, the three-
body phase, which fixes the energy of Efimov trimers, builds
up only from the LM2M2 two-body interaction.

The three-body Schrödinger equation with the LM2M2
potential is solved numerically using the Gaussian expansion
method (GEM). This method was proposed as a means to
perform accurate calculation for three- and four-body systems
[37]. In this method, a well-chosen set of Gaussian basis
functions is used, forming an approximately complete set in
a finite coordinate space, so that one can describe accurately
both the short-range correlation and the long-range asymptotic
behavior of the wave function for bound states as well as for
scattering states. It was demonstrated that the GEM provides
the same caliber of numerical precision as, for example, the
Faddeev-Yakubovsky method for 3H (3He) and 4He, and can
be used to address various kinds of few-body problems in
atomic, baryonic, and quark-level systems [37].

In order to solve the three-body 4He trimer problem, we use
three sets of Jacobi coordinates, illustrated in Fig. 2.

The Schrödinger equation and the total Hamiltonian are
given by

(H − E)�JM = 0, (9)

H = T + V (r1) + V (r2) + V (r3), (10)

where T is the kinetic-energy operator and V (r1), V (r2), and
V (r3) are the interactions between two 4He atoms, described
by the LM2M2 potential V (r).

The total three-body wave function is described as a sum
of amplitudes for all rearrangement channels (c = 1 ∼ 3) of
Fig. 2:

�JM =
3∑

c=1

∑
n,N

∑
�,L

C
(c)
nlNL

[
φ

(c)
nl (rc)ψ (c)

NL(Rc)
]
JM

. (11)

We take the functional forms of φnlm(r) and ψNLM (R) as

φnlm(r) = rle−(r/rn)2
Ylm(̂r),

(12)
ψNLM (R) = RLe−(R/RN )2

YLM (R̂),

where the Gaussian range parameters are chosen according to
geometrical progressions,

rn = r1a
n−1 (n = 1, . . . ,nmax),

(13)
RN = R1A

N−1 (N = 1, . . . ,Nmax).
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FIG. 3. (Color online) Ratio between the effective range re and
scattering length a of the scaled LM2M2 potential as a function of
the scaling factor λ. The vertical solid line indicates the physical
value (λ = 1). The dashed vertical line indicates the scaling factor
for which the scattering length diverges (1/a → 0). The dashed curve
shows the result based on the analytical formula (16) using the values
of ā and a as a function of λ.

The eigenenergies E in Eq. (9) and the coefficients C
(c)
nlNL

in Eq. (11) are determined by the Rayleigh-Ritz variational
method.

Although the scattering length of 4He is already large
compared to the range of its two-body potential V (r), we
did several calculations for rescaled potentials λV (r) in order
to cause a divergence of the scattering length, as was done in
previous studies [24,25,27]. This enables us to mimic the broad
Feshbach resonances used in ultracold atom experiments [38],
and better appreciate the Efimov structure of the spectrum.
The scattering length a diverges for λ = 0.97412, while the
physical results for real 4He correspond to λ = 1. As λ is varied
near the divergence of a, the effective range re also changes but
always remains positive and on the order of the scaled van der
Waals length λ1/4lvdW, and the ratio re/a remains a monotonic
function of λ, as shown in Fig. 3. For this reason, we choose to
report our results as a function of the scattering length in units
of the effective range, rather than λ itself.

The LM2M2 potential supports one two-body bound state.
Its energy variation with the scattering length is represented
in Fig. 4. When the scattering length becomes smaller than
its physical value (λ � 1.0), this dimer energy significantly
deviates from the universal limit of small binding energy
and large scattering length [Eq. (14) with a(E) → a]. The
results for three atoms are shown in Fig. 5. Our results are
in very good agreement with the most accurate calculations
using the LM2M2 potential [39,40]. One can see that the first
two trimers’ energies qualitatively follow Efimov’s universal
spectrum, but as in the two-body case, there are significant
deviations for small scattering lengths and deep energies. In
particular, we find that neither of these two trimers connects
with the dimer threshold, contrary to what is expected from
the Efimov theory, although the first-excited trimer approaches
very closely to that threshold (see Fig. 6).

