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Recent work on approximate quantum error correction (QEC) has opened up the possibility of constructing
subspace codes that protect information with high fidelity in scenarios where perfect error correction is impossible.
Motivated by this, we investigate the problem of approximate subsystem codes. Subsystem codes extend the
standard formalism of subspace QEC to codes in which only a subsystem within a subspace of states is used
to store information in a noise-resilient fashion. Here, we demonstrate easily checkable sufficient conditions for
the existence of approximate subsystem codes. Furthermore, for certain classes of subsystem codes and noise
processes, we prove the efficacy of the transpose channel as a simple-to-construct recovery map that works nearly
as well as the optimal recovery channel. This work generalizes our earlier approach [H. K. Ng and P. Mandayam,
Phys. Rev. A 81, 062342 (2010)] of using the transpose channel for the approximate correction of subspace codes
to the case of subsystem codes, and brings us closer to a unifying framework for approximate QEC.
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I. INTRODUCTION

The textbook paradigm of quantum error correction (QEC)
focuses on the case of perfect error correction [1,2], where
the code C and the noise are such that there exists a recovery
operation that completely removes the effects of the noise on
the information stored in the code. Mathematically, this idea is
captured by a set of conditions for perfect error correction [3]
that must be satisfied by the code and the noise process.

That such perfect QEC conditions can be satisfied tends
to be special rather than generic. The prototypical example
is that of independent noise acting on a few physical qubits,
and one finds codes that satisfy the perfect QEC conditions
assuming that no more than t of the qubits have errors. In such
a scenario, what is taken as the noise process E in the QEC
conditions is the part of the noise that describes t or fewer
errors, while the full physical noise process E0 contains terms
describing more than t errors, albeit with a lower probability
of occurrence. A code that satisfies the QEC conditions for E
will thus only satisfy the conditions approximately for the full
noise process E0. Furthermore, in practice, it is unrealistic to
expect a complete characterization of the noise process. Thus,
a code designed to satisfy the perfect QEC conditions for
the expected noise process will typically only satisfy those
conditions approximately for the true noise process. This
motivates the idea of approximate quantum error correction
(AQEC), where the recovery operation removes most, but not
necessarily all, the effects of noise on the information stored
in the code.

Recent studies on AQEC, using analytical [4–9] and
numerical [10–13] approaches, have discovered examples
of approximate codes that allow for the recovery of stored
information with a fidelity comparable to that of perfect QEC
codes, while making use of fewer physical resources. These
results suggest that the requirement of perfect recovery may
be too stringent for certain tasks and approximate QEC may
be more natural and practical.

In Ref. [8], we demonstrated a universal, near-optimal
recovery map—the transpose channel [5,14]—for AQEC
codes with a subspace structure, wherein information was
stored in an entire subspace of the Hilbert space of the
physical quantum system. Optimality was defined in terms
of the worst-case recovery fidelity over all states in the
code. Our analytical approach was a departure from earlier
work relying on an exhaustive numerical search for the
optimal recovery map, with optimality based on entanglement
fidelity [11,12,15]. We obtained quantitative bounds showing
the efficacy of the transpose channel as a universal and
analytical recovery operation that works well, regardless of
the noise process or the code used. This allowed for the
complete characterization of approximate subspace codes, in
terms of necessary and sufficient conditions for approximate
correctability, and provided an easy route for constructing
approximate subspace codes.

In this article, we extend our approach based on the
transpose channel to the more general case of AQEC codes
with a subsystem structure, where information is stored only
in a subsystem of the code subspace. A subsystem code
(sometimes referred to as an operator QEC code) has a
bipartite tensor-product structure, where one subsystem A

(the correctable subsystem) is correctable under the action of
the noise, while the other subsystem B (the noisy subsystem)
can be disturbed by the noise beyond repair [16–18]. The
information to be protected against noise is stored only in
subsystem A. Subspace codes can be viewed as special
cases of subsystem codes with a trivial noisy subsystem.
While this generalization does not lead to new families of
codes, the alternate perspective does sometimes lead to more
efficient decoding procedures [19,20], and hence to better
fault-tolerant schemes and improved bounds on the accuracy
threshold [21]. Starting with the Bacon-Shor codes [20] (a
family of subsystem codes arising from Shor’s 9-qubit code)
several examples of perfectly correctable stabilizer subsystem
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codes have been constructed [22]. Here, we address the general
question of characterizing approximate subsystem codes, and
explore the extent to which the transpose channel is useful
towards understanding approximate codes.

