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Loschmidt echo as a robust decoherence quantifier for many-body systems
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We employ the Loschmidt echo, i.e., the signal recovered after the reversal of an evolution, to identify
and quantify the processes contributing to decoherence. This procedure, which has been extensively used in
single-particle physics, is employed here in a spin ladder. The isolated chains have 1/2 spins with XY interaction
and their excitations would sustain a one-body-like propagation. One of them constitutes the controlled system
S whose reversible dynamics is degraded by the weak coupling with the uncontrolled second chain, i.e., the
environment E . The perturbative SE coupling is swept through arbitrary combinations of XY and Ising-like
interactions, that contain the standard Heisenberg and dipolar ones. Different time regimes are identified for
the Loschmidt echo dynamics in this perturbative configuration. In particular, the exponential decay scales as a
Fermi golden rule, where the contributions of the different SE terms are individually evaluated and analyzed.
Comparisons with previous analytical and numerical evaluations of decoherence based on the attenuation of
specific interferences show that the Loschmidt echo is an advantageous decoherence quantifier at any time,
regardless of the S internal dynamics.
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I. INTRODUCTION

The physical realization of quantum information processing
(QIP) [1] requires a precise control of quantum dynamics.
The coherent manipulation of many-body systems plays a
crucial role for several QIP-related implementations, such as
spintronic devices [2], optical lattices [3,4], superconducting
circuits [5], and nitrogen-vacancy centers in diamond [6].
Experiments with spin arrays in nuclear magnetic resonance
(NMR) [7–9] have shown that many-body dynamics conspires
against quantum control. Moreover, once the system interacts
with an environment, control becomes even more difficult
due to information leakage. This degradation of the system’s
coherent dynamics, called decoherence, is the subject of deep
theoretical and experimental investigation [10], as it remains
the key obstacle for QIP. Indeed, quantum error correction
protocols [11,12] can restore quantum information provided
that they operate above a certain threshold. Achieving this
limit is often a task for dynamical decoupling techniques
[13–15]. However, specific implementations require a precise
knowledge of the nature of the decoherence processes [16].
It is the purpose of this paper to contribute to a better
characterization of the role of a spin environment in the
decoherence of a many-spin system.

At least for short distance communications, spin chains
can be used to transfer information [17]. In fact, several
selective polarization techniques have been developed in NMR
experiments to set up an initial local excitation in one edge of
a spin chain and transfer it to the other edge by means of an
effective XY Hamiltonian (i.e., S+

i S−
j + S−

i S+
j or polarization-

conserving “flip-flop” processes) [18,19]. Additionally, mul-
tiple quantum coherence spectroscopy has allowed the study
of quasi-one-dimensional spin systems under the influence of
spin environments [20,21]. Here, the double-quantum Hamil-
tonian (i.e., the S+

i S+
j + S−

i S−
j processes) can be mapped
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to an XY Hamiltonian allowing the design and control of
the excitation transfer in a broader family of solid-state spin
structures [19,22–25]. Thus, a deep knowledge of decoherence
in such one-dimensional (1D) systems is crucial to improve
the degree of control available for NMR-based state transfer
protocols [26,27].

A natural way to quantify the decoherence time τφ is
through the degradation of interferences. This requires the
identification of specific coherence “witnesses,” such as
excitations in the local polarization. Particularly useful are
the reflections in the boundaries that can be observed as
well-defined mesoscopic echoes (MEs) [28–30]. Recently,
the ME intensity has been used to quantify the decoherence
of spins arranged in a ladder topology [31]. Alternatively,
the evaluation of τφ can be performed by a time reversal
procedure, the Loschmidt echo (LE) [32], where one evaluates
the reversibility of the system’s dynamics in the presence
of an uncontrolled environment. The LE can be accessed
experimentally in many situations, such as spin systems
[7,8,33], confined atoms [34], and microwave excitations [35].
Besides, it has become a standard way to quantify decoherence,
stability, and complexity in dynamical processes, in several
physical situations [36,37].

