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Analytical model of transit time broadening for two-photon excitation in a three-level
ladder and its experimental validation
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We revisit transit time broadening for one of the typical experiment designs in molecular spectroscopy, that of
a collimated supersonic beam of particles crossing a focused Gaussian laser beam. In particular, we consider a
Doppler-free arrangement of a collimated supersonic beam of Na2 molecules crossing two counterpropagating
laser beams that excite a two-photon transition in a three-level ladder scheme. We propose an analytical two-level
model with a virtual intermediate level to show that the excitation line shape is described by a Voigt profile and
provide the validity range of this model with respect to significant experimental parameters. The model also
shows that line broadening due to the curvature of laser field wave fronts on the particle beam path is exactly
compensated by increased transit time of particles farther away from the beam axis, such that the broadening
is determined solely by the size of the laser beam waist. The analytical model is validated by comparing it
with numerical simulations of density-matrix equations of motion using a split propagation technique and with
experimental results.
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I. INTRODUCTION

The limited interaction time of atoms or molecules with
the exciting laser field is well known to affect resolution in a
variety of spectroscopy applications, including Doppler-free
two-photon spectroscopy [1–7], saturated absorption spec-
troscopy [8–13], photon echo spectroscopy [14,15], precise
determination of the optical frequency [16–18], heterodyne
molecular spectroscopy [19,20], and others. Here, we consider
the spectral line broadening caused by finite transit time τtr

of particles through a laser beam, which is a typical concern
for atomic and molecular beam experiments. The transit time
broadening is further affected by the finite width of the velocity
distribution of particles in the beam, which leads to an effective
distribution of transit times. Given a sufficiently short transit
time, the measured linewidths in the excitation or absorption
spectra become notably larger than the natural linewidths of
optical transitions.

One can distinguish between two qualitatively different
situations depending on how the transit time τtr compares
to the natural lifetime τsp of the excited level. If τtr � τsp,
the line broadening can take place due to nonstationary
effects, such as velocity-selective optical pumping [4,7,11],
depletion broadening in the weak excitation limit [21], or
transit time relaxation [22–24]. Transit time effects in this
long interaction time limit have been well described in the
above-cited studies; therefore we shall not address them in this
paper. If τtr becomes comparable to (or smaller than) τsp, the
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transit time notably affects the observed spectral linewidths
[25,26]. Intuitively, this broadening can be understood from
Heisenberg’s uncertainty principle (in what follows atomic
units are used): �τ�ε ∼ 1. Uncertainty of energy �ε of an
excited state is affected not only by its spontaneous lifetime
(�τ ≈ τsp) but also by the transit time (�τ ≈ τtr ). Hence, a
decreased transit time will lead to an increased uncertainty
of energy, which will manifest itself in a spectroscopic
measurement as line broadening.

A semiquantitative representation of the broadened
linewidth can be obtained using a simple model, which
assumes adiabatical switching of the laser-atom interaction.
Let us consider the equations of motion for density matrix ρ

in the general case of a quantum system of n levels [27,28]:

dρ

dt
= −i[H,ρ] − 1

2
(�ρ + ρ�) + L(ρ). (1)

The Hamiltonian H describes the “atom plus laser field” sys-
tem, the diagonal matrix �ij = �iδij describes the spontaneous
emission with decay constants �i = 1/τ (i)

sp , and L(ρ) describes
the cascade effects. Note that for an open system L(ρ) = 0.
In the rotating-wave approximation (RWA) and under the
bare states representation [29] Eq. (1) can be reduced to a
steady-state form by averaging both sides of the equation over
the light-atom interaction time T , 〈· · ·〉 = T −1

∫ T

0 dt . . ., and
assuming ρ(T ) ≈ 〈ρ〉 with 〈[Hst ,ρ]〉 ≈ [〈Hst 〉,〈ρ〉]:
ρ(0)

T
= 〈ρ〉

T
+ i[〈Hst 〉,〈ρ〉] + 1

2
(�〈ρ〉 + 〈ρ〉�) − L(〈ρ〉),

(2)

where Hst is the bare states representation of the Hamiltonian
H . For the diagonal matrix Tij = δij /T it is convenient to
rewrite the term 〈ρ〉/T as (T̂ ρ + ρT̂ )/2 and incorporate it
in the spontaneous emission terms. Formally, it corresponds
to redefining all decay constants as �i → �̃i = �i + 1/T

(including the ground state). Normally, atoms would enter
the laser field in their ground state i = 0; hence the initial
density matrix is ρij (0) = δi0. Note that the additional decay

012501-11050-2947/2012/86(1)/012501(9) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.012501


M. BRUVELIS et al. PHYSICAL REVIEW A 86, 012501 (2012)

terms 1/T in �̃i are partly compensated due to the generation
of new atoms by the source function on the left-hand side of
Eq. (2); for a closed system the latter ensures that the total
population in all levels i is preserved [22,23].