After a preliminary section setting down the basic defi-
nitions and notations, we begin by proving a set of perfect
QEC conditions (Sec. III A) that is completely equivalent to
the standard well-known QEC conditions. This alternate set of
conditions clarifies the role of the transpose channel in perfect
QEC. Furthermore, it serves as a natural starting point for
perturbation to a set of sufficient conditions for approximate
QEC (Sec. III B). We then proceed, in Sec. IV, to show the
near-optimality of the transpose channel recovery map for
AQEC for four classes of codes and noise processes. These
four classes provide evidence towards our conjecture that
the transpose channel is near-optimal for arbitrary subsystem
codes and noise processes, which, if true, would establish a
simple, analytical, and universal framework for the study of
approximate codes. We conclude with a few suggestions for
future work.

II. BASIC DEFINITIONS

We consider a decomposition of the Hilbert space of our
quantum system

H = HA ⊗ HB + K. (1)

Suppose we wish to store information in the HA factor.
HAB ≡ HA ⊗ HB is the Hilbert space of a composite system
comprising two subsystems A and B of dimensions dA and dB ,
respectively. We denote the projector onto HAB as P . P can
also be written as a tensor product P = PA ⊗ PB , where PA(B)

is the projector onto HA(B). In principle, subsystems A and B

may only correspond to mathematical tensor-product factors
in the decomposition, rather than “natural” separate physical
degrees of freedom of the quantum system. In practice, one
might prefer to work with A and B that are natural degrees of
freedom for easy experimental accessibility. Also, it is often
helpful to use a decomposition of H that is not arbitrarily
invented by the experimenter, but induced by the structure
of the noise afflicting the quantum system so as to identify
a subsystem that best ensures the survival of the stored
information.

Information is stored as a choice between states of subsys-
tem A. The state on subsystem B can be arbitrary and carries
no information. More concretely, we make use of a code C,
comprising all product states on AB,

C ≡ {ρ = ρA ⊗ ρB,∀ρA ∈ S(HA),ρB ∈ S(HB)}, (2)

where S(HA(B)) denotes the set of all states (density operators)
on subsystem A(B). The information is stored only in subsys-
tem A in that two states ρA ⊗ τB and ρA ⊗ σB differing only
in the state of B correspond to the same encoded information.

We wish to examine the longevity of the information stored
in subsystem A in the presence of noise. We describe the noise
by a quantum channel acting on AB, that is, a completely
positive (CP), trace-preserving (TP) map E : B(HAB) −→
B(PE ). Here, B(V) refers to the set of all bounded operators
on a vector space V . PE is the support of E(B(HAB)), or
equivalently, the support of E(P ). E can be specified by a

set of Kraus operators {Ei}Ni=1, so that E acts as

E(ρ) =
N∑

i=1

EiρE
†
i . (3)

That E is TP translates into the statement
∑N

i=1 E
†
i Ei = P .

The Kraus representation of a CPTP channel is nonunique: If
{Ei} is a Kraus representation of E , then {Fj ≡ ∑

i uijEi}, for
unitary (uij ), is a Kraus representation of the same channel.
A recovery operationR : B(PE ) −→ B(HAB) performed after
each application of the noise E , to attempt to reverse the effects
of the noise, is also described as a CPTP map.

Since information is stored in subsystem A only, we
are concerned only with how well the noise preserves the
information initially stored in A, while any state on B can be
distorted beyond repair by the noise. Heuristically, we say that
a code C is approximately correctable under noise E if and
only if there exists a CPTP recovery map R such that

trB[(R ◦ E)(ρ)] � trB(ρ), ∀ρ ∈ C, (4)

where trB(·) denotes the partial trace over subsystem B.
This heuristic notion is formalized by quantifying the

deviation of the recovered state from the initial state in terms
of the fidelity between the two states. The fidelity between two
states ρ and σ is F (ρ,σ ) ≡ tr

√
ρ1/2σρ1/2. For the case of ρ

being a pure state ψ ≡ |ψ〉〈ψ |, F can be written as

F (|ψ〉,σ ) ≡
√

〈ψ |σ |ψ〉. (5)

We define the fidelity loss for state ρ, ηR{ρ}, under noise E
and recovery R, as the deviation from 1 of the square of the
fidelity between the initial state and the recovered state, that
is,

ηR{ρ} ≡ 1 − F 2(trB(ρ),trB[(R ◦ E)(ρ)]). (6)

The performance of a recovery R on a code C is then
characterized by the fidelity loss for C defined as

ηR{C} ≡ max
ρ∈C

ηR{ρ}. (7)

How well R recovers the information initially stored in
subsystem A is hence gauged by the worst-case fidelity (over
all states in the code) between the initial and recovered states.
Because the fidelity is jointly concave in its arguments, the
worst-case fidelity is always attained on a pure state on AB.
The maximization in Eq. (7) can thus be restricted to pure
states on AB only. Often, when the meaning is clear from the
context, we will drop the argument from ηR{C} and simply
write ηR.