In the present article, we address the controllability of a
spin chain (S) in the presence of a spin environment (E) by
performing a quantitative study of the LE. LE degradation
characterizes the decoherence due to the perturbation of E on
the otherwise simple dynamics of S. Indeed, the many-body
nature of the S-E interaction yields a very rich behavior in
the dynamical regimes of decoherence: a short-time quadratic
decay, an exponential regime, and a saturation plateau are
identified by our numerical approach. In particular, we perform
a detailed analysis of LE exponential decay, addressing how
the rates scale with a Fermi golden rule (FGR). Additionally,
since for weak perturbations the LE of the local excitation can
be seen as a survival probability (SP), the numerical results are
compared to previous analytical predictions for that magnitude
[38].
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In the next section, we describe the spin problem and
summarize its theoretical background. We introduce the spin
autocorrelation function and describe a single-particle analogy
which underlies further analysis. We also discuss the local
version of the LE and present its definition in terms of the
local polarization, which is the usual experimental observable.
In Sec. III A, we present the numerical study of the LE
for some of the different physically relevant parameters. We
consider S-E interactions which are weak compared with
those determining the E dynamics. We also address different
anisotropies of the S-E interaction which range from pure
XY (planar) to truncated dipolar cases, going through the
Heisenberg (isotropic) interaction. In Sec. III B we analyze
the results obtained. First, we consider the transition from
the short-time quadratic decay to the exponential regime in
analogy to what is known for the SP. Then we focus on
the exponential regime to show that the FGR in the present
spin problem has independent contributions arising from each
specific process in the S-E interaction. We then compare
these rates with a previous evaluation based on the contrast
of specific interferences (ME attenuation). In the last section,
we conclude that since the LE filters the internal dynamics
of the system, it provides reliable and continuous access to
all time regimes. Thus, the LE compares favorably with the
evaluation of decoherence based on interference contrast.

II. QUANTUM DYNAMICS IN SPIN SYSTEMS

A. The models

The spin models analyzed in this article are schematized
in Fig. 1. In the first one, the system S is an m-spin
chain [Fig. 1(a)], which could constitute a quantum channel.
It interacts with a second chain E , which stands for the
“environment” that perturbs the dynamics of S. The second

(a)

(b)

FIG. 1. (Color online) The spin system. (a) Open boundary condi-
tions. (b) Closed boundary conditions (ring-like). Continuous (green)
connections represent interactions that can be inverted to obtain
the Loschmidt echo. Dash (blue) lines represent non-controllable
interactions. The first spin (black circle) is initially polarized and the
rest of the spins are in one of the high temperature configurations.

model [Fig. 1(b)] is obtained from the first one by imposing a
periodic boundary condition that transforms chains into rings.

For both models, the spin Hamiltonian is given by

Ĥtotal = ĤS ⊗ ÎE + ÎS ⊗ ĤE + V̂SE , (1)

where the first and second terms represent the system and
the environment Hamiltonians, respectively, and the third one
is the interaction between them. In order to simplify the
notation, we write just ĤS and ĤE instead of the tensor product
with their respective ÎE and ÎS identities. For both ν = S
and ν = E , we use an effective “planar” or XY Hamiltonian
[18], which describes the homogeneous flip-flop interaction
between nearest neighbor spins. In the model in Fig. 1(a), i.e.,
the chain,

Ĥν =
m−1∑
n=1

Jν

(
Ŝx

ν,n+1Ŝ
x
ν,n + Ŝ

y

ν,n+1Ŝ
y
ν,n

)

=
m−1∑
n=1

Jν

2
(Ŝ+

ν,n+1Ŝ
−
ν,n + Ŝ−

ν,n+1Ŝ
+
ν,n). (2)

Here Ŝx
ν,n and Ŝ

y
ν,n are the x and y components of the spin

operator at the nth site in the ν chain respectively, while Ŝ+
ν,n

and Ŝ−
ν,n are the raising and lowering operators. Again, the

abbreviated notation for any spin operator must be understood
in the form Ŝz

S,n = Î1 ⊗ · · · ⊗ Ŝz
n ⊗ · · · ⊗ Îm ⊗ Îm+1 ⊗ · · · ⊗

Î2m. If one wants to consider the ring model, an extra XY

coupling appears between the first and the nth spins.
The interchain coupling is

V̂SE =
m∑

n=1

JSE
[
2αŜz

S,nŜ
z
E,n − (

Ŝx
S,nŜ

x
E,n + Ŝ

y

S,nŜ
y

E,n

)]
(3)

=
m∑

n=1

JSE

[
2αŜz

S,nŜ
z
E,n − 1

2
(Ŝ+

S,nŜ
−
E,n + Ŝ−

S,nŜ
+
E,n)

]
, (4)

where the first term is an Ising interaction. The α parameter
determines the anisotropy of the coupling. This encompass
the typical magnetic resonance scenarios: the XY (pla-
nar) interaction [18], represented by α = 0; the Heisenberg
(isotropic) interaction [39], by α = − 1

2 ; and the truncated
dipolar coupling [40], corresponding to α = 1. In order to
extend and systematize our analysis we also consider several
other values for α. It is important to note that for any finite α the
S-E interaction always has an XY component. This allows a
polarization exchange which, in a Fermionic representation,
can be seen as “single-particle tunneling” [41]. In such a
picture, the Ising term corresponds to a nearest-neighbor
Hubbard term which is a two-body interaction.