For a two-level atom, the Hamiltonian 〈Hst 〉 and the cascade
term L(〈ρ〉) are

〈Hst 〉 =
[ −� 〈�〉/2

〈�〉/2 0

]
,

(3)

L(〈ρ〉) =
[

0 0

0 	br�1〈ρ〉11

]
,

where � is the detuning of laser frequency off from resonance,
〈�〉 is the average Rabi frequency, and 	br is the branching
ratio, i.e., the part of the spontaneous decay going from the
upper level 1 to the lower level 0. In the limiting case of an open
system 	br = 1, while for a closed system 	br = 0. In the
weak excitation limit (i.e., when 〈ρ〉11 	 〈ρ〉00) the solution of
Eq. (2) yields the excitation spectrum P (�) = �1T 〈ρ〉11 (see
details in Sec. III A), which is described by the well-known
Lorentz function [6,28]:

P (�) = �1

1/T + �1

�̃〈�〉2

4�2 + �ω2
L

,

(4)
�ωL = �̃ = �̃0 + �̃1 = �1 + 2/T ,

where �ωL is the full width at half maximum (FWHM). It
remains to be clarified how parameter T relates to the transit
time τtr . Intuitively, it would be straightforward to assume T =
τtr , which corresponds to the uncertainty relation τtr�ε ∼ 	

with 	 = 2. However, quantum-mechanics manuals state that
the value of 	 is strongly dependent on the pulse shape of the
coupling light field.

In the present study we consider an effective two-level
system passing through a relatively weak laser beam with
a Gaussian intensity distribution. Specifically, we measure
experimentally (Sec. II) and analyze theoretically (Sec. III) line
shapes P (�) in the laser-excitation spectra of Na2 molecules
in a supersonic beam. The weak excitation limit allows us to
study “pure” transit time effects, ignoring a range of other
mechanisms, such as power broadening, formation of dark
states, interference within a system of laser-dressed states, etc.,
which arise when laser intensities are close to (or larger than)
the saturation limit and a proper theoretical treatment of which
involves complicated mathematics [9]. Using the approach
developed in [30], we shall derive an analytical expression for
P (�) for an arbitrary ratio between τtr and τsp and show that
it takes the form of Voigt’s profile.

Under the conditions of our experiment there are two
competitive processes that contribute to the formation of line
profiles. This is illustrated in Fig. 1. Tight focusing of the
laser beam ensures short transit times of molecules through
the laser beam waist of size w0, which are well below the
natural lifetime of the excited state and lead to a significant
line broadening. However, the wave-front radius R(z) of the
tightly focused laser beam rapidly changes along the laser
beam axis z on both sides of the focus, such that in all planes
other than the xy plane at z = 0 the wave fronts are curved [6].
The molecules crossing the laser beam near z ∼ 0 experience
shorter transit times and hence larger transit time broadening

FIG. 1. A laser field with a Gaussian intensity distribution
described by Eqs. (5) and (6) propagates along the z axis. It is
focused by a cylindrical lens with the focal plane at z = 0 and a
beam waist w0, and it crosses the molecular beam propagating along
the y axis. Molecules moving at distances |z| > 0 experience longer
interaction times with the laser field and hence exhibit a smaller
transit time broadening compared to molecules moving at z = 0. At
the same time, the molecules moving at |z| > 0 are crossing curved
wave fronts of the light field; hence they experience phase shifts of
the light field along their trajectories, which introduce additional line
broadening [6]. The dash-dotted line demonstrates the curvature of
a wave front with radius R(z) at distance z from the Gaussian beam
waist, which corresponds to a beam width w(z).

than the molecules crossing the laser beam farther away from
the focal plane. At the same time, the molecules crossing
the laser beam farther away from the focal plane experience
additional broadening due to phase shifts introduced by the
curved wave fronts. In Sec. III we shall demonstrate that both
competing broadening mechanisms cancel each other exactly,
such that the width of the spectral line does not change along
the z axis and is determined solely by the transit time of
molecules through the beam waist τmin = 2w0/vf , where vf

is the flow velocity of molecules in the supersonic beam.
One-photon excitation line shapes are affected by a small

but finite residual Doppler broadening even in well-collimated
supersonic beams [21,31]. In our supersonic beam the residual
FWHM Doppler width for excitation at right angles to the
beam axis at a wavelength of 633 nm is �νDop ∼ 25 MHz,
which is not acceptable for the intended studies of transit time
broadening. We therefore implement a two-photon excitation
scheme with counterpropagating laser beams, whereby the
excitation spectrum is measured by fixing the frequency of one
of the laser fields at a certain detuning off from one-photon
resonance while scanning the frequency of the other laser field
across the two-photon resonance. The two-photon excitation
is realized in a three-level ladder system of Na2 (see Fig. 2).
The first laser field P couples the populated rovibrational level
g in the ground electronic state with the intermediate level e

in the A 1�+
u state with Rabi frequency �P . The second laser

field S couples the intermediate level e with the final level f

in the 5 1�+
g state with Rabi frequency �S . In Sec. III we shall

demonstrate that such an arrangement allows us to describe
the excitation of level f in terms of interaction of a two-level
system with a single effective laser field with Rabi frequency
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FIG. 2. Three-level ladder scheme in Na2. The S laser field with
λS = 587 nm couples levels e and f and is detuned off from the
one-photon resonance by �S . Levels g and e are coupled by the P
laser field with λP = 633 nm, which is scanned across the two-photon
resonance at �P = −�S . The measured total fluorescence from level
f as a function of � = �P + �S represents the excitation spectrum
of the two-photon transition.