Let Rop be the recovery map with the smallest fidelity loss
among all possible recovery maps for code C, that is,

ηop{C} ≡ ηRop{C} = min
R

ηR{C}. (8)

We refer to Rop as the optimal recovery, and ηop as the optimal
fidelity loss. As is clear from the notation, whether or not a
recovery map is optimal for a given noise process depends on
the code in question.

A code C with ηop = 0 under noise E is said to be perfectly
correctable on A under E . In general, we say that a code is
ε-correctable on A under noise E if ε � ηop, which means
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that it is possible to recover the information stored in A

with a fidelity no smaller than
√

1 − ε. Approximate noiseless
subsystems are included within this framework by considering
codes for which the identity map (the “do nothing” operation)
is sufficient as an approximate recovery for the code.

Central to our analysis is a recovery map built from the
noise channel and code, known as the transpose channel (see
previous uses of this channel in Refs. [5,23–26]). The transpose
channel corresponding to a channel E and code C, denoted as
RP , is defined in a manifestly representation-invariant way as

RP ≡ PC ◦ E† ◦ N . (9)

Here, E† is the adjoint of E , that is, the channel with Kraus
operators {E†

i }Ni=1 if E has Kraus operators {Ei}Ni=1. N is a
normalization map N (·) ≡ E(P )−1/2(·)E(P )−1/2 [the inverse
is taken on the support of E(P )]. PC is the projection onto the
support of C, PC(·) = P (·)P . One can write RP explicitly in
terms of its Kraus operators {RP

i }Ni=1, where

RP
i ≡ PE

†
i E(P )−1/2. (10)

RP is trace preserving (TP) on PE . The fidelity loss obtained
using the transpose channel as the recovery is denoted by ηP .

III. APPROXIMATE QEC: SUFFICIENT CONDITIONS

A. Perfect QEC conditions

We begin with the case of perfect error correction, where
there exists a recovery map such that the fidelity of any state
on A after noise and recovery attains the maximal value of 1.
Necessary and sufficient algebraic conditions for the existence
of a perfectly correctable code for a given channel E are
expressed by the following theorem.

Theorem 1. Consider a CPTP noise process E with Kraus
representation {Ei} acting on AB, and a code C on HAB as
defined in Eq. (2). C is perfectly correctable on A under E if
and only if

PE
†
i E(P )−1/2EjP = PA ⊗ Bij , (11)

for all i,j , and Bij ∈ B(HB).
The special case of Theorem 1 for subspace codes appeared

in Ref. [8], and the proof of this generalization (provided in
Appendix A) follows a similar logic.

Algebraic conditions for perfect error correction for sub-
system codes were originally discovered in Refs. [16–18],
generalizing the well-known perfect QEC conditions for
subspace codes [3]. Compared to the original QEC conditions,
our conditions given above differ only in the appearance of the
E(P )−1/2 factor on the left-hand side of Eq. (11). However,
this alternate form of the conditions offers better intuition on
the correctability of codes. Observe that the expression on the
left-hand side of Eq. (11) is a Kraus operator RP

i Ej of the
channel RP ◦ E , from which we can immediately conclude
that trB{(RP ◦ E)(ρ)} = trB(ρ) for any ρ ∈ C, as is required
for perfect correctability on A. Theorem 1 can thus be viewed
as demonstrating correctability of codes by explicitly giving
the recovery map—the transpose channel RP —needed to per-
fectly recover the state on subsystem A after the action of the
channel E .

B. Sufficient AQEC conditions

The form of the QEC conditions given in Eq. (11) is
particularly well suited for perturbation to approximate QEC,
as was previously pointed out for the special case of subspace
codes in Ref. [8]. Theorem 1 states that RP ◦ E acts as the
identity channel on subsystem A. Perturbing Eq. (11), by
adding to the right-hand side a small correction to PA ⊗ Bij ,
modifies this to the statement that RP ◦ E acts nearly as the
identity channel on subsystem A. This provides a natural route
to sufficient conditions for approximate subsystem codes: If
the perturbation to Eq. (11) is small enough, the code is
ε-correctable on A with small ε. What remains is to relate
quantitatively the size of the perturbation to ε, which is the
content of the following theorem.

