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Entanglement trapping in a nonstationary structured reservoir
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We study a single two-level atom interacting with a reservoir of modes defined by a reservoir structure function
with a frequency gap. Using the pseudomodes technique, we derive the main features of a trapping state formed
in the weak coupling regime. Utilizing different entanglement measures we show that strong correlations and
entanglement between the atom and the modes are in existence when this state is formed. Furthermore, an
unexpected feature for the reservoir is revealed. In the long time limit and for weak coupling the reservoir
spectrum is not constant in time.
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I. INTRODUCTION

In recent years, entanglement and quantum correlations
have attracted the attention of many physicists working in the
area of quantum mechanics [1,2]. This is due to the ongoing re-
search in the area of quantum information [3] and also because
of the advances made in different experimental disciplines,
such as in ion traps [4] and Bose-Einstein condensation [5,6].
Developments in the field of cavity QED, where experiments
in the strong coupling regime are carried out [7,8], provide
plenty of motivation for studying quantum information and
entanglement. Theoretical studies are also important in the
context of atom-light interactions inside structured reservoirs
[9], such as resonant cavities or photonic band gap materials.
The theoretically predicted atom-photon bound state could
also lead to entanglement and this can also be linked to another
problem: that of atom-laser out-coupling from Bose-Einstein
condensates [10–12], where analogous effects were predicted
in the past.

When quantifying entanglement between an atom and a
reservoir of modes, the modes can be treated collectively [13].
The system is described in terms of two subsystems and one
can use existing bipartite entanglement measures. This, of
course, does not permit the study of entanglement between
individual reservoir modes. It is also possible to partition the
reservoir and then quantify entanglement between different
parts of the reservoir [14]. A different approach is that offered
by a recently proposed measure, the density of entanglement
[15]. This measure quantifies entanglement between the atom
and different modes in terms of time-dependent distributions.

The problem of entanglement between an atom and a bath
of modes is becoming more interesting when considering
reservoirs with a spectral gap in their densities of states.
For such systems, it is well known that an atom-photon
bound state can be formed [9,16–22]. In view of this result,
it is reasonable to expect strong quantum correlations and
entanglement between the atom and the reservoir.

Motivated by this we consider here a two-level atom
coupled to a model reservoir with a single frequency gap
in its density of modes. Exploring the dynamics at different
coupling regimes, we are able to show that when a trapping
state is formed, permanent correlations are observed. Using the

pseudomodes technique [23,24], and a tripartite entanglement
measure, the tangle [25], we quantify and study the properties
of entanglement. Furthermore, a careful analysis reveals that
in the long time limit and when a trapping state is formed,
the reservoir spectrum is not constant in time. This is due to a
continuous coupling between the atom and individual modes,
which has zero net energy flow, but induces a permanent
effective coupling between the reservoir modes. In terms of
the pseudomode description, the population trapping arises
because of the dark state between the atom and one of the
pseudomodes.

This paper is organized as follows. In Sec. II, we introduce
the model and the pseudomodes method. In Sec. III, we
discuss the formation of the trapping state and the reservoir
dynamics in the long time limit. In Sec. IV, an analysis of
entanglement dynamics in terms of the tangle and the density
of entanglement is presented. We conclude in Sec. V, and in the
Appendix a synopsis of the pseudomodes method is provided.

II. MODEL

The system we consider in this work, consists of a two-level
atom coupled to a reservoir of harmonic oscillators with
annihilation and creation operators âλ and â

†
λ, respectively.

Within the rotating wave approximation, the Hamiltonian
reads (h̄ = 1)

H =
∑

λ

ωλâ
†
λâλ + ω0|1a〉〈1a|

+
∑

λ

gλ(â†
λ|0a〉〈1a| + âλ|1a〉〈0a|), (1)

where gλ is the coupling between the mode λ and the atomic
transition |1a〉 → |0a〉. The atomic transition frequency is ω0,
whereas the λ-mode frequency is ωλ.