As pointed out in Ref. [41], one way to appreciate the
deviations from universality is to consider the correlations
between two successive trimers. By subtracting the dimer
energy from their energies, one minimizes the direct influence
of the nonuniversal dimer behavior; and by considering the
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FIG. 4. (Color online) 4He dimer energy E as a function of
scattering length a. To clarify the figure, these quantities are
normalized by Ee = h̄2/mr2

e and re, and raised to the power 1/4 and
−1/2, respectively. The solid red curve corresponds to the dimer of the
LM2M2 potential scaled by a varying factor λ. The physical scattering
length of 4He (λ = 1) is indicated by the vertical gray line. The
dotted line represents the universal limit of small binding energy and
large scattering length [Eq. (14) with a(E) → a ]. The dashed curve
represents the two solutions of the effective-range approximation of
Eq. (14). The dot-dashed curve corresponds to the results of the
separable Gaussian potential (7).

ratio between these resulting energies, one minimizes the
influence of the three-body parameter. This energy ratio is
represented as a function of the scattering length in Fig. 6.
One can see that for an infinite scattering length, this ratio is
close to the universal ratio e−2π/s0 ≈ 1/515 ≈ 0.0442, and then
gradually deviates from the universal curve as the scattering
length is decreased. It approaches zero but increases again,
since the excited trimer does not quite reach the dimer
threshold, while in the universal theory, the ratio vanishes
when the universal trimer reaches the dimer threshold.

B. Calculation with nonuniversal corrections

We first attempt to reproduce the previous results by
including nonuniversal corrections to the Efimov theory. For
each value of λ, we can determine the energy dependence a(E)
of the scattering length of the scaled LM2M2 potential λV (r).
The energy E2B of the two-body bound state is then readily
obtained from the equation

E2B = − h̄2

m[a(E2B)]2
. (14)

The low-energy expansion of a(E) up to the effective-range
term [right-hand side of Eq. (5)] can already reproduce the
realistic two-body energy for a � 2.5re; see Fig. 4. However,
at this order of expansion, there are actually two solutions to
Eq. (14), with the lowest-energy solution being unphysical.
The two solutions merge and disappear at a = 2re. The
presence of this extra dimer is an artifact which completely
changes the three-body physics. Note that this problem does
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FIG. 5. (Color online) Efimov spectrum for 4He: trimer energy
E as a function of the scattering length a. To clarify the figure,
these quantities are normalized by Ee = h̄2/mr2

e and re, and raised
to the power 1/4 and −1/2, respectively. The zero of the energy axis
corresponds to the three-body threshold. The red solid curves are the
energy curves obtained by rescaling the LM2M2 potential. The energy
of both trimers and the dimer (rightmost curve) are displayed. The
vertical gray line indicates the scattering length corresponding to the
unscaled potential, i.e., physical 4He. The dashed curves correspond
to the Efimov spectrum according to the universal theory. The three-
body parameter is adjusted to match the first-excited trimer state. The
straight dashed line corresponds to the dimer energy in the universal
limit of large scattering length.

not occur for negative effective ranges, as in the case of
narrow Feshbach resonances [42]. To remedy this problem,
we consider an improved analytical expression for a(E) that is
obtained from the separable potential given by Eq. (7) adjusted
to reproduce the scattering length and effective range of the
scaled LM2M2 potential. Then there is only one solution to
Eq. (14) and its energy matches very well with that of the

FIG. 6. (Color online) Square root of the ratio between the
energies E

(1)
T − ED and E

(2)
T − ED of the first two trimers of different

models as a function of the inverse scattering length (in units of re).
Here, the trimer energy is measured from the dimer threshold ED . The
solid gray curve represents the ratio in the universal theory. The solid
red curve is the result for the scaled helium LM2M2 potential. Other
curves represent the results for the universal theory with two-body
corrections (green dot-dashed), the local Gaussian potential model
with (black dots) and without (black dashes) a three-body interaction,
and the separable Gaussian potential model with (blue spaced dots)
and without (blue long dashes) a three-body interaction. The vertical
line indicates the point where the scattering length is infinite.

012502-4



UNIVERSALITY AND THE THREE-BODY PARAMETER OF . . . PHYSICAL REVIEW A 86, 012502 (2012)

0.6 0.4 0.2 0.0 0.2 0.4 0.6
1.0

0.8

0.6

0.4

0.2

0.0

sgn a a re
1 2

E
E

e
1

4

FIG. 7. (Color online) Plot similar to Fig. 5. Here again, the 4He
curves are indicated by solid red curves, and results taking into
account two-body corrections to the universal theory are indicated
by dashed curves.