Theorem 2. Consider a CPTP noise channel E with Kraus
representation {Ei} and a code C on HAB as defined in Eq. (2).
Suppose

PE
†
i E(P )−1/2EjP = PA ⊗ Bij + �ij , (12)

for all i,j , Bij ∈ B(HB), and �ij ∈ B(HAB). Then C is
ε-correctable on A under E for ε � ηP , where

ηP ≡ max
|ψA,φB 〉

〈φB |
∑
ij

[〈ψA|�†
ij�ij |ψA〉

− 〈ψA|�†
ij |ψA〉〈ψA|�ij |ψA〉]|φB〉. (13)

Proof. The TP condition on RP ◦ E gives the
relation P = ∑

ij [PA ⊗ B
†
ijBij + �

†
ij�ij + (PA ⊗ B

†
ij )�ij +

�
†
ij (PA ⊗ Bij )]. Using this, direct computation gives

F 2[|ψA〉,(trB ◦ RP ◦ E)(|ψA,φB〉〈ψA,φB |)]
= 1 − 〈ψA,φB |

∑
ij

�
†
ij (PA − |ψA〉〈ψA|) ⊗ PB�ij |ψA,φB〉.

(14)

This yields the expression for ηP in Eq. (13) upon recalling
the definition of fidelity loss [see Eqs. (6) and (7)]. That C is
ε-correctable for ε � ηP follows since the optimal recovery
must have a fidelity loss no larger than ηP . �

While the bound ε � ηP in Theorem 2 is tight, the
maximization over all pure product states on AB in the
expression for ηP may not be easy to evaluate. Instead, we can
relax the bound and obtain a simpler (but weaker) sufficient
condition.

Corollary 3. C is ε-correctable on A under E if

ε �

∥∥∥∥∥∥
∑
ij

�
†
ij�ij

∥∥∥∥∥∥ , (15)

where ‖ · ‖ is the operator norm.
Proof. Observe that, for any pure product state |ψA,φB〉, the

expression in Eq. (13) to be maximized is bounded from above
by 〈ψA,φB | ∑ij �

†
ij�ij |ψA,φB〉 � ‖∑

ij �
†
ij�ij‖. This gives

ηP � ‖∑
ij �

†
ij�ij‖, which immediately yields the corollary

statement. �
Corollary 3 gives an easily checkable sufficient condition,

which may be more useful than Theorem 2 in the search for
approximate subsystem codes.
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Theorem 2 implies that the smallest value of ε, for a given
noise process and choice of code, can be obtained by looking
for a decomposition [Eq. (12)] such that ηP as given in Eq. (13)
is as small as possible. One can alternatively make use of
Corollary 3 and look for a decomposition with the smallest
value of ‖∑

ij �
†
ij�ij‖.

IV. TOWARDS NECESSARY AQEC CONDITIONS

The previous section discusses sufficient conditions for the
existence of approximate QEC codes. The next natural ques-
tion to ask is what about necessary conditions? For the special
case of subspace codes, we obtained the necessary conditions
by deriving a near-optimality bound for the transpose channel
recovery [8]. The near-optimality result led to the conclusion
that every approximately correctable subspace code must also
be well corrected by the transpose channel. This relation to
the transpose channel gave rise to necessary conditions for the
existence of approximate subspace codes of a form similar to
the sufficient conditions.

Extending the near-optimality bound to arbitrary subsystem
codes proved difficult. Nevertheless, as is described in this
section, we can show near-optimality of the transpose channel
for restricted classes of subsystem codes and noise processes.
More specifically, we consider four scenarios: (a) subspace
codes, with trivial subsystem B (a review of results from [8]);
(b) code states with the maximally mixed state on B; (c)
subsystem B is perfectly correctable; and (d) the noise E
destroys information on B. In each scenario, the transpose
channel works nearly as well as the optimal recovery operation,
which leads to necessary conditions on the noise process as
well as the code, provided the restrictions are satisfied.

In the broader picture of arbitrary subsystem codes and
noise processes, we believe that the transpose channel still
works well whenever the code is approximately correctable.
After all, in the case of perfect QEC, the transpose channel
is the recovery operation for perfect recovery. However, the
general near-optimality of the transpose channel is only a
conjecture at this point. Here, we seek only to provide evidence
towards the conjecture and leave the proof (or disproof) to
future work.