For the purposes of the analysis that follows, it is very
useful to introduce the reservoir structure function D(ωλ),
which reflects the properties of the density of modes [23].
This is defined through

ρλ(gλ)2 = �2
0

2π
D(ωλ), (2)
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and is normalized such that∫ ∞

−∞
dωD(ω) = 2π. (3)

With this normalization, a measure of the overall coupling
strength is �0, which is given by

�2
0 =

∑
λ

(gλ)2. (4)

In Eq. (2), ρλ is the density of modes, i.e., the number of modes
with frequencies in the interval ωλ to ωλ + dωλ.

Previous studies revealed that the formation of an atom-
photon bound state is plausible, when an atom is coupled to
a reservoir with a gap in its structure function [9,16–22]. It
has also been suggested that the formation of such a bound
state is an indication of entanglement between the atom and
its environment [26,27]. In order to explore entanglement
dynamics between an atom and a reservoir with a gap at a
given frequency ωc, we utilize the following structure function
for the reservoir:

D(ω) = W1
�1

(ω − ωc)2+(�1/2)2
− W2

�2

(ω − ωc)2+(�2/2)2
.

(5)

This superposition of Lorentzians with the same center
frequency ωc, widths �j , amplitudes Wj , and opposite signs
will result in a gap, i.e., D(ωc) = 0, if �1W2 = �2W1. Because
of the normalization condition Eq. (3), we also have that
W1 − W2 = 1.

Starting with the atom initially excited and the reservoir in
the vacuum state, one has to solve the Schrödinger equation to
obtain the system dynamics for t > 0. This can be done either
with analytical methods, e.g., the Laplace transform [20,22],
or numerical integration [9,16,17]. An alternative approach is
that offered by the pseudomodes method [23,24].

According to this method, the reservoir modes are replaced
by two degenerate pseudomodes [23,24]; see Fig. 1. The two
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FIG. 1. Diagrammatic representation of the atom-pseudomodes
system. The band-gap reservoir is represented by two interacting
pseudomodes PM1 and PM2. The two pseudomodes are also coupled
to two independent Markovian reservoirs that induce the decay of the
pseudomodes at rates �′

1 and �′
2, respectively. The atom couples only

to one of the two pseudomodes. For a perfect gap, i.e., D(ωc) = 0,
the decay rate for the first pseudomode �′

1 is zero.

pseudomodes are interacting with each other, while one of
them is also coupled to the atom. Finally, the two pseudomodes
decay at rates �′

1 and �′
2, respectively.

The dynamics of the system are described by a Markovian
master equation [23,24]

ρ̇(t) = −i [H0,ρ(t)]

−
2∑

j=1

�′
j

2
[â†

j âj ρ(t) − 2âj ρ(t)â†
j + ρ(t)â†

j âj ], (6)

with the Hamiltonian

H0 = ω0|1a〉〈1a| + ωc(â†
1â1 + â

†
2â2)

+�0(â†
2|0a〉〈1a| + â2|1a〉〈01|)

+V (â†
1â2 + â1â

†
2), (7)

where â1 (â†
1) and â2 (â†

2) are the annihilation (creation)
operators for the two pseudomodes, respectively. The vacuum
and excited states for the atom are |0a〉 and |1a〉. The coupling
�0 is given by Eq. (4), and V = √

W1W2(�1 − �2)/2. The two
decay rates are �′

1 = W1�2 − W2�1 and �′
2 = W1�1 − W2�2.

For a perfect gap D(ωc) = 0, the decay rate for the first
pseudomode is �′

1 = 0, �′
2 = (�1 + �2), and V = √

�1�2/2.
The solution for the master equation (6) reads

ρ(t) = �j (t)|0a0102〉〈0a0102| + |ψ̃(t)〉〈ψ̃(t)|, (8)

where

|ψ̃(t)〉 = ca(t)|1a0102〉 + a1(t)|0a1102〉 + a2(t)|0a0112〉.
(9)

The vacuum state |0a0102〉 population is �j (t), and the
probability amplitudes for the atom and the first and second
pseudomodes are ca(t), a1(t), and a2(t), respectively. A syn-
opsis of the pseudomode method is provided in the Appendix,
along with the expressions for the probability amplitudes ca(t),
a1(t), and a2(t) and the population �j (t).