�eff 
 �P �S/(2|�S |). In order to fully simulate a two-level
system, we exclude direct population of the intermediate level
e by detuning the P laser field by |�P | ≈ |�S | � �e, such that
level e is converted into a virtual level. The excitation spectrum
of level f is then obtained as a function of two-photon
detuning �. In Sec. IV we shall demonstrate that theoretical
predictions obtained in such a way are in good agreement with
the experiment.

II. EXPERIMENT

The experiment was performed in a collimated supersonic
beam of Na2 molecules with a mean flow velocity vf =
1340 m/s and the full 1/e width of the velocity distribution
�v = 260 m/s. Two skimmers and a 2.3-mm-diameter en-
trance aperture of the excitation chamber collimate the beam
to the divergence angle of 0.73◦ ± 0.02◦, which corresponds
to the residual FWHM Doppler widths of 25 and 27 MHz for
the one-photon excitation wavelengths of 633 and 587 nm,
respectively. The number density of molecules in the laser
excitation zone was estimated from the known vapor pressure
inside the beam source and the geometry of the beam apparatus
as ≈2 × 1010 cm −3 using the formulas provided in [32]
and knowing that for the beam operation parameters as
in the current experiment the fraction of molecules in the
beam is about 1/10 [33]. Supersonic expansion cools the
molecules such that 99% of them are in the ground vibrational
level v′′ = 0 of the X 1�+

g state, while the distribution
over the rotational levels peaks at J ′′ = 7 with about 8.6%
of the population in this level. With these numbers and using
the formulas provided in [34] for the specific case of radiation
trapping in collimated beams, it is easy to demonstrate that the
mean number of photon scattering events for photons within
the X 1�+

g → A 1�+
u absorption band is N̄ < 1.002, and hence

any contribution to line broadening due to radiation trapping
can be safely disregarded.

The molecular beam was crossed by two counterpropa-
gating laser beams at right angles. Both laser beams were
from Coherent CR-699-21 ring dye lasers with linewidths of
1 MHz. The P laser beam (λ = 633 nm) and the S laser
beam (λ = 587 nm) were obtained by operating the dye lasers

with [2-[2-[4-(dimethylamino)phenyl]ethenyl]-6-methyl-4H-
pyran-4-ylidene]-propanedinitrile (DCM) and Rh6G dyes,
respectively. Wavelengths of both laser fields were measured
to an accuracy of ±0.0001 nm using the High Finesse WS/7
Wavemeter. The laser beams were transmitted to the excitation
chamber using single-mode polarization maintaining optical
fibers, sent through polarizers, and focused onto the molec-
ular beam using cylindrical lenses, such that the long axis
of the focus was perpendicular to the molecular beam axis
with the 1/e2 width of the beam along the x axis of ≈1 cm.
The waists 2w0 of the P and S laser beams along the z axis
were measured by the THORLABS Optical Slit Beam Profiler
BP104-VIS as (26.1 ± 0.5) and (86 ± 0.5) μm, respectively,
and their linear polarizations were set parallel to the molecular
beam axis. The effective transit time of molecules through the
more tightly focused P laser beam was τtr = 2w0/vf = 19 ns.
For comparison, natural lifetimes of the levels e and f are
τe = 12.45 ns [35] and τf = 35 ns [36], respectively. The
counterpropagating arrangement of laser beams reduced the
effective Doppler broadening for two-photon excitation to
about 1 MHz.

The P and S laser fields with frequencies ωP and ωS ,
respectively, coupled the ladder of three Na2 rovibrational
levels, g, e, and f , as illustrated in Fig. 2. The frequency
of the S laser field was detuned off from the e-f resonance
frequency ωf e by �S = ωS − ωf e. The frequency of the
P laser field was scanned across the two-photon resonance
g-f while monitoring the total fluorescence emitted from
level f as a function of two-photon detuning �. The latter
relates to one-photon detunings as � = �P + �S , where
�P = ωP − ωeg is the one-photon detuning of the P laser
field from the e-g resonance frequency ωeg . The two-photon
excitation spectra were recorded for various fixed detunings
�S and various intensities of the P and S laser fields.

The fluorescence emitted by molecules in level f and in
the electronic state A 1�+

u state was collected by two lenses
and imaged onto a fiber bundle and a multimode fiber. Light
transmitted by the fiber bundle was sent through a cutoff
filter transmitting light with λ < 600 nm; the transmitted
fluorescence originates from transitions from level f to a
number of rovibrational levels in the A 1�+

u state. This light
was further sent to a photomultiplier, and the resulting signal
was registered by a photon counter as a function of two-photon
detuning �. The fluorescence detected in this way is hereafter
referred to as the two-photon excitation spectra P (�). The flu-
orescence transmitted by the single-mode fiber was registered
by the Ocean Optics SD2000 fiber-optics spectrometer, and it
allowed the monitoring of vibration-resolved emission spectra
from the A 1�+

u and 5 1�+
g states. Together with accurate

laser wavelength measurements, the vibration-resolved spectra
served as a reference for the identification of laser-excited
levels.

A. Experimental results

Figure 3 shows two-photon excitation spectra P (�) of level
f at different detunings �S of the S laser field. Rabi frequen-
cies were determined using the Autler-Townes effect [37,38],
and they were found to be 63 and 100 MHz for P -field and
S-field coupling, respectively. The effective Rabi frequencies
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FIG. 3. Excitation spectra of level f for different detunings �S

of the S laser field. Note that the P laser detuning �P differs
from the two-photon detuning � = �P + �S at fixed �S . Dots are
the experimental data points, while solid lines show the results of
numerical simulations described in Sec. III. Signals are normalized
to the intensity maximum. For comparison, the dashed line shows the
expected natural linewidth.