A. Trivial subsystem B: Subspace codes

In Ref. [8], the transpose channel was shown to be near-
optimal for subspace codes C, that is, its fidelity loss for
code C under noise E is close to the optimal fidelity loss.
For completeness, we repeat here the quantitative statement
of the near-optimality of the transpose channel, adapted to the
language suited for this paper.

Theorem 4. (Corollary 4 of Ref. [8]) Consider a subspace
code C (B is trivial), with dA denoting the dimension of HA,
and optimal fidelity loss ηop under CPTP noise channel E . The
fidelity loss ηP for the transpose channel satisfies

ηop � ηP � ηopf (ηop; dA), (16)

where f (η; d) is the function

f (η; d) ≡ (d + 1) − η

1 + (d − 1)η
= (d + 1) + O(η). (17)

The left inequality ηop � ηP of Eq. (16) is true simply
by definition of ηop. The proof of the right inequality ηP �
ηopf (ηop; dA) requires the following inequality (derived in
Ref. [8]) which holds for any pure state ψA ≡ |ψA〉〈ψA| in
a subspace code C
1 − ηop{ψA} �

√
[1 + (dA − 1)ηop{C}][1 − ηP {ψA}]. (18)

Inverting Eq. (18) and recalling the definitions of ηop and ηP as
the maximization of η(·){ψA} over all states in the code yields
the right inequality of Eq. (16).

Equation (16) implies that an approximately correctable
subspace code must necessarily be such that the fidelity loss
for the transpose channel is small. A small fidelity loss for the
transpose channel in turn requires that E has Kraus operators
that satisfy Eq. (12) with �ij small. Equation (12) with �ij

small is thus not only sufficient (as shown in Sec. III B), but
also necessary for subspace codes.

An obvious extension of the current case to subsystem codes
is one where E is a product channel, that is, E(ρA ⊗ ρB) =
FA(ρA) ⊗ FB(ρB), for CPTP (on their respective domains)
channels FA and FB . For such an E , the transpose channel is
also a product channel, namely, the product of the respective
transpose channels of FA and FB . Since there is no flow
of information between A and B, whether subsystem A is
correctable relies only on the properties of FA. We can thus
treat this case as if we have a subspace code on A under
noise FA, for which the transpose channel is immediately
near-optimal from Theorem 4.

B. Maximally mixed state on subsystem B

Consider the subset of code states where B is in the
maximally mixed state

C0 ≡
{
ρA ⊗ PB

dB

, ∀ρA ∈ S(HA)

}
⊂ C. (19)

For states in C0, the action of the noise channel E can be written
as

E
(

ρA ⊗ PB

dB

)
=

∑
is

ĒisρAĒ
†
is ≡ ĒA(ρA). (20)

ĒA is a CPTP channel on A with Kraus operators {Ēis ≡
(1/

√
dB)Ei |sB〉}, where {|sB〉}dB

s=1 is an orthonormal basis for
HB . Let us, for a moment, forget about subsystem B and ask
about the correctability of C0 (now viewed as a subspace code
on A) under the noise ĒA. Theorem 4 applies and ensures that
the transpose channel corresponding to noise ĒA and code C0,
denoted as RA,P , has fidelity loss close to that of the optimal
recovery RA,op,

ηP {C0} � ηop{C0}f (ηop{C0}; dA), (21)

for f (η; d) defined in Eq. (17).
Such a code C0 is of practical relevance whenever one

lacks control over subsystem B. Full control over subsystem A

alone is sufficient to guarantee preparation of a product code
state, while rapid and complete decoherence (for example)
causes the state on B to quickly approach a random state
well described by the maximally mixed state. Equation (21)
reassures us that, in this case, the transpose channel still works
well as a recovery map.
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We are, however, more interested in the performance of the
transpose channel on the original subsystem code C where
the state on B is unrestricted. After all, the freedom to
choose the state of B, without incurring adverse effects on the
information-carrying capability of the code, is the essence of a
subsystem code. Observe that, for any state in C0, the actions of
(trB ◦ RP ◦ E) (as usual, RP is the transpose channel for E on
code C) and (RA,P ◦ ĒA) are identical. The optimal recovery
for C0, however, need not be the same map as the optimal
recovery for C (the optimal recovery for C has to work well for
all states in C, not just those in C0). However, since C0 ⊂ C,
we have the following inequality:

ηop{C0} � ηop{C}. (22)

Furthermore, since ηf (η; d) is a monotonically increasing
function of η, we can combine Eqs. (21) and (22) to obtain the
following corollary.