III. POPULATION TRAPPING AND NONSTATIONARY
ENVIRONMENT

For a resonant system ωc = ω0, and when the perfect gap
condition �1W2 = �2W1 is met, we have that D(ωc) = 0, and
in the long time limit a trapping state is formed [24]. Upon
solving the equations for ca(t), a1(t), and a2(t) (see Appendix),
and taking their limits for t → ∞, we have that

ca(∞) = (1 + η2)−1, (10)

and

a1(∞) = η(1 + η2)−1, (11)

where η = 2�0/
√

�1�2. The probability amplitude for the
second pseudomode is a2(∞) = 0 and the population of the
vacuum state is

�j (∞) = η2(1 + η2)−1. (12)

A plot of |ca(t)|2, |a1(t)|2, |a2(t)|2, and �j (t) for �1 = 10�0

and �2 = 0.2�0 is shown in Fig. 2(a).
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FIG. 2. (Color online) (a) The populations |ca(t)|2 (black),
|a1(t)|2 (red short-dashed), |a2(t)|2 (blue dashed), and �j (t) (green
long-dashed), for �1 = 10�0, �2 = 0.2�0, and W1 = 50W2. (b) The
final populations |ca(∞)|2 (black), |a1(∞)|2 (red short-dashed), and
�j (∞) (green-dashed) as functions of the dimensionless parameter
η = 2�0/

√
�1�2.

From the above three equations it is evident that in the
long time limit, and in the weak coupling regime η � 1, a
fraction of the population will remain trapped in the excited
atomic state and the second pseudomode; see Fig. 2(b). The
remaining population is irreversibly lost to the reservoir (or
more precisely, to the Markovian part of the reservoir [28]).
From Fig. 2(b) and Eqs. (10)–(12) we can see that population
trapping, i.e., |ca(∞)|2, is significant for η � 1. The population
lost to the reservoir, i.e., the sum of the populations for the
pseudomode 1 |a1(∞)|2 and the vacuum state �j (t), remains
low for η � 1; see Fig. 2(b). As we move to the strong coupling
regime η � 1 losses increase, and eventually for η 	 1 all the
population is transferred to the reservoir.

An interesting feature of the trapping state is that in the
long time limit the reservoir modes do not reach a steady state.
This can be evidenced in the reservoir spectrum for t → ∞.
Using the definition for the reservoir spectrum [29],

S(ωλ,t) = ρλ|cλ(t)|2, (13)

and Eq. (A17) for t(�1 + �2) 	 1, we get the following
expression for S(ωλ,t):

S(ωλ,t) = 8�2
0D(ωλ)

π (4�2 + �2)2

∣∣∣∣∣�1�2

2δλ

eiδλt/2 sin

(
δλt

2

)

+ 4�2
0 (2� − iδλ)

4(� − iδλ)2 + �2

∣∣∣∣∣
2

, (14)

where the width � and the Rabi frequency � are given in
Eqs. (A14) and (A15), and δλ = ωλ − ωc.

Thus, in the long time limit, although the total excitation
in the reservoir is constant, the modes remain coupled to each
other. As a result of this the population distribution between
the modes changes; see Fig. 3. The oscillatory exchange of
population between the modes is more pronounced in the weak
coupling regime �0 � √

�1�2 [Fig. 3(a)] and is negligible
for the strong coupling regime [Fig. 3(b)]. Snapshots of the
reservoir spectrum for times t(�1 + �2) 	 1 are shown in
Figs. 3(c) and 3(d). It is also interesting to note that in the
weak coupling regime displaying the population trapping, the
frequency gap imposes strong oscillations in the mode pop-
ulations compared to the single Lorentzian structure function
case [15]; see Fig. 3(c). In contrast with strong coupling and
no population trapping, there is a strong resemblance in the
mode populations between the gap and single Lorentzian cases
[Fig. 3(d)].