�eff 
 �P �S/(2|�S |) corresponding to the four detunings of
�S in Fig. 3 are summarized in Table I. The experimental
profiles appear to be significantly broader than the natural
linewidth (see dashed line in Fig. 3), indicating that substantial
transit time broadening takes place. These measured spectra
will be compared with the results of numerical simulations and
discussed in more detail in Sec. IV.

III. THEORETICAL LINE PROFILES

Given a sufficiently large detuning of S and P laser fields
from the respective one-photon resonances, level e is virtual,
and it can be disregarded in the Schrödinger equation and the
density-matrix equations of motion describing the dynamics
of the three-level system g-e-f . Such a step is justified by the
adiabatic elimination principle [29], when the amplitude ce of
the virtual level can be exactly expressed via the remaining two
levels. In the following section we shall consider the two-level
case, while potential effects of the virtual level will be analyzed
in Sec. III B.

A. Analysis of a two-level system

Consider two-level particles with ground state g and excited
state f propagating in the molecular beam along the y axis

TABLE I. Effective Rabi frequencies �eff of the two-photon
transition for different detunings �S (all values in MHz).

�S

204 500 1500 2000

|�eff | 15.7 6.3 2.1 1.6

with flow velocity vf , as depicted in Fig. 1. The laser beam
with wavelength λL = 2π/kL propagates along the z axis.
The particles cross the Gaussian laser beam of frequency ωL,
which is focused by a cylindrical lens to a beam waist w0

(see Fig. 1). Along the x axis the laser intensity varies only
by 5% across the particle beam diameter; hence it is justified
to consider it as constant in this direction. Along the y and z

axes the electric-field amplitude E has the following spatial
distribution:

E = ReA(y,z)E0 exp(−iωLt + ikLz),

A(y,z) = exp{−i[ϕ(z) + (kL/2q)y2]},
(5)

ϕ(z) = 1

2

[
arctan

(
λLz

πw2
0

)
− i ln

√
1 + λLz

πw2
0

]
,

q = iπw2
0/λL + z.

Equations (5) can be easily obtained using the methods
described in [39] for the case of focusing by a spherical
lens. The amplitude E depends on the slowly varying complex
function A(z,y), and it does not depend on the x coordinate
due to focusing by the cylindrical lens. Note that the phase
ϕ(z) entering Eqs. (5) is two times smaller than in the original
expression [6,39] for spherical lenses.

In order to get a better impression about the shape of the
electric-field amplitude E it is helpful to insert parameter q

into the expression for A(z,y) [6]:

A(z,y) = exp

(
− y2

w2(z)

)
exp

[
− i

kLy2

2R(z)
− iϕ(z)

]
,

w2(z) = w2
0

[
1 + (

λLz/πw2
0

)2]
, (6)

R(z) = z
[
1 + (

πw2
0/λLz

)2]
.

Then Eq. (6) describes a Gaussian beam with z-dependent
width w(z) and a y-dependent phase, which is in turn
determined by the z-dependent wave-front curvature R(z).
For a particle crossing the laser beam at coordinate z such
a distribution results in Gaussian switching of Rabi frequency:

�z(t) = �0A(tvf ,z), (7)

where �0 = E0〈f |dz|g〉 is the Rabi frequency of the g-f
coupling in the center (z = 0) of the laser beam that is linearly
polarized along the y axis. Importantly, particles traveling
in the y direction at various distances z from the molecular
beam axis experience different interaction times with the laser
field due to the variation of laser beam size w(z). As we
shall demonstrate, this latter circumstance does not affect the
excitation spectra.

A qualitative interpretation of the observed two-photon ex-
citation spectra P (�) can be obtained by using the Schrödinger
equation in RWA and bare states representation for an open
system without cascade transitions [28,38]:

d

dt
cf = −i(� − i�f /2)cf − i�z(t)/2cg,

(8)
d

dt
cg = −i�∗

z (t)/2cf ,

Jz = �f

∫ ∞

−∞
dt |cf (t)|2, (9)

012501-4



ANALYTICAL MODEL OF TRANSIT TIME BROADENING . . . PHYSICAL REVIEW A 86, 012501 (2012)

where zero energy corresponds to the energy of level g, the
decay rate �f = 1/τnat determines the natural width of level
f , and � is the detuning of the laser frequency. The integral
Jz gives the probability for a particle traveling at distance z

to emit a photon; i.e., it describes the excitation spectrum of a
single particle.