LM2M2 potential; see Fig. 4. Interestingly, the agreement
is even slightly better than the effective-range approximation
itself.

Having set a(E) to properly describe the two-body physics,
we perform trimer calculations using Eq. (4) with a fixed cutoff
P whose value is adjusted to reproduce the second three-body
dissociation point—the point where the first-excited trimer
reaches the threshold. One can see in Fig. 7 that the corrections
bring some improvement, but the agreement with the LM2M2
results is only partial. It turns out that it is not possible to find
an energy dependence of P that satisfactorily reproduces both
the ground and first-excited trimer energies. To illustrate this,
we determined the required variations of the cutoff P in order
to obtain perfect agreement with the LM2M2 results for either
the ground or the first-excited trimer state. The variations for
both states are shown in Fig. 8 and they are inconsistent. To
remove the inconsistency, we can assume more generally that
P depends on both the energy and the scattering length, but
no clear pattern arises from such considerations. It should also
be noted that the required variation of P is dependent on the
choice of the high-energy behavior of a(E); in other words, it
is model dependent. Thus, while it can be a practical way to

(       )

(  
   

  )

FIG. 8. (Color online) Three-body cutoff parameter P adjusted to
get agreement with the LM2M2 results as a function of energy for the
ground-state trimer (dots) and the first excited-state trimer (squares).
One can see that their variations are inconsistent.

characterize nonuniversal observations, as done in Refs. [15,
16,22], it does not seem to be very meaningful.

C. Calculations with a separable potential

We then attempt to reproduce the 4He results with a simple
two-body potential V having the same low-energy properties
as the LM2M2 potential. For both the Gaussian potential (6)
and separable potential (7), we proceed as follows.

For each λ, we adjust the parameters of the potential so
that the scattering length and effective range coincide with
those of the scaled LM2M2 potential. As mentioned before,
the binding energy of the two-body bound state then matches
very well with that of the LM2M2 bound state over a wide
range of energies; see Fig. 4.

We then calculate the three-body bound states with the
adjusted potential. Remarkably, we already find relatively
good agreement with the LM2M2 three-body states; see Figs. 9
and 10. The values differ essentially by an energy shift, which
is not unexpected since the short-range three-body phase may
not be properly set by these simple two-body interactions.

As a practical way to set the proper three-body phase, we
finally add to the effective models a three-body interaction,
and adjust its strength in order to reproduce the second
three-body dissociation point. We again use a simple local
or separable Gaussian form for the three-body interaction,
specifically Eqs. (6) and (7), where r is replaced by the
hyper-radius R defined in Eq. (1). We use the parameters
V

(3B)
0 = 0.43 h̄2

m
r−2

0 and r
(3B)
0 = 0.5r0 for the local potential,

and W
(3B)
0 = 0.165 h̄2

m
σ−8

0 and σ
(3B)
0 = 1.0σ0 for the separable

potential.
We then find very good overall agreement for both trimers

with the LM2M2 calculations, as shown in Figs. 9 and 10. The
agreement with the excited trimer is good, except when its
energy approaches the two-body threshold, as seen in Fig. 6.
This disagreement corresponds to small energy differences
when compared to the total binding energy of the dimer or
trimer measured from the three-body threshold.
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FIG. 9. (Color online) Plot similar to Fig. 5 for the calculations
with the Gaussian potential given by Eq. (6). The dotted curves
correspond to two-body interactions only, while the dashed curves
correspond to calculations with an additional three-body interaction.
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FIG. 10. (Color online) Plot similar to Fig. 5 for the calculations
with the separable Gaussian potential given by Eq. (7). The dotted
curves correspond to two-body interactions only, while the dashed
curves correspond to calculation with an additional three-body
interaction. The symbols show the measured dissociation point of
the ground-state trimer for different species. One data point from the
experiments with potassium lies outside the group of data points, and
it is not clear whether this is a special feature of that species breaking
the observed tendency or due to a misinterpretation of the data.