In order to explore further these features, we plot in
Fig. 4(a) the probability current between the atom and the
λ mode [30,31],

Jλ,a(t) = 2Im{ρλgλc̃
∗
λ(t)c̃a(t)eiδλt }, (15)

and in Fig. 4(b) the net probability current,

Q(t) =
∫ ∞

−∞
dωλJλ,a(t). (16)

The long time limit, i.e., when t → ∞, is of particular
interest. We see that while the net probability current Fig. 4(b)
approaches zero, in the long time limit, the individual reservoir
frequency components seen in Fig. 4(a) do not decay but
continue oscillating. This does not happen in the case of a
Lorentzian reservoir coupling and appears to be a feature of
population trapping in a photonic band-gap structure. Sub-
sequently, there exists an effective, atom-mediated coupling
between the modes even though the atom has reached a steady
state.

For reservoirs with a single Lorentzian structure function,
the pseudomodes method has provided an intuitive insight
into memory effects [28]. When an atom is coupled to such an
environment, slowly decaying oscillations between the atom
and the reservoir are observed in the strong coupling limit
[15,28]. These correlation effects are attributed to a memory
part of the reservoir that is represented by a single pseudomode.
The rest of the reservoir acts as a Markovian environment that
induces a slow exponential decay for the memory part.

In the current system with a frequency gap in the environ-
ment, we have two pseudomodes that store information about
the state of the atom. The first one, a1(t), i.e., the one that
forms the trapping state with the atom, is responsible for the
permanent storage of information. The second one, a2(t), is
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FIG. 3. (Color online) The reservoir spectrum S(ωλ,t) as a function of time, (a) for �1 = 10�0, �2 = 0.2�0, and W1 = 50W2, and (b) for
�1 = 0.5�0, �2 = 0.01�0, and W1 = 50W2. Panels (c) and (d) are snapshots for the reservoir spectrum for �0t = 50 and for the parameters
of panels (a) and (b), respectively. The red dashed line in panels (c) and (d) is the spectrum for a reservoir with a Lorentzian structure function
with �2 = W2 = 0, W1 = 1 and �1 = 10�0 and �1 = 0.5�0, respectively.

responsible for short-term storage but eventually gets depleted
due to its coupling to the rest of the reservoir. Though the
atom is directly coupled to the second pseudomode only, the
interaction between the pseudomodes gives rise to the trapping
of population by forming a dark state for the atom-pseudomode
one subsystem.

In general, the population trapping signifies the formation
of an atom-photon bound state. In view of the strong permanent
correlation effects that dictate the formation of such a state, it
is reasonable to expect entanglement to be also present. In the
following section we use both the pseudomodes method and
the recently proposed density of entanglement [15] to explore
entanglement between the atom and the reservoir defined by
Eq. (5).

IV. ENTANGLEMENT DYNAMICS

Identifying and measuring entanglement in multipartite
systems presents various complications. Apart from the case of
a two-qubit system, where entanglement can be identified both
for a pure and a mixed state [32,33], multiqubit entanglement is
an open problem and to date several measures of entanglement
have been proposed [1,2,15,25,34–37]. For the analysis that
follows, we will be using two different measures [15,25].

The first one, called tangle [25], is a measure of genuine
tripartite entanglement between three qubits. This will be
used to explore entanglement dynamics in the pseudomodes
framework. The second one is the recently proposed density
of entanglement [15]. This measure is appropriate for studying
entanglement between an atom and the continuum of the

reservoir modes. It provides valuable information regarding
entanglement distribution between the atom and the modes
and between individual modes.

A. Tangle

We start our analysis from Eqs. (8) and (9), i.e., the density
matrix for the atom-pseudomodes system. For this mixed state,
the two pseudomodes can be collectively described in terms
of a single qubit. The two states for this collective qubit are

|0ps〉 = |0102〉, (17)

and

|1ps〉 = 1√
|a1(t)|2 + |a2(t)|2 [a1(t)|1102〉 + a2(t)|0112〉] .