Initially, a particle entering the excitation zone is in level g,
which sets the boundary conditions for the amplitudes of levels
g and f as cf (−∞) = 0 and cg(−∞) = 1. Following [30],
we assume that the weak excitation limit implies a negligible
depletion of the ground state and set cg 
 1 at all times, thus
obtaining from Eqs. (8) an explicit time dependence of cf (t).
The latter determines the induced electric dipole moment
d+(t) = 〈ft |̂d|gt 〉 = c∗

f (t)〈f |̂d|g〉 and allows us to find the
observable fluorescence signal Jz after performing the Fourier
transform c̃f (ω′) of the amplitude cf (t):

Jz =
∫ ∞

−∞
dω′Iz(ω

′), Iz(ω
′) = �f |̃cf (ω′)|2/2π . (10)

In order to find c̃f (ω′), it is convenient to rewrite Eqs. (8) in
the Fourier space:

iwc̃f (ω′) = i(� − i�f /2)̃cf (ω′) − i�̃z(ω
′)/2, (11)

�̃z(ω
′) = �0

√
2πq

ikLv2
f

exp

(
−iϕ(z) + iqω′2

2kLv2
f

)
. (12)

Equation (12) gives an explicit representation of the Fourier
transform of Rabi frequency �z(t) (7) for the Gaussian
function A(z,tvf ), Eq. (5). Equation (11) immediately yields

Iz(ω
′) = �f

|̃cf (ω′)|2
2π

= 1

2π

(
�f |�̃z(ω′)|2

4(ω′ − �)2 + �2
f

)
. (13)

Since the equations are written in RWA, the reference point
of frequency ω′ is the laser frequency: ω′ = ω − ωL. Inserting
the �̃z expression (12) into (13), we obtain Iz(ω′) for the case
of excitation by a Gaussian laser beam:

Iz(ω
′) = w2

0

2v2
f

√√√√√1 + 4z2

w4
0k

2
L

1 + 2z

w2
0kL

�f �2
0 exp

( − w2
0ω

′2

2v2
f

)
4(ω′ − �)2 + �2

f

. (14)

The excitation spectrum P (�) of an individual particle at
coordinate z is identical to the probability Jz [Eq. (9)], and
it is obtained by integrating Iz(ω′) over frequencies ω′ [see
Eq. (10)]. The integration yields a Voigt profile resulting from
the convolution between Gaussian and Lorentz functions [40]:

Pz(�) = τ 2
tr�f �2

0

8

√√√√√1 + 4z2

w4
0k

2
L

1 + 2z

w2
0kL

∫ ∞

−∞

dω exp
(−τ 2

trω
2

8

)
�2

f + 4(ω − �)2
, (15)

where τtr = 2w0/vf . Importantly, coordinate z does not enter
the integral determining the dependence of Pz on �. Hence,
all particles have identical excitation spectra regardless of the
distance z from the beam waist at which they cross the laser
beam; the only parameter varying with z is the amplitude
factor, which determines how many molecules at a given z

contribute to the total signal. The result represented by Eq. (15)
is significant: the line shape does not depend on z. This

surprising result can be interpreted in terms of transit time
and phase shift broadening. An increase in z results in larger
phase shifts along the trajectory of a traversing molecule and
also larger transit times. While the broadening due to the phase
shift increases, the broadening that arises from larger transit
times decreases, leading to broadening that is independent of z.

Note that according to our definition τtr = 2w0/vf the
transit time corresponds to the time interval needed for a
molecule traveling along z = 0 to traverse the full width at e−2

of the spatial laser intensity distribution. Hence, the function
Pz(�) is associated with the central trajectory of particles
(z = 0).

In the limiting case of a very short transit time τtr 	 τnat =
1/�f the excitation spectrum given by Eq. (15) reduces to
a Gaussian profile Pz(�) ∼ exp(−τ 2

tr�
2/8), which coincides

with the textbook result described in [6]. The corresponding
FWHM is �ωG = 4

√
ln 4/τtr . The other limiting case of a

very large transit time τtr � τnat results in the Lorentz profile
with FWHM determined solely by the natural broadening:
�ωLor = �f . For all intermediate cases the FWHM of the
Voigt profile (15) can be accurately (within an error bar better
than 0.02%) approximated by the expression given in [41]:

�ωV = 0.5346�f +
√

0.2166�2
f + 22.18/τ 2

tr . (16)

Our derivation of Eq. (15) is valid in the weak excitation
limit, when only a small fraction of population is pumped out
of the ground state during the interaction with the laser field.
For an open system it means that the probability for an atom
in the upper level to emit a photon, which is described by
P (�), is equal to the probability of ground-state depletion.
Hence, the result (15) is valid if Pz=Rb

(0) 	 1 for molecules
experiencing the longest interaction time with a resonant laser
field at z = Rb, where Rb is the molecular beam radius (Rb =
1.15 mm in our experiment). Using the estimates of the Voigt
profile provided in [41], the probability can be simplified to

Pz=Rb
(0) 
 πτ 2

tr�
2
0

2(8 + √
2πτtr�f )

√
1 + 2Rb

w2
0kL

	 1. (17)

Equation (17) has a clear physical meaning. If �f is disre-
garded, the equality τtr�0 = π corresponds to the realization
of a π pulse. Inequality (17) is equivalent to the requirement of
insufficient laser power for realization of population inversion.

Note that mechanisms of the formation of Voigt profile
P (�), Eq. (15), in the case of collimated beams and in the case
of thermal gases are different. In the former case all molecules
have nearly the same velocity vf , and the Voigt profile results
from Gaussian switching of coupling between the molecules
and the laser field, while in the latter case it results from the
Maxwell velocity distribution of the absorbing and emitting
molecules.