It is crucial to stress that the real constants JS , JE , and
JSE determine the relevant time scales of the whole dynamics.
As introduced above, the first two give the homogeneous XY

coupling within S and E , respectively, while JSE stands for
the interchain coupling. To ensure smooth degradation of the
S coherent dynamics, we set JSE in the weak coupling limit,
i.e., JSE � JS = JE .
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B. Basic features of spin dynamics

A natural question for the spin models introduced above is
how to quantify the decoherence of S in the presence of E .
This means that one has to deal with a composite (bipartite)
Hilbert space S ⊗ E and trace out the E degrees of freedom
whenever necessary. A standard strategy relies on finding an
appropriate decoherence rate 1/τφ through the quantification
of the attenuation of system’s specific interferences. As in
experiments [29,40], one starts evaluating the evolution of
an injected local polarization through the spin autocorrelation
function [39,42]:

P1,1(t) = 〈�eq|Ŝz
S,1(t)Ŝz

S,1(0)|�eq〉
〈�eq|Ŝz

S,1(0)Ŝz
S,1(0)|�eq〉

. (5)

This function gives the local polarization at time t along the
z direction in site 1 provided that at time t = 0 the system
was in its thermal equilibrium state plus a local excitation at
site 1. Here, the spin operator in the Heisenberg representation
is given by Ŝz

S,1(t) = eiĤtotalt/h̄Ŝz
S,1e

−iĤtotalt/h̄. The many-body
state |�eq〉 corresponding to a high-temperature thermal
equilibrium represents a mixture of all states with amplitudes
satisfying the appropriate statistical weights and random
phases. Then the initial nonequilibrium local excitation |�ne〉
can be defined in terms of the computational (Ising) basis
components, which have the first spin up as

|�ne〉 = Ŝ+
S,1|�eq〉

|〈�eq|Ŝ−
S,1Ŝ

+
S,1|�eq〉|1/2

=
∑

r

cr |�r〉; (6)

see Appendix A for further details. Here, each contribution
|�r〉 to the locally polarized initial state can be written as

|�r〉 = |↑1〉 ⊗ |βr〉, (7)

where the basis for the remaining 2m − 1 spins is

|βr〉 = |s2〉 ⊗ |s3〉 ⊗ |s4〉 ⊗ · · · ⊗ |s2m〉 with
(8)

|sk〉 ∈ {|↑〉, |↓〉} .

Since in the regime of NMR spin dynamics, the thermal energy
kBT is much higher than any other energy scale of the system
[42,43], all statistical weights turn out to be identical, i.e.,
|cr | = 1/

√
22m−1.

It is useful to analyze the autocorrelation P1,1(t). For each
contribution |�r〉 to the initial state, the evolved wave function
at time t is

|�r (t)〉 = exp

{
− i

h̄
Ĥtotalt

}
|�r〉. (9)

Then the probability of finding the first spin up-polarized is

P
[r]
1,1(t) =

∑
j

|(〈↑1| ⊗ 〈βj |)|�r (t)〉|2, (10)

where the sum runs over the 22m−1 configurations of the 2m −
1 remaining spins. Note that the sum over the j index in
Eq. (10) means that we are performing a trace not only over E ,
but also over the spins in S other than the first one. After the
summation over all contributions |�r〉 to the initial state, and

expressing the result as a local polarization [28], we obtain

P1,1(t) =
⎡
⎣22m−1∑

r=1

|cr |2 P
[r]
1,1(t) − 1

2

⎤
⎦ × 2. (11)

A computation of the time-dependent local observable in
Eq. (5) reduces to Eq. (11), which, in turn, requires evolving
each of the 22m−1 pure states to evaluate the ensemble-
averaged observables. This is implemented using a Trotter
decomposition [44] assisted by an algorithm that exploits
quantum parallelism [45] (see Appendix B).