(18)

Using these expressions, the state |ψ̃(t)〉 reads

|ψ̃(t)〉 = ca(t)|1a0ps〉 +
√

|a1(t)|2 + |a2(t)|2|0a1ps〉, (19)

and the density matrix ρ(t) becomes

ρ(t) = �j (t)|0a0ps〉〈0a0ps| + |ψ̃(t)〉〈ψ̃(t)|. (20)

We should note here, that the states |0ps〉 and |1ps〉 are both
eigenstates with zero eigenvalues for the reduced density
matrix ρ12(t) = tra{ρ} for the two pseudomodes, where the
tracing is over the atomic states |0a〉 and |1a〉.

Entanglement for this “two-qubit” mixed state can be
quantified in terms of the concurrence [32,33]. This can be
associated with tangle, a measure of tripartite entanglement
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Ω0t
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Ω

FIG. 4. (Color online) (a) The probability current Jλ,a(t)
[Eq. (14)], for �1 = 10�0, �2 = 0.2�0, and W1 = 50W2, and (b)
the total probability current Q(t) [Eq. (15)] for the same parameters.

for a system of three qubits A, B, and C [25]. The tangle τABC

expressed in terms of pairwise concurrences reads

τABC = C2
A(BC) − C2

AB − C2
AC (21)

where CAB and CAC are the pairwise concurrences for the
qubit A with B and C, respectively, whereas CA(BC) is the
concurrence for qubit A and a qubit (BC) that collectively
describes qubits B and C.

The above equation can also be written as an inequality,
i.e.,

C2
A(BC) � C2

AB + C2
AC. (22)

The meaning of these two equations is that entanglement
between the qubit A and the other two qubits, B and C, is
manifested through direct entanglement with each qubit, thus
the two concurrences CAB and CAC , and through a three-way
(tripartite) entanglement, i.e., τABC .

From the three qubit density matrix Eq. (8), we derive the
reduced density matrices for the atom with each individual
pseudomode, i.e., ρa,1 and ρa,2. Using the concurrence for
a two-qubit system [32,33] we obtain the following two
expressions for the concurrence for the atom with each
pseudomode:

C2
a,1(t) = 4|ca(t)|2|a1(t)|2, (23)

(a)

(b)

Ω

Ω

FIG. 5. (Color online) The concurrences Ca,1(t) (black solid),
Ca,2(t) (red short-dashed), and Ca,(12)(t) (blue dashed), for (a) �1 =
10�0, �2 = 0.2�0, and for (b) �1 = 0.5�0, �2 = 0.01�0. For both
panels W1 = 50W2.

and

C2
a,2(t) = 4|ca(t)|2|a2(t)|2. (24)

The final step is to calculate the concurrence for the density
matrix Eq. (20).

This is the concurrence for the atom and the qubit that
collectively describes the two pseudomodes. The calculation
is simple and the concurrence C2

a,(12)(t) is

C2
a,(12)(t) = C2

a,1(t) + C2
a,2(t), (25)

i.e., the tangle for the atom and the two pseudomodes is
zero. From the definition of the tangle, Eqs. (21) and (22),
and the above result, we conclude that entanglement between
the atom and the pseudomodes is manifested only through
two-way entanglement channels. A three-way entanglement is
completely absent.

In Figs. 5(a) and 5(b), we plot the concurrences as functions
of time for the weak and strong coupling regimes, respectively.
In the weak coupling regime, where a trapping state is formed,
entanglement at a very early stage builds up only between
the atom and pseudomode two, which is responsible for the
short-term storage of information. After reaching a peak, it
starts decaying where at the same time entanglement between
the atom and pseudomode one, which is responsible for the
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R

FIG. 6. (Color online) (a) The atom-modes density of entanglement EA(ωλ,t) as a function of time and the mode frequency ωλ, and
(b) the density of entanglement ER(ωλ,ωμ,t) between a mode ωμ = ωc + 0.1�0 and the rest of the reservoir modes as a function of time. Panels
(c) and (d) are snapshots for the mode-mode density of entanglement ER(ωλ,ωμ,t) for �0t = 10 and �0t = 30, respectively. For all panels
�1 = 10�0, �2 = 0.2�0, and W1 = 50W2.

long-term storage of information, slowly builds up and reaches
a steady state. Thus, the trapping state is also an entangled state
between the atom and the reservoir.