B. Effect of the intermediate level

When the intermediate level e is treated as virtual, care
should be taken to properly take into account constraints on
all relevant parameters of the three-level system. Even a weak
coupling of both laser fields with level e results in dynamical
Stark shifts of the other two levels, g and f [42,43]. Such shifts
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TABLE II. Constraints for applicability of the effective two-level
model. Row (5∗) is not mandatory and is need for the optional
requirement |Ce| < |Cf |.

N Parameters Restrictions

(1) �P ,�S |�P |,|�S | 	 ωP ,ωS,|ωP − ωS |
(2) �P ,�S |�P |,|�S | � �e,�f

(3) �P ,�S τtr |�P | � 1; τtr |�S | � 1
(4) �P ,�S |�| = |�P + �S | 	 |�P |,|�S |
(5∗) �S |�S | > 2|�|
(6) �̃g |�P |2�eτtr 	 4�2

P

(7) �εi �P ≈ �S

(8) �εi τ
(S)
tr ≈ τ

(P )
tr

(9) �eff |�eff | 	 max{1/τtr ,�f }

may noticeably broaden the spectral profile of the effective
two-photon transition g → f . For level e to be validly treated
as virtual, a number of conditions have to be satisfied, as
summarized in Table II.

Strictly speaking, the line shape P (�) should be consid-
ered either in the framework of density-matrix formalism
[27] or using the Floquet theory [44,45]. However, since
both approaches involve relatively complicated treatment, we
shall rely instead on the more transparent analysis of the
Schrödinger equation in RWA for an open system [38].

The constraints of Table II can be interpreted as follows.
Row (1) represents the validity conditions of RWA, which are
discussed in detail in [45]; it requires that there should be no
interplay between couplings by both laser fields: each laser
excites only one relevant transition and not the other one.

To prevent levels g and f from sharing their population with
level e, the one-photon detunings of the P and S laser fields
should be kept sufficiently large [row (2) of Table II] [42]. This
allows one to disregard the presence of the decay constants �i

(i = g,f ) when they are combined with the detunings �i .
Choosing the energy of bare state e as εe = 0, the energies
of bare states g and f become εg = �P and εf = −�S ,
respectively (see Fig. 2); the two-photon detuning is expressed
as � = εg − εf = �P + �S .

The population of level e is associated with the excitation
of electric dipole oscillators of g-e and e-f with the decay
constants �ei = (�i + �e)/2 (i = g,f ). If the oscillator exci-

tation times τei 
 1/

√
�2

ei + �2
i 
 1/|�i | are much smaller

than the transit time, i.e., when [see row (3) of Table II]

τtr |�i | � 1, εg = �P , εf = −�S , (18)

then the amplitude Ce(t) of level e immediately adjusts to
the amplitudes Ci(t) = C̃i(t) exp(−iεi t), whereby C̃i(t) is a
comparatively slowly varying function of time. The procedure
of adiabatic elimination of Ce(t) yields [28,29]

Ce(t) = �P (t)

2εg

Cg(t) + �∗
S(t)

2εf

Cf (t). (19)

After insertion of the expression for Ce into the Schrödinger
equation the three-level problem reduces to an effective two-

level form:

d

dt
Cf = −i

(
εf − i

�f

2
+ |�S |2

4εf

)
Cf − i

�S�P

4εg

Cg,

(20)
d

dt
Cg = −i

(
εg + |�P |2

4εg

)
Cg − i

�∗
P �∗

S

4εf

Cf .

Here, the nondiagonal elements �̃f,g = �S�P /4εg and
�̃g,f = �∗

P �∗
S/4εf correspond to the effective two-level Rabi

frequencies �eff/2 [cf. Eqs. (8)]. Usually, these elements
should be self-conjugated (�̃g,f = �̃∗

f,g), and it is possible
to meet this requirement by imposing the restriction presented
in row (4) of Table II for the two-photon detuning �. Under
such conditions εg 
 εf and �eff becomes (see also in [46])

�eff 
 �S�P

2�P


 −�S�P

2�S

. (21)

In general, Eqs. (20) are not self-conjugated, which is due
to the fact that level e is slightly excited and thus not
fully virtual. This excitation channels a small fraction of the
population out of the effective two-level system g-f , leading
to nonconservation of the total population |Cg|2 + |Cf |2. The
situation changes when two-photon resonance is realized at
εg = εf (i.e., �P = −�S): a stable dark state consisting
exclusively of levels g and f is formed [28,42,47], which
prevents the population flow to level e, which thus restores the
self-conjugation of Eqs. (20).

For the intermediate level to be treated as virtual it is
necessary to ascertain that the population |Ce|2 of level e is
negligible. For this purpose it is comfortable to use the well-
known estimate of the amplitude |Ce| ∼ |�P |/|2�P | [28] and
compare it with the amplitude |Cf | ∼ |�eff|/|2�|. Taking into
account the expression for �eff (21), the requirement |Ce| <

|Cf | results in an additional constraint on the experimental
parameters given in row (5∗) of Table II. Note, however,
that such a requirement is not mandatory for the validity of
Eqs. (20); hence row (5∗) is optional.