C. The single-particle picture and mesoscopic echoes

The obvious complexity of many-spin dynamics might
hinder some simple interference phenomena that can be
taken as hallmarks. Under certain experimentally achievable
conditions (e.g., XY interaction, 1D topology, and negligible
S-E interaction), the autocorrelation P1,1(t) becomes a simple
one-body magnitude. Indeed, once the initial excitation is
created, the first physical picture about its evolution may
be obtained from the Wigner-Jordan spin-fermion mapping
[46]. The point here is to trace over the E degrees of
freedom from the beginning and focus on a single-quantum
spin chain. Accordingly, an isolated m spin chain with XY

interaction, where N of them are up, is mapped to a chain
with N noninteracting fermions. Thus, a local polarization
excitation has the same dynamics as a single-fermion wave
packet in a tight-binding linear chain [41,47]. The observed
autocorrelation function in the limit of infinite temperature is
precisely described by the evolution of a single spin up in a
chain of down spins:

|�1〉 := |↑1〉 ⊗ |↓2〉 ⊗ |↓3〉 ⊗ · · · ⊗ |↓m〉 . (12)

This is a one-body wave function, defined on a subspace of
S where the total spin projection is m

2 − 1, and the observable
is evaluated as

P
[r=1]
1,1 (t) = |〈�1| exp[−iĤS t/h̄]|�1〉|2. (13)

Since this is a finite-size system one should expect revivals of
the initial polarization. Such revivals are called MEs [28,30]
and they appear when constructive interferences manifest at
the Heisenberg time tH ∼ h̄/�, with � being the typical mean
energy level spacing. In a spin chain with XY interaction
one may safely use � � JE/m. As long as this one-body
picture remains approximately valid for a linear chain weakly
coupled to the environment, these interferences show up
experimentally [18,29,48].

A weak coupling to the spin bath E results in progressive
attenuation of the ME, which has been used to quantify
environmentally induced decoherence [31]. This attenuation
is understood as an FGR, which describes an “irreversible”
decay of a pure state in S into collective S ⊗ E states. In
fact, the validity of the FGR here requires the breakdown of
degeneracies, i.e., the whole S ⊗ E must behave as a fully
many-body system. We return to this point below.
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D. The Loschmidt echo

Let us now explain the essence of the protocol that uses the
LE to quantify decoherence in a spin system using a local spin
as an observable [7]. Our strategy relies on the controllability of
chainS, whose Hamiltonian’s sign can be switched at will as is
often the case in NMR. The reversibility of the dynamics within
the chain is perturbed by the interaction with the noncontrolled
spin chain E . There are two stages in the evolution. First, a spin
excitation is created and the whole spin set evolves according
to the Hamiltonian, Eq. (1), during a time tR . At that time, the
internal interactions within S are reversed (i.e., ĤS is replaced
by −ĤS during a second tR period). However, neither the
S-E coupling nor the interactions within chain E are reversed,
leading to a nonreversed perturbation,

	̂ = ĤE + V̂SE , (14)

acting in both periods. Thus, in analogy with Eq. (5), we define
the observable LE as the recovered local polarization:

MLE(2tR) = 〈�eq|Ŝz
S,1(2tR)Ŝz

S,1(0)|�eq〉
〈�eq|Ŝz

S,1(0)Ŝz
S,1(0)|�eq〉

. (15)

The spin operators, expressed in the Heisenberg representa-
tion, are now

Ŝz
ν,1(2tR) = e

i
h̄

(−ĤS+	̂)tR e
i
h̄

(ĤS+	̂)tR Ŝz
ν,1e

− i
h̄

(ĤS+	̂)tR

× e− i
h̄

(−ĤS+	̂)tR . (16)

The computation of the LE in Eq. (15) proceeds as above for
the forward dynamics. In a system with a general interaction,
it requires a full many-body evolution.

As before, the initial excitation is described in terms of the
Ising basis by Eq. (6). For each contribution |�r〉 to the initial
state, the resulting wave function at time t = 2tR , after the
whole time-reversal procedure, is

|�r (2tR)〉 = exp

{
− i

h̄
(−ĤS + 	̂)tR

}

× exp

{
− i

h̄
(ĤS + 	̂)tR

}
|�r〉 . (17)

In analogy with the discussion above, the probability of finding
the first spin up-polarized is

M
[r]
1,1(t) =

∑
j

|(〈↑1| ⊗ 〈βj |)|�r (t)〉|2, (18)

where the sum runs over the 22m−1 configurations of the 2m −
1 remaining spins. Again, the sum over j means a trace over
all the spins of the environment and the system except the
first one. After the summation (average) over all contributions
|�r〉 to the initial state, and expressing the result as a local
polarization, we compute the local LE as

MLE(t) =
⎡
⎣22m−1∑

r=1

|cr |2 M
[r]
1,1(t) − 1

2

⎤
⎦ × 2. (19)

Here again, the statistical weights |cr |2 are the inverse of 22m−1,

the number of initial states in the ensemble that satisfy the “first
spin up-polarized ” condition. Note that, except for the fact that

the evolution operator contains a partially reversed dynamics,
this quantity refers to the same physical observable as Eq. (11).