Corollary 5. For the subset of code states C0 ⊂ C,

ηP {C0} � ηop{C}f (ηop{C}; dA). (23)

This says that for the code states where B is in the
maximally mixed state, which can be viewed as the “average
state” for the full degree of freedom described by B, the
transpose channel works nearly as well as the optimal recovery
operation for C.

As an aside, we note that a “state-dependent” transpose
channel is near-optimal for codes where B is always prepared
in some known state. Code C0 is a special case of this, but now
B can be in a fixed state other than the maximally mixed state.
For example, the rapid decoherence process of subsystem B

may have a fixed point that is not the maximally mixed state
(for instance, the ground state, if the noise is dissipative),
so that any initial preparation of the B state quickly relaxes
into this fixed state. Such codes should properly be viewed
as (isomorphic to) subspace codes on subsystem A. Since the
identity of the state on B is known, the optimal recovery map
for this code must make use of this knowledge. Likewise, the
associated transpose channel, to work well, must also depend
on the fixed state on B. Using similar techniques as above, one
can show

ηPφB
{CφB

} � ηop{CφB
}f (ηop{CφB

}; dA), (24)

where CφB
is the set of code states with φB as the fixed

state on B, and ηPφB
refers to the fidelity loss of the state-

dependent transpose channel with Kraus operators {(PA ⊗√
φB)E†

i [E(PA ⊗ φB)]−1/2}. This is similar to previously
known results from Ref. [5], derived in the context of
entanglement fidelity for reversing dynamics on a given input
state.

C. B is perfectly correctable

Suppose subsystem B is in fact perfectly correctable, but
we choose to use subsystem A to store the information. A
simple and often-encountered example is where the noise on
B is describable by Kraus operators that are products of Pauli
operators. More generally, any noise process that satisfies
the perfect QEC conditions for B falls under our current
considerations. Despite the perfect correctability on B, one
might still choose to store information in A, for example,

when B is experimentally inaccessible or uncontrollable, or if
A is a much larger system with greater storage capacity than
B. The transpose channel is again near-optimal in this case.

We demonstrate this near-optimality by first showing that,
for B perfectly correctable, the fidelity for a pure initial state
on subsystem A from using the transpose channel as recovery
is independent of the initial state of subsystem B.

Lemma 6. If subsystem B is perfectly correctable under
noise E , then F [|ψ〉A,(trB ◦ RP ◦ E)(ψA ⊗ ρB)], where ψA ≡
|ψA〉〈ψA|, is independent of ρB .

Proof. B perfectly correctable under noise E implies that
the perfect QEC conditions [Eq. (11) of Theorem 1 with the
roles of A and B interchanged] hold: There exists operators
Aij on A for all i,j such that PE

†
i E(P )−1/2EjP = Aij ⊗ PB .

From this, we have F 2[|ψA〉,(trB ◦ RP ◦ E)(ψA ⊗ ρB)] =∑
ij |〈ψA|Aij |ψA〉|2, which is independent of ρB . �
Lemma 6 implies the following sequence of relations:

ηP {C} = max
ρ∈C

ηP {ρ} = max
ρ=ψA⊗ρB

ηP {ρ}
= max

ψA

ηP {ψA ⊗ PB/dB}
= ηP {C0}
� ηop{C}f (ηop{C}; dA). (25)

The second equality in the first line of Eq. (25) follows from
the concavity of the fidelity, with ψA denoting a pure state. The
second line makes use of Lemma 6, and the last inequality is
just Eq. (23). Equation (25) gives exactly the right inequality
in Eq. (16) applied to the current scenario, from which we
draw the conclusion that the transpose channel is near-optimal
on A under channel E when B is perfectly correctable.

D. E destroys distinguishability on B

Suppose the noise process E satisfies the following condi-
tion.

Condition 1. For CPTP E , suppose there exists δ � 0 such
that∥∥∥∥E(ρA ⊗ ρB) − E

(
ρA ⊗ PB

dB

)∥∥∥∥
tr

� δ

∥∥∥∥ρB − PB

dB

∥∥∥∥
tr

(26)

for all states ρA ∈ S(HA) and ρB ∈ S(HB). ‖O‖tr denotes the
trace norm of O given by tr|O|.

If δ � 1, any two states onHB , after the action ofE , become
close together and nearly indistinguishable (as quantified by
the trace norm used in Condition 1) from each other. A simple
example is a product channel E = EA ⊗ EB where EB maps
all states on B to some fixed state τB . In this case, δ can be
chosen to be zero. While we have chosen, for the convenience
of the subsequent analysis, to state Condition 1 in terms of
comparing states on B before and after the channel E to what
happens to the maximally mixed state PB/dB , one is free to
choose other reference states on B if desired.