IV. RESULTS AND DISCUSSION

In the solution of Eqs. (20) care should be taken due to the
presence of the terms

�εf = |�S |2
4εf

, �εg = |�P |2
4εg

, (22)

which have the physical meaning of dynamic Stark shifts due to
coupling with the intermediate level e and can strongly modify
the energies of bare states g and f with respect to the initial
two-photon detuning. These energy shifts are also associated
with the so-called reactive effects in atom-light interaction
[42]. The interaction introduces additional loss of population
from levels g and f due to sharing their population with level
e, and the decay constants should be accordingly modified to
account for this effect [42]:

�̃f = �f + |�S |2
4�2

P + �2
e

�e, �̃g = |�P |2
4�2

P + �2
e

�e. (23)

In Eqs. (20) the additional terms entering �i (associated with
the so-called dissipative effects) have been ignored since,
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according to row (2) of Table II, we have disregarded them
compared to energy shifts �εi (22).

A. Other constraints of the two-level model

In realistic experiments one can seldom isolate a closed
three-level system; open three-level systems prevail. In order
to avoid depletion and power broadening in the excitation
spectrum of level f , one should therefore ensure that all
parameters describing the interaction of this system with laser
fields fulfill a number of additional requirements that are
summarized in rows (6)–(9) of Table II. Row (6) corresponds
to �̃gτtr 	 1 and implies that depletion of the ground state is
negligible [21]. We assume that both laser beams are Gaussian,
Eq. (6), such that molecules experience Gaussian switching of
Rabi frequencies:

�(P )
z (t) = �P AP (z,tvf ),

(24)
�(S)

z (t) = �SAS(z,tvf ).

During the interaction with laser fields the energy level
shifts �εi(t) (i = g,f ) are time dependent, and they follow
the switching of Rabi frequencies �(P,S)

z (t). The two-photon
detuning �(t) = � + �εg − �εf is swept around its initial
value � = εg − εf , effectively leading to a blurred two-photon
resonance. There are two scenarios how this can be avoided:
(i) by using equal Rabi frequencies and equal durations of
both laser pulses [rows (7) and (8) in Table II] or (ii) by
keeping the values of Rabi frequencies �P and �S close
while limiting the value of �eff [row (9) in Table II]. The
first approach ensures that �εf (t) 
 �εg(t) and �(t) 
 � at
all times. The second approach makes use of the fact that �eff

is well below the saturation limit and meets the requirement
of Eq. (17); since |�εi(t)| ∼ �eff , the amplitude of sweep
of the two-photon detuning �εf (t) − �εg(t) is much smaller
than the characteristic linewidth (∼max{1/τtr ,�f }), such that
it cannot notably affect the two-level excitation profile (15).

In practice it may be nontrivial to precisely realize scenario
(i) by satisfying the requirements of rows (7) and (8) of Table II.
Moreover, in the beginning and at the end of laser-molecule
interaction, when both Rabi frequencies �(P,S)

z (t) are small,
the constraint of row (5∗) is not valid. In order to ensure that
|Ce| < |Cf |, we have chosen the interaction time of molecules
with the S laser field much larger than the interaction time
with the P laser field, τ (S)

tr � τ
(P )
tr . In experiment this is easily

achieved by increasing the waist of the S laser beam. Such
an arrangement ensures that by the time when the coupling of
molecules with the P laser field becomes noticeable the value
of �(S)

z (t) is already close to its maximum. In our experiment
the transit times through the S and P laser fields are τ

(S)
tr =

63 ns and τ
(P )
tr = 19 ns, respectively. Since the amplitude of

the S laser field is nearly constant at times when the P laser
pulse evolves, we can assume AS(z,tvf ) 
 1 for the relevant
time scale. This means that the effective Rabi frequency

�(eff)
z (t) = �effAP (z,tvf )AS(z,tvf ) (25)

follows essentially the amplitude of the P laser pulse
AS(z,tvf ). For our experiment this means that transit time with
respect to the effective Rabi frequency �(eff)

z (t) corresponds to
19 ns.

B. Numerical simulation of the full sublevel system

In some experimental situations it may be difficult to
fulfill the requirements of Table II, and the two-level model
may be inapplicable. In that case numerical calculations of
the dynamics involving the full level and sublevel system
are required. In our earlier study [36] we described a
computational scheme that allows one to perform such exact
numerical modeling for the level system shown in Fig. 2
taking into account the full Zeeman sublevel structure and
possible cascade effects. Following that scheme, we employ
the split propagation technique [48,49] to solve numerically
the density-matrix equations (1). From the known molecular
transition moments [50,51] we estimate that about 5% of the
population returns from level e to level g and about 30%
returns from level f to level e via spontaneous emission. The
observed fluorescence signal Sf from level f is proportional
to the integrated over time total population of level f :

Sf ∼
∑
mJ

∫ ∞

−∞
dtρf

mJ ,mJ
(t). (26)

We assume that initially all Zeeman sublevels of the lower
level g are equally populated and no coherences are present.
The dependence of the Rabi frequency on the magnetic
quantum number mJ is given by Clebsch-Gordan coefficients.
Both laser fields are linearly polarized in the same direction
parallel to the molecular beam axis, implying the selection
rule �mJ = 0 for the quantization axis chosen parallel to the
directions of laser polarizations. Rabi frequencies for each
ladder consisting of three mJ sublevels are obtained from the
mean Rabi frequencies (24) as

�P (mJ ) = 1.061

8

√
82 − m2

J �(P )
z (t),

(27)

�S(mJ ) = 1

9

√
92 − m2

J �(S)
z (t).