For the strong coupling regime, pseudomode one makes a
negligible contribution in the entanglement dynamics. Pseu-
domode two has a strong contribution for short times, where
the concurrence Ca,2(t) quickly increases, and then follows a
slowly decaying oscillation pattern. These oscillations are the
signature of a Rabi splitting observed in the strong coupling
regime [15]; see also the reservoir spectrum in Fig. 3(b).

B. Density of entanglement

In order to gain further insight into entanglement dynamics,
we need to consider entanglement between the atom and each
of the reservoir modes. For quantifying the distribution of
entanglement between the atom and the individual reservoir
modes, and among the reservoir modes, we use the density of
entanglement [15]. The density of entanglement between the
atom and modes with frequencies in an interval ωλ to ωλ + dωλ

is

EA(ωλ,t) = 4|ca(t)|2S(ωλ,t), (26)

and the density of entanglement among the reservoir modes
reads

ER(ωλ,ωμ,t) = 2S(ωλ,t)S(ωμ,t), (27)

where S(ωλ,t) is the reservoir spectrum.
In terms of these two distributions, the total entanglement

or concurrence C2(t) for the atom and the reservoir modes is
defined as the sum of an atom-modes contribution

C2
A(t) =

∫ ∞

−∞
dωλEA(ωλ,t), (28)

and a reservoir contribution

C2
R(t) =

∫ ∞

−∞
dωλ

∫ ∞

−∞
dωμER(ωλ,ωμ,t). (29)

The total entanglement reads

C2(t) = C2
A(t) + C2

R(t). (30)

For the strong coupling regime, as shown earlier, the
dynamics are similar to those for an atom coupled to a reservoir
with a Lorentzian structure function. Thus, entanglement
dynamics will be similar for the atom-reservoir system under
consideration in Ref. [15]. The main feature for the reservoir
density of entanglement is a pronounced Rabi splitting.
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FIG. 7. (Color online) The concurrence C2
A(t) (black solid), C2

R(t)
(red short-dashed) and the total concurrence C2(t) (blue dashed), for
�1 = 10�0, �2 = 0.2�0, and W1 = 50W2.

Furthermore, this splitting results in decaying oscillations in
the atom-modes density of entanglement.

On the other hand, for the weak coupling regime the
dynamics are different. The formation of the trapping state
is associated with a continuous population exchange between
the atom and individual modes while the net flow of probability
is equal to zero as discussed before. As a consequence, both
entanglement distributions change in time, as can be seen in
Fig. 6(a) for EA(ωλ,t) and in Fig. 6(b) for ER(ωλ,ωμ,t). Both
distributions do not reach a steady state in the long time limit.
This feature for ER(ωλ,ωμ,t) is also evidenced in Figs. 6(c)
and 6(d), where the density of entanglement for the reservoir
modes is plotted for different times.

In contrast to this, due to population conservation and the
fact that the net population exchange Q(t) in the long time
limit is zero, the total entanglement between the atom and the
reservoir C2

A(t) is constant for t → ∞. The same is true for
the total entanglement for the reservoir modes C2

R(t) and the
total entanglement C2(t). In Fig. 7, we plot C2

A(t), C2
R(t), and

the total concurrence C2(t) for the weak coupling regime.
From this we see that at very early times, a rapid build up of

entanglement takes place between the atom and the reservoir.
Entanglement between the reservoir modes evolves at a
much slower rate. Upon reaching a maximum, atom-reservoir
entanglement follows a decay reaching a steady state at about
the same time as the entanglement between the reservoir modes
does. This point in time corresponds to the formation of the
final trapping state between the atom and the reservoir.