E. Connection to previous works

It would be useful to make a connection between the
observable just described and the usual definition of the LE
[32], which was extensively studied in the field of quantum
chaos and quantum information [36,37]. With this purpose, let
us consider the particular case in Fig. 1, where ĤS describes
a chain with XY interactions, while ĤE describes a chain E
that remains quenched in a random configuration and V̂SE is
restricted to an Ising interaction. Under these assumptions,
the time-reversed dynamics reduces to that of a single spin
up in an oriented chain defined in Eq. (12). Accordingly, 	̂

becomes an Hermitian self-energy operator 	̂S acting on the
S Hilbert space. Indeed, 	̂S represents a set of nonreversed
random energy shifts produced by the Ising interaction with
static environmental spins. In the independent fermion picture,
	̂S yields a “random potential” for each specific configuration
of the environment, i.e., the binary alloy variant of Anderson’s
disorder [49]. It is now relevant to address the physical
meaning of the sum over the 22m−1 indices r of the observable
in Eq. (19). This sum performs a trace over system spins which
evolve but are not observed (crucial to recovery of a one-body
dynamics), as well as a trace over the environmental spins,
which can be seen as an ensemble average over quenched
disorder configurations [32]. Thus, the same procedure that
enabled us to reduce Eqs. (5) to (13) transforms Eq. (15) into
the corresponding one-body LE:

MLE(2tR) =
∣∣∣∣ 〈�1| exp

{
− i

h̄
(−ĤS + 	̂S )tR

}

× exp

{
− i

h̄
(ĤS + 	̂S )tR

}
|�1〉

∣∣∣∣
2

. (20)

Here, one can recognize the LE definition introduced in
Ref. [32] as the overlap of two wave functions evolving in
the presence of a quenched disorder whose dynamics is not
inverted.

The decomposition of the spin set into a controllable subset
(S) and an uncontrollable one (E) resembles the discussion
of the partial fidelity, called the Boltzmann echo, analyzed
in Ref. [50] for a two-body problem. Analogously, the 2m

spin problem treated here verifies that (i) separation into two
interacting subsystems (S and E) is performed; (ii) the initial
state in S is at least partially prepared (injected polarization),
and at the end a local measure is performed at the same site of
injection; (iii) the subsystem E remains in the high-temperature
thermal equilibrium; and (iv) the Hamiltonian in S can be
fully time reversed, while the Hamiltonian of E and the S-E
interaction remain uncontrolled. However, the main result
of Ref. [50], which considers a chaotic one-body system
coupled to a chaotic one-body environment, cannot be directly
compared with our study. Here, we focus on a system and
an environment which are both many-body systems that can
be reduced to integrable one-body systems. In our case, we
expect many-body chaos [51] only as a consequence of the
S-E interaction.
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Many-body chaos has been the subject of much interest
[52–54] and was recently renewed mainly in connection
with thermalization dynamics [55]. Within this context, the
attention has been centered on the study of spectral correlations
and the related SP, i.e., the decay of an initial excitation [38].
Based on general considerations on the strength function or
local density of states [56], one may predict a Gaussian (or
quadratic) time decay governed by the second moment of the
perturbation σ 2, followed by an exponential regime whose rate
is described by the FGR:

1/τFGR = 2�

h̄
= 2π

h̄
σ 2N1. (21)

Here, N1 is the density of directly connected states (DDCS).
While it might seem elusive, this magnitude can be numerically
evaluated with a Lanczos algorithm [57]. It also accounts for
the transition time from the short-time quadratic regime to the
exponential one. Accordingly, the crossover to the exponential
regime is expected [38,58] to occur at ts � (τFGRσ 2)−1 =
(2π/h̄)N1. This spreading time characterizes the dissemination
of an excitation within the environment. In the many-body
context, an interpolation formula has been proposed [38],

P11(t) = exp

[
2
�2

σ 2
− 2

√
�4

σ 4
− �2t2/h̄2

]
, (22)

which, to our knowledge, has not been checked in concrete
systems.

Coming back to our model, when chain S is isolated, the
localized excitation propagates freely, and the LE will have a
constant value of 1. However, once a weak V̂SE interaction is
turned on, the excitation decays into the chain E and the local
LE degrades progressively with a law that would be closely
described as a SP. Thus, for long chains where the spectrum is a
quasicontinuum, we expect that the short and intermediate time
regimes of the LE would follow closely the above discussion
for the SP. In fact, we analyze the LE decay numerically and
study the rates testing the validity of an FGR description [59].
When applied to the present many-body context, it would be

1

τφ

�
∑

δ

2π

h̄

∣∣V δ
SE

∣∣2
N1δ, (23)

where |V δ
SE |2 ≡ σ 2 is the local second moment of the process

δ (e.g., Ising or XY ) contributing to the S-E interaction and
N1δ represents some appropriate DDCS.