For channels and codes satisfying Condition 1, the trans-
pose channel also works well as a recovery channel, as
encapsulated in the following corollary.

Corollary 7. Given that Condition 1 is satisfied, for a
subsystem code C,

ηP � (dA + 1)ηop + 3δ + O
(
δ2,η2

op,ηopδ
)
. (27)
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The proof of this corollary is detailed in Appendix B. The
idea behind the proof is to first show that the transpose channel
works well as a recovery for the information stored in A when
B is initially in the maximally mixed state. Since Condition 1
says that E brings code states with different states on B close
together, if the transpose channel works well as a recovery
for B being initially in the maximally mixed state, it will also
work well when B is initially in a different state.

Corollary 7, like similar statements before, tells us that
the fidelity loss for the transpose channel is not much worse
than that of the optimal recovery. The additional fidelity loss
suffered from using the simpler transpose channel rather than
the optimal recovery is governed by dA as well as the parameter
δ which characterizes how badly E destroys distinguishability
between states on subsystem B.

V. CONCLUSION

We studied the role of the transpose channel in approximate
quantum error correction. We first obtained a set of conditions
for perfect subsystem error correction that explicitly involves
the transpose channel. This completes our understanding as
to why certain channels admit perfectly correctable codes,
in a particularly intuitive way. Our perfect QEC conditions
naturally lead to sufficient conditions for approximate QEC,
where the resilience to noise of the information stored in the
code is quantified in a simple way. We also demonstrated
that the transpose channel works nearly as well as any other
recovery channel for four different scenarios of codes and
noise. In all these cases, the near-optimality of the transpose
channel relies only on dA, the dimension of the information-
carrying subsystem A, and not on dB , the dimension of the
noisy subsystem that carries no information.

Using our transpose channel approach to derive necessary
conditions for approximate QEC for general subsystem codes
will provide the final missing link in our unifying and
analytical framework for understanding approximate quantum
error correction. Even disproving our conjecture that the
transpose channel is a universally good recovery operation
for approximate codes will be a useful step forward. In this
case, then, the question will be to discover a different recovery
map that can serve as a universal recovery.

Another possible extension is to consider codes that include
not just product states on AB in C (as we have done), but also
correlated states. Once there is correlation between A and B,
it is, of course, no longer clear where the information initially
resides. If one has complete control over the preparation of
the initial code states, it would be simpler to make use of
the subsystem structure and confine the information to only
one subsystem. Practically, however, experimental restrictions
may result in an initial (possibly small) correlation between
A and B, leading to a different notion of “approximate” or
imperfection in the code. Such a situation was previously
studied by the authors of Ref. [27] in the context of perfectly
noiseless subsystems that require no careful initialization.
One can ask similar questions for approximate subsystem
codes.

A separate future direction is to perform the transpose
channel recovery on experimental implementations of ap-
proximate codes. The transpose channel, like any CPTP

map, can be implemented physically using operations on
an extended Hilbert space. The more pertinent and fruitful
question, however, will be to discover simple and efficient
ways of implementing the transpose channel on a specific
physical system of our choice.

ACKNOWLEDGMENTS

P.M. would like to thank David Poulin, John Preskill, and
Todd Brun for useful discussions. H.K.N is supported by the
National Research Foundation and the Ministry of Education,
Singapore.

APPENDIX A: PROOF OF THEOREM 1

In this section, we prove Theorem 1 by demonstrating
the equivalence between Eq. (11) [statement (i) below] and
the perfect QEC conditions [statement (ii) below] derived
in [16–18].

Lemma 8. Given a CP channel E : B(HAB) → B(PE ) with
a set of Kraus operators {Ei}, the following two statements are
equivalent:

(i) PE
†
i E(P )−1/2EjP = PA ⊗ Bij , for all i,j , and Bij ∈

B(HB);
(ii) PE

†
i EjP = PA ⊗ B ′

ij , for all i,j , and B ′
ij ∈ B(HB).