V. CONCLUSIONS

In this work we have studied correlations and entanglement
for an atom-photon bound state. Such states can be formed
when an atom couples to a reservoir with a gap in its density
of modes. Their main feature is that, in the long time limit,
the system reaches a steady state where the initial atomic
excitation energy is shared between the atom and the reservoir.

Despite the fact that for such a state no change is expected in
the long time limit, a careful study of intrareservoir dynamics
has revealed that this is not the case. For a reservoir with a
single frequency gap in its structure function, we have shown

that in the long time limit, the atom exchanges energy with
individual modes, and though the net energy flow is zero, a
permanent effective coupling between the modes is induced.
As a result, the reservoir spectrum changes with time and a
steady energy distribution is never reached.

The existence of the atom-photon bound state is explained,
in terms of the pseudomode description, with the formation
of a dark state by the atom and one of the pseudomodes,
which are both coherently coupled to that pseudomode which
connects to the rest of the environment. In general, the
population trapping occurs in the weak coupling regime,
whereas with strong coupling and no trapping, the dynamics
within the environment begins to resemble the one obtained by
single Lorentzian distribution. Furthermore, we have studied
in the detail the entanglement dynamics between the atom
and the pseudomodes, and within the environmental modes,
highlighting several qualitative and quantitative differences
between the weak and strong coupling regimes.

The results and methods used in this work can be extended
and applied to systems where the reservoir density of modes
has a broader gap or a more complicated structure. Such
evolved reservoir structures can be encountered in photonic
crystals or when considering the problem of atom-laser
outcoupling from Bose-Einstein condensates.
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APPENDIX: SOLUTION OF THE SCHRÖDINGER
EQUATION AND THE PSEUDOMODES METHOD

Starting with an atom initially excited and the reservoir in
a vacuum state, the system’s wave function for t > 0 will be

|ψ(t)〉 = ca(t)|1a〉|0〉 +
∑

λ

cλ(t)|0a〉|ψλ〉. (A1)

The collective vacuum state for all reservoir modes ωλ is

|0〉 =
∏
λ

|0λ〉, (A2)

and the state with a single excitation in one of the reservoir
modes is

|ψλ〉 = |1λ〉
∏
k �=λ

|0k〉. (A3)

At t = 0, we have that ca(0) = 1 and cλ(0) = 0.
The coefficients ca(t) and cλ(t) can be obtained by solving

the Schrödinger equations

i ˙̃ca(t) =
∑

λ

gλe
−iδλt c̃λ(t), (A4a)

i ˙̃cλ(t) = gλe
iδλt c̃a(t), (A4b)

where the detuning between the atomic transition and the mode
λ is δλ = ωλ − ω0. The amplitudes in the interaction picture
are c̃a(t) = eiω0t ca(t) and c̃λ(t) = eiωλt cλ(t).
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To derive ca(t) and cλ(t), one can numerically integrate
Eqs. (A4a) and (A4b) using a discretization technique [9,16,
17] or by using the Laplace transform [20,22]. A different
approach is that offered by the pseudomodes method [23,24].
The main feature of this technique is that the infinitely
many equations for the reservoir modes can be replaced by
a finite number of equations. Thus, the computational effort
is substantially reduced. In addition to this, the pseudomodes
method has provided an intuitive insight into non-Markovian
dynamics, which are observed when an atom strongly couples
to its environment [28].

When the reservoir structure function is analytic with a
finite number of poles in the lower complex plane, Eqs. (A4a)
and (A4b) can be replaced by a set of equivalent equations
[23,24]. In this new set of equations, the atom couples to a
finite set of fictitious modes, the pseudomodes, where each of
these modes has a one-to-one correspondence to the poles of
D(ω).