D. Role of the effective range

1. Trimer dissociation at the three-body threshold

The previous results clearly indicate that the nonuniversal
variations of the trimer energies can be reproduced to a great
extent from the knowledge of the effective range. The role
of the effective range was pointed out before in previous
studies [18,19,30,32]. In particular, Ref. [32] also looked at
deviations from universality with finite-range potentials. This
study considered the scattering length adiss for which the trimer
dissociates into three atoms. The relative variation of this
quantity with respect to its value a′

diss in the universal spectrum
was found to be

adiss − a′
diss

a′
diss

= C

(
re

a

)
diss

, (15)

with C = 1.3 ± 0.4. However, we could not completely
confirm this formula. While we found the value C ≈ 0.99 with
the Gaussian potential, which is consistent with the results
presented in Ref. [32] for the same Gaussian potential, the
present calculation with the LM2M2 potential gives C ≈ 0.58.
The value therefore seems to be somewhat dependent on the
type of potential.

It is interesting to note that the value of the dissociation
point adiss itself, rather than its nonuniversal variation, was
found experimentally to be in a narrow range. Experimentalists
have measured the ground-state trimer dissociation point near
several Feshbach resonances causing a divergence of the
scattering lengths [17], for different species [2,3,6,9,10,14,17],
and found that it almost always occurs around adiss ≈ −9.9ā,
where ā = 2π/�(1/4)2lvdW is the average scattering length of
van der Waals potentials [38]. Since there is an approximate
relation between ā and the effective range re [43,44],

re

a
= 2

3

�(1/4)4

(2π )2

ā

a

[(
ā

a

)2

+
(

ā

a
− 1

)2]
, (16)

this corresponds to adiss/re ≈ −2.76. Experimental measure-
ments of adiss/re for different species are represented in Fig. 10.
It is quite remarkable that the scaled helium potential also
gives a dissociation point adiss/re ≈ −2.82 (or, equivalently,
adiss/ā = −10.26) which lies in the same narrow range.
Furthermore, the model potentials considered in this paper
(Gaussian and separable potential), without any three-body
interaction, also give a consistent value adiss/re ≈ −2.70 of
the dissociation point. This shows that the use of these model
potentials to interpret experiments leads to a good estimate of
the dissociation point, as noted before [21,22]. Why it does so
is, however, a puzzling question, since we know from calcula-
tions with other or deeper potentials that the dissociation point
can change significantly [23]. This suggests that under some
condition yet to be understood, the effective range may not only
determine the nonuniversal variations, but also the three-body
parameter, thereby determining the full low-energy three-body
spectrum [45].

2. Trimer dissociation at the dimer threshold

In the universal theory, the trimers dissociate at the dimer
threshold at some positive value of the scattering length. As
we have already pointed out, in our calculations, because of
the finite-range effects, the excited trimer does not dissociate
but rather comes very close to the dimer threshold before
eventually going away from it. This can be seen from the local
minimum in Fig. 6. This nonuniversal feature is qualitatively
reproduced by the local and separable Gaussian potential
models, but the height and location of the minimum are
different for different models.

This suggests that in general the trimer energy near the
dimer threshold depends on details of the potential other than
the effective range. Therefore, such a model dependence could
explain the fact that models based on the effective range
could not reproduce the nonuniversal deviations of the trimer
energy near the dimer threshold which were experimentally
observed in [15,16]. The situation studied here, however, is a
shape resonance obtained by scaling the interaction potential,
which is not the same as the Feshbach resonances used in
the experiments. Besides the possibility of underestimated
uncertainties in the models or the experiments, other effects
such as multichannel couplings and nontrivial effects of
three-body forces could also play a role.

IV. CONCLUSION

In this work, we have studied the Efimov physics of three
4He atoms as a simple but realistic example to understand the
nonuniversal variations of the trimer energy with respect to
the scattering length. We found that nonuniversal two-body
corrections to the universal theory alone are not sufficient to
fully reproduce these variations, and a variable three-body
parameter is needed. However, the variations of this three-body
parameter do not seem to follow any simple rule, and are
model dependent. On the other hand, ad hoc but simple
two-body potentials, such as separable Gaussian potentials
adjusted to have the same scattering length and effective range,
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reproduce remarkably well the nonuniversal variations of the
trimer energy, and can constitute relatively accurate substitutes
for single-channel realistic interactions provided that a small
and localized three-body force is introduced to properly shift
the energy. These results suggest that, in general, beyond the
usual Efimov universal scenario occurring for higher-excited
trimers, the whole spectrum follows a more specific class
of universality determined only by the scattering length, the
effective range, and the strength of a three-body localized

force setting the three-body parameter, i.e., the position of
highly-excited trimers.
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