Although we use excitation by counterpropagating laser beams
leading to the cancellation of Doppler broadening, we still
perform averaging over the thermal velocity distribution of
molecules along the molecular beam axis in order to account
for the spread of transit times for molecules of different
velocity groups.

C. Comparison between analytical and numerical results

When the constraints of Table II are met in the experiment,
the intermediate level e is to a good approximation virtual
and one can expect the two-level formulas (see in Sec. III A)
to properly describe the observed excitation spectrum. Since
the waist of the P laser beam (13 μm) is essentially smaller
than that of the S laser beam (43 μm), the profile of the
space (time) dependence of the effective Rabi frequency �(eff)

z ,
Eq. (25), coincides with that of �(P )

z (t), Eq. (24).
Figure 4 shows a comparison between the analytical two-

level result described by the Voigt profile (15) and the full
numerical simulation: neither profile is distinguishable in the
scale of the figure. Such agreement justifies our reasoning that
molecules traveling at different coordinates z with respect to
the particle beam axis exhibit essentially identical excitation
profiles despite the fact that the size w(z = 1.15 mm) of
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.

.

.

FIG. 4. Comparison of different line broadening models for
detuning �S = 2000 MHz as in Fig. 3: the gray solid line is the
result of accurate numerical simulations for the level system of Fig. 2
taking into account the full magnetic sublevel structure; the dashed
line corresponds to the two-level Voigt profile (15); the solid black
line is the Lorenz profile that takes into account only the natural
broadening of level f .

the P laser beam at the outer edge of the molecular beam
is twice the beam waste w(z = 0). The width of both the
numerical and analytical profiles is in a good agreement
with the FWHM value �νV = 42 MHz obtained from the
approximate formula (16). For comparison, natural broadening
due to the spontaneous decay of level f leads to the FWHM
Lorentz width of �νnat = 4.5 MHz.

D. Comparison with experiment

Figures 3 and 4 show that both the analytical two-level
model and the full numerical simulation appropriately describe
the observed excitation spectra: in the scale of the figure
the theoretical line profiles are indistinguishable from each
other. The coincidence of both theoretical results is due to
the fact that level e is virtual for the chosen range S field
detunings [Table II, rows (1)–(4)] and the Rabi frequencies
�P,S and �eff satisfy the weak excitation conditions [Tables I
and II, rows (5), (6), and (9)]. Hence, the two-level model is
a good approximation, and the Voigt profile (15) is practically
equal to the numerical one (see Fig. 4).

For Rabi frequencies �P (mj ) and �S(mj ) as in the present
experiment, a notable disagreement with the two-level model
can be expected for |�S | < �νV = 42 MHz, when the non-
negligible population of level e occurs due to transit time
broadening. At such detunings one-photon transitions become

.

.

.

FIG. 5. The excitation profile for the final f state in the case of
small S laser detuning. The solid line exhibits numerical results, while
dots corresponds to experimental data.

relevant, and a full numerical simulation must be performed.
Figure 5 shows an example of the excitation profile when |�S |
is smaller than the transit time broadening. The two peaks of
the profile correspond to the Autler-Townes doublet [37,38],
each component of which relates to the excitation of one of
the two dressed states resulting from coupling of level e with
level f due to interaction with the S laser field. However, even
in this case of comparatively strong coupling, the transit time
effect appears to dominate in the line broadening, and FWHM
widths of both peaks is about 44 MHz.

V. CONCLUSIONS

We have analyzed the effects of limited transit time on line
broadening in the excitation spectra for a typical experimental
situation of a beam of particles crossing focused Gaussian
laser beams. We used a two-photon excitation in a three-level
system of Na2 molecules by counterpropagating laser beams,
which enabled us to exclude Doppler broadening such that
the transit time effect is the dominant broadening mechanism.
The conclusions drawn in this paper are generally applicable
also to the case of one-photon excitation, given that Doppler
broadening is not dominant.

We have shown that the interplay between two effects
known to affect line broadening upon the interaction of
molecules with tightly focused Gaussian laser beams, the
curvature of electromagnetic field wave fronts and the increas-
ing transit time of molecules with increasing distance z from
the laser beam waist, counteract each other. The net effect
is that only one parameter, the waist size of the laser beam,
determines the transit time broadening. If the natural lifetime
is comparable to transit time, then the resultant excitation
line is described by a Voigt-like profile, a circumstance that
should be taken into account in order to correctly estimate
both the form and the width of lines in the excitation
spectra.

We have demonstrated that for sufficiently large one-photon
detunings and sufficiently low effective Rabi frequencies the
effects of transit time in a two-photon excitation can be well
described using a simple analytical two-level model. We have
also defined the range of parameters within which the two-level
model can be applied. The two-level model is validated
by comparing its results with those of accurate numerical
simulations using the density-matrix equations of motion and
split-propagation technique. The numerical simulations also
show that the distribution of transit times through the laser
beams due to finite thermal velocity distribution of molecules
in the beam can be disregarded for the typical supersonic beam
conditions, when velocity dispersion of particles in the beam is
low compared to the mean flow velocity (in our experiment the
respective ratio is ≈1 : 5). Note that the description provided
in this paper is not valid for diffusive atomic and molecular
beams as such distributions require a separate analysis due to
their broad Maxwell velocity distributions.
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