III. QUANTIFYING DECOHERENCE THROUGH
THE LOSCHMIDT ECHO

A. Numerical results in spin chains

In this section we present the results obtained for MLE(t) in
the spin models represented in Fig. 1. Even though our major
concern is the exponential decay described by the FGR, we can
also identify the short-time quadratic decay and the saturation
regime, as shown in Fig. 2. It is noticeable that the LE yields
results for a very wide range of parameters and time scales.
This feature contrasts with the study of interferences through
the ME, whose observability restricts the quantification of
decoherence.

FIG. 2. (Color online) Time regimes of the local Loschmidt echo.
Numerical results for a ring of five spins weakly coupled to another
identical ring by an XY interchain interaction (α = 0). The MLE is
plotted as a function of the total evolution time t = 2tR . Note that the
stronger the interchain coupling JSE , the faster the saturation regime
is reached (dashed line). From top to bottom, the different curves
correspond to the coupling parameters JSE—0.001, 0.01, 0.025,

0.05, 0.1,0.25, and 0.5—in units of JE .

In Fig. 3(a) the short-time dynamics is compared with the
expected quadratic decay (dotted line), which should appear
in any quantum evolution at short times. Indeed,the plot of
(1 − MLE)/J 2

SE (on a log-log scale) as a function of time shows
that MLE follows a quadratic function:

MLE(t) � 1 −
[
JSE
2h̄

]2

t2. (24)

This confirms that the short-time decay is determined by
σ 2 = (JSE/2h̄)2, the second moment of the SE interaction.
The agreement is observed until a time ts � h̄/JE , which
verifies the prediction for ts in terms of the E dynamics. For
comparison, we show in Fig. 3(b) the SP of an excitation in
a single-spin system S that interacts with the edge of a spin
chain E where it can spread through pure XY interactions.
This model, shown in the inset, constitutes a paradigm for the
onset of the FGR, because the DDCS is precisely defined by
N1 = 1/JE and remains independent of JSE [60]. In Fig. 3(b),
we also show by the dashed line the interpolative expression
in Eq. (22) for the strongest coupling. The latter expression
deviates more rapidly from the quadratic decay than the SP in
the one-body chain.

The onset of the exponential regime is exemplified in Fig. 4
for a few values of a pure XYSE interaction. As a general
tendency, we observe that the asymptotic exponential decay
becomes well defined only after some evolution period. We
indicate by an arrow the initial data that we use to fit these rates.
For comparison, the SP interpolative expression is plotted for
the same decay rates. We note that for JSE/JE � 0.085 the
interpolation starts to lie below the numerical results, and
longer times are required to define the asymptotic exponential.

For long times, the LE shows a saturation plateau at 1/10
(see Fig. 2). This observation is consistent with the expectation
that, within these coupling networks, the finite system of
interacting spins behaves ergodically under LE dynamics, and
thus the polarization spreads uniformly. At long times each
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(a)

(b)

FIG. 3. (Color online) (a) Short-time behavior of the Loschmidt
echo. The dotted line is the quadratic decay [Eq. (24)]. (b) Short-time
behavior of the survival probability for an XY spin chain described by
Ĥtotal = JSE (Ŝ+

1 Ŝ−
2 + Ŝ+

2 Ŝ−
1 ) + JE

∑∞
n=2(Ŝ+

n Ŝ−
n+1 + Ŝ+

n+1Ŝ
−
n ), where

the first spin is the system and the others constitute the environment.
This system is known to satisfy the FGR [60]. Note the similarity
between (a) and (b) in departing from the quadratic decay, which
evinces the spreading time ts . The dashed line shows a plot of Eq. (22)
for JSE = 0.5JE .

site is polarized by the amount 1/(2m). The larger the coupling
JSE , the more rapidly the asymptotic saturation is reached.

In order to assess the exponential regime, we plot the
characteristic rate 1/τφ in Fig. 5(a) as a function of J 2

SE in
units of JE/h̄. This quantity is appropriate to verify the FGR
[Eq. (23)], as long as J 2

SE is the typical scale for the second
moment of the S-E interaction and 1/JE that of N1, the DDCS.
We point out that rate calculations with longer rings and chains
are seen to give similar values as long as the above parameters
are kept the same. Such independence of m resembles the SP
and LE for a single spin interacting with chains of different
lengths [60,61]. This is indicative that we are reaching the
limit where the DDCS becomes dense enough to manifest
the sum rule intrinsic to the FGR [57]. Thus, we restrict
our analysis to cases with m = 5. Although several forms
of the interchain Hamiltonians were considered by varying
the anisotropy parameter α, we show only those relevant
to NMR experiments: XY (α = 0), isotropic (α = − 1