Proof. (i)⇒(ii): For any i,j ,
∑

k(PA ⊗ Bik)(PA ⊗ Bkj ) =∑
k [PE

†
i E(P )−1/2EkP ) (PE

†
kE(P )−1/2EjP ] = PE

†
i EjP ,

which gives PE
†
i EjP = PA ⊗ B ′

ij , with B ′
ij ≡ ∑

k BikBkj .
(ii) ⇒(i): Let {|s〉B} be an orthonormal basis for HB . (ii)

implies

PAE
†
isEjtPA = λ(is)(j t)PA, (A1)

where Eis ≡ Ei |s〉B is an operator that brings vectors in HA

to vectors in HAB , and λ(is)(j t) ≡ 〈s|B ′
ij |t〉. {Eis} is a set of

Kraus operators for the CP channel EA : B(HA) → B(PE )
defined by EA(ρA) = E(ρA ⊗ PB). We view � ≡ (λ(is)(j t)) as
a two-index matrix, where the first index is the double index
(is), and the second is (j t). Observe that λ∗

(j t)(is) = λ(is)(j t)

(i.e., � is a Hermitian matrix). It is thus diagonalizable
[i.e., ∃U ≡ (u(is)(j t)) such that U�U † = �D , where �D is
a diagonal matrix]. More explicitly, we have∑

(i ′s ′),(j ′t ′)

u(is)(i ′s ′)λ(i ′s ′)(j ′t ′)u
∗
(j t)(j ′t ′) = δ(is)(j t)dis, (A2)

where dis are the diagonal entries of �D . Using this, we can
write Eq. (A1) in its diagonal form

PAF
†
isFjtPA = δij δst disPA, (A3)

where Fis ≡ ∑
(i ′s ′) u

∗
(is)(i ′s ′)Ei ′s ′ gives a different Kraus repre-

sentation for EA. Equation (A3) gives the polar decomposition
FisPA = √

disVisPA, where Vis is a unitary operator satisfying
PAV

†
isVjtPA = δij δstPA. Let Pis ≡ VisPAV

†
is . Then, Pis’s are

orthogonal projectors since PisPjt = δij δstPis . Direct com-
putation gives E(P ) = ∑

is disPis , that is, E(P ) is a sum of
orthogonal projectors, and hence easy to invert: E(P )−1/2 =∑

is d
−1/2
is Pis . Further algebra gives PE

†
i E(P )−1/2EjP =

PA ⊗ Bij , with Bij ≡ ∑
st

∑
kv u∗

(kv)(is)u(kv)(j t)
√

dkv|s〉B〈t |. �
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The authors of Refs. [16–18] showed that a code C is
perfectly correctable on A under C if and only if statement (ii)
is true. This fact, together with Lemma 8, proves Theorem 1.

APPENDIX B: PROOF OF COROLLARY 7

To prove Corollary 7, we first need the following lemma.
Lemma 9. Consider a subsystem code C under noise E . For

any pure state ψA ≡ |ψA〉〈ψA|,

1 − ηop

{
ψA ⊗ PB

dB

}

�
√

[1 + (dA − 1)ηop{C}]
[

1 − ηP

{
ψA ⊗ PB

dB

}]
. (B1)

The proof of this lemma proceeds exactly as in the proof
used to demonstrate Eq. (18) (see Ref. [8]), except for the
minor modification that B is a nontrivial subsystem.

With this lemma, we can prove Corollary 7.
Corollary 7. Given that Condition 1 is satisfied, for a

subsystem code C,

ηP � (dA + 1)ηop + 3δ + O(δ2,η2
op,ηopδ). (B2)

Proof. For channel E satisfying Condition 1, for any

recovery R and any state ψA ⊗ ρB ≡ |ψA〉〈ψA| ⊗ ρB ∈ C,

F 2 [|ψA〉,trB {(R ◦ E)(ψA ⊗ ρB)}]
� δ + F 2 [|ψ〉A,trB {(R ◦ E)(ψA ⊗ PB/dB )}] , (B3)

which implies

ηR{ψA ⊗ ρB} � ηR{ψA ⊗ PB/dB} − δ. (B4)

Interchanging the roles of ρB and PB/dB in Eq. (B3) yields,
similarly,

ηR{ψA ⊗ PB/dB} � ηR{ψA ⊗ ρB} − δ. (B5)

We have the following sequence of inequalities:

ηop{C} + δ � ηop{ψA ⊗ ρB} + δ

� ηop{ψA ⊗ PB/dB} [using Eq. (B4)]

� 1 −
√[

1 + (dA − 1)ηop{C}] (
1 − ηP

{
ψA ⊗ PB

dB

})
[using Eq. (B1)]

� 1 − √
[1 + (dA − 1)ηop{C}](1 − ηP {ψA ⊗ ρB} + δ)

[using Eq. (B5)]. (B6)

Rearranging Eq. (B6) and recalling that ηP = maxρ∈C ηP {ρ}
immediately gives the statement of the corollary. �
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