For the structure function D(ω) in Eq. (5), the analysis for
arbitrary widths (�1,�2) and weights (W1, W2) was previously
carried out; see Ref. [24]. Here we focus only on the perfect
gap case, i.e., D(ωc) = 0, where the equations for the atomic
excitation ca(t) and the two pseudomodes a1(t) and a2(t) are
[24]

iċa(t) = ω0ca(t) + �0a2(t), (A5a)

iȧ1(t) = ωca1(t) +
√

�1�2

2
a2(t), (A5b)

iȧ2(t) =
(

ωc − i
�1 + �2

2

)
a2(t)

+�0ca(t) +
√

�1�2

2
a1(t). (A5c)

These equations can be associated to the following master
equation

ρ̇(t) = −i [H0,ρ(t)] − �1 + �2

2

× [â†
2â2ρ(t) − 2â2ρ(t)â†

2 + ρ(t)â†
2â2], (A6)

with the Hamiltonian

H0 = ω0|1a〉〈1a| + ωc(â†
1â1 + â

†
2â2)

+�0(â†
2|0a〉〈1a| + â2|1a〉〈01|)

+
√

�1�2

2
(â†

1â2 + â1â
†
2), (A7)

where â1 (â†
1) and â2 (â†

2) are the annihilation (creation)
operators for the two pseudomodes, respectively.

The solution for the master equation (A6) reads

ρ(t) = �j (t)|0a0102〉〈0a0102| + |ψ̃(t)〉〈ψ̃(t)|, (A8)

where

|ψ̃(t)〉 = ca(t)|1a0102〉 + a1(t)|0a1102〉 + a2(t)|0a0112〉.
(A9)

The vacuum state population �j (t) is given by

�j (t) = �1 + �2

2

∫ t

0
dτ |a2(τ )|2. (A10)

The Fock states with zero or one excitation for the two
pseudomodes are |01〉 (|02〉) and |11〉 (|12〉), respectively. From
Eq. (A8) we see that the atom and the pseudomodes are in a
mixed state.

Equations (A5a)–(A5c) are linear with time-independent
coefficients and solutions can be easily obtained with the
Laplace transform method. With the initial population for the
atom being ca(0) = 1, and both pseudomodes in a vacuum
state, a1(0) = a2(0) = 0, we get for ca(t)

ca(t) = 4eiω0t

4�2 + �2

{
�1�2

4
+ 2�2

0

�
e−�t

[
� sin

(
�t

2

)

+ �

2
cos

(
�t

2

) ]}
, (A11)

and for the pseudomodes

a1(t) = −2
√

�1�2�0e
iω0t

(4�2 + �2)

{
1 − e−�t

[
cos

(
�t

2

)

+ 2�

�
sin

(
�t

2

)]}
, (A12)

and

a2(t) = −2i�0e
iω0t

�
sin

(
�t

2

)
e−�t . (A13)

Here we consider only the resonant case ω0 = ωc. The decay
rate � and the Rabi frequency � are

� = �1 + �2

4
, (A14)

and

� = 1

2

√
16�2

0 − (�1 − �2)2. (A15)

Substituting Eq. (A12) into (A10), we get for the vacuum state
population

�j (t) = 16��2
0

�2

[
�2

4�(4�2 + �2)
− e−2�t

4�

+ � cos(�t) − �
2 sin(�t)

(4�2 + �2)
e−2�t

]
. (A16)

Finally, using Eqs. (A1) and (A4b), we get the amplitudes cλ(t)
for the reservoir modes

cλ(t) = − 4ieiωλtgλ

4�2 + �2

{
�1�2

2δλ

eiδλt/2 sin

(
δλt

2

)

+ 4�2
0 (2� − iδλ)

4(� − iδλ)2 + �2

[
1 − eiδλt−�t cos

(
�t

2

)]

+ 2�2
0(4(iδλ� − �2) + �2)

�(4(� − iδλ)2 + �2)
eiδλt−�t sin

(
�t

2

) }
,

(A17)

where δλ = ωλ − ωc is the detuning between the λ mode and
the gap frequency ωc.
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