2 ), and
truncated dipolar interaction (α = 1). We observe that the
boundary conditions play a nontrivial role [41]. For the case of
open boundary conditions [Fig. 1(a)], some oscillations appear

FIG. 4. (Color online) Onset of the LE exponential decay. On
the log scale, the dashed lines are the ideal exponentials determined
by the fitting, shown here for representative values. The delay in the
entrance into the exponential regime is indicated by arrows pointing to
the first data used in the fitting. Solid lines represent the interpolative
Eq. (22), used with the corresponding σ 2 and �.

mounted on a decay which also depends on the parity of m,

the number of spins in each chain. Here, we present only the
results using closed boundary conditions (rings), where these
effects are much weaker.

Note that the LE allows one to explore a range of very
weak perturbations yielding τφ from the regime of exponential
decay. This range was inaccessible in the interference contrast
method [31]. We observe that the rates in Fig. 5(a) start from
0 and show a rapid increase with the JSE perturbation. After
a small perturbation threshold the rates slow down to a linear
dependence on the second moment of the perturbation. This
confirms the validity of Eq. (23) for this range. The linear fit is
shifted by an offset, 1/τ0, which seems to depend on the nature
of the SE interaction, as it becomes larger for perturbations
with bigger Ising components.

Figure 5(b) shows the FGR contribution to the scaled deco-
herence rates [1/τφ − 1/τ0]/J 2

SE as a function of interaction
anisotropy α2. There we also include the rates derived from
the ME attenuation [31]. From the slope in that plot we derive
the contributions to the global decay rate 1/τφ , arising from
XY and Ising processes in the interchain interaction:

1

τφ

= 1

τ0
+ 1

τXY
φ

+ 1

τZZ
φ

. (25)

For LE results

LE :
1

τXY
φ

= (0.92 ± 0.04)
J 2
SE

h̄JE
, (26)

LE :
1

τZZ
φ

= (1.12 ± 0.04)α2 J 2
SE

h̄JE
. (27)

In order to compare with the numerical results in Ref. [31],
and translating its notation −a/b ≡ 2α, the rates contributing
to the ME degradation result:

ME :
1

τXY
φ

= (1.00 ± 0.06)
J 2
SE

h̄JE
, (28)
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(a) (b)

FIG. 5. (Color online) (a) Decay rates for NMR-relevant interchain couplings, in units of JE/h̄. The slopes and offsets depend on the value
of α, i.e., on the relative weight between the Ising (dephasing) and the XY (polarization transfer) contributions to the interchain coupling.
(b) Scaled rates showing the additivity of the XYand Ising contributions to the FGR rate as a function of α2. For comparison, the rates obtained
from mesoscopic echo (ME) degradation data obtained in Ref. [31] are also plotted.

ME :
1

τZZ
φ

= (2.0 ± 0.3)α2 J 2
SE

h̄JE
. (29)

The most striking effect evinced by this comparison is that
while the XY contributions are essentially the same in both
methods, the Ising contribution (i.e., pure dephasing) in the
ME [Eq. (29)] is almost twice the value obtained from the
local LE. In the following section we analyze the origin of this
result.

B. Analysis of decoherence regimes

First, we address the applicability of an “SP picture”
for the LE in the present case, as proposed in Sec. II in
connection with previous works. We verified that the short-
time decay is naturally ruled by the second moment of the S-E
interaction σ 2 = [JSE/2]2. We also checked the estimation
for the spreading time ts � h̄/JE , i.e., the transition from the
quadratic short-time to the exponential regime. We found that
this prediction is in agreement with the observed end of the
quadratic decay.

In our spin problem, the LE exponential regime needs a
further delay beyond ts to become well defined. This indicates
that the DDCS is not immediately defined but JSE may have a
role in its stabilization. Indeed, a back action of JSE is needed
to break the strong degeneracy present in the unperturbed
integrable E , a finite XY chain itself. Only then, one has the
sufficiently dense spectrum required for the FGR to apply.
Once the whole Hilbert space is made accessible by the
perturbation, as many as ( 2m

m ) states become coupled by an
interaction that conserves spin projection.

The interpolative Eq. (22) approximates satisfactorily the
short-time decay, but it is not as well suited for intermediate
times and certainly cannot be applied to the saturation regime.
These deviations can, in principle, be related to a failure in
the SP picture to describe the local LE dynamics. The physics
underlying Eq. (22) is based on the assumption of a sufficiently
large number of particles and a well-defined N1. Also, one
should be aware that our spin case is strictly finite, indeed
quite small, and therefore the polarization cannot relax to 0.

The observed asymptotic steady magnetization 1/2m can be
identified with an ergodic behavior of the excitation described
by the local LE dynamics. Since this ergodicity is not present
in the unperturbed system, it should emerge as a consequence
of the SE interaction.

It is important to note that neither the rate obtained nor
σ 2 depends on the total number of spins or on the number
of spins in S. The reason for such independence is related to
the initial nonequilibrium condition stated in Eq. (6), which is
a well-localized excitation that maintains its character when
it propagates through an XY chain. It turns out that such
localized excitation behaves much like a single particle and,
in some sense, almost classically. This remains true at least
when the LE is in the exponential regime. We have seen that
the independence of the number of spins does not hold if one
considers an initial state built in as an arbitrary superposition.
However, investigation of this issue goes beyond the scope of
the present study.

One should note that splitting the FGR contribution to the
decoherence rate into two well-separated terms, a strategy also
exploited in Ref. [31], demonstrates the additivity of the XY

and Ising processes. Each of them is associated with a different
term in the interaction coupling V̂SE and requires a different
DDCS. These properties are indeed manifested in Fig. 5, which
shows the linear dependence of (1/τφ − 1/τ0)/J 2

SE on the
relative weight α2.

Comparing the rates obtained through the LE with those
computed by the ME degradation [31], we note that the XY

rates are equivalent and we can interpret such equivalence
by using the mapping into a one-body evolution in both S
and E . Even when the one-body picture is not rigorously
valid when the interaction V̂SE is turned on, it provides some
physical insights [61] that apply to more complex cases.
Accordingly, the dynamics along the chains is only weakly
affected by the tunneling processes (i.e., in a single-particle
picture, the kinetic energy along the chains commutes with that
along the interchain direction). Thus, the rate 1/τXY

φ should
coincide with the interchain tunneling rate, and we expect
that it should not be affected by a time-reversal procedure
within S.
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(a)

(b) (c)

FIG. 6. (Color online) Spin propagation in the presence of an
Ising interchain interaction, represented as a single fermion moving
through a binary alloy landscape. A filled circle is a spin up or a
fermion, and an open circle represents a spin down or a hole. All
the processes are considered on the short time scale given by a
single Trotter time step. (a) Forward dynamics within the upper chain
S, in the presence of the “random site energies” produced by the
Ising interaction with the lower chain E . (b) If E remains frozen, the
backward evolution in S is imperfect because the signs of the “site
energies” are not inverted. (c) A particular evolution of E provides a
perfectly reversed dynamics for S. In this case, the local portion of
the potential landscape, which determined the excitation’s forward
evolution, is reversed.

In contrast to the simple decay associated with the XY

component of the S-E interaction, the Ising part causes energy
fluctuations that induce a diffusion-like process within the
system. This tends to blur out the dynamical recurrences (i.e.,
MEs). The lower decoherence rate observed from the LE
indicates that the time reversal procedure is at least partially
effective to reverse such processes. In fact, the rates for the
pure Ising interaction observed here from the LE are about
half those obtained from the ME [31]. This means that the ME
attenuation overestimates the phase degradation induced by
the environment. As stated before, the displacement of a spin
excitation in the presence of a quenched spin environment
plays the role of an Anderson disorder degrading the wave-
packet dynamics that produces the ME. This degradation
is computed as decoherence. The reversal of the internal
XY interaction would not be able to reverse this disorder.
However, if the environment has an inner dynamics on a
time scale comparable to that of the system (JS � JE ), there
are particular fluctuations that allow for a perfect reversal
of the system dynamics. Indeed, this occurs when both the
hopping and the site energy signs are inverted. Such specific
E fluctuations are those needed to unravel the phase shifts
produced during the forward evolution. This argument, which
relies on a single-particle picture and equivalent time scales
for the local dynamics in S and E , is represented in Fig. 6.
Thus, one may safely say that, in the presence of a fluctuating
environment, the LE is able to reconstruct the phases in an
appreciable fraction of the local configurations.

IV. CONCLUSIONS

We have presented an evaluation of decoherence for a spin
chain in realistic many-body scenarios. As specific realizations
for structured environments, we have used a second spin
chain weakly coupled to the first. This system-environment

interaction ranges from pure XY to truncated dipolar, passing
through the isotropic Heisenberg interaction. In order to
evaluate decoherence, we resorted to the LE, which here
is the local polarization recovered after an imperfect time
reversal procedure. The attenuation of such echoes yields a
first-hand estimation of the decoherence rate, without any ad
hoc assumptions about spectral functions [62,63] or stochastic
noise operators [64,65].Our computational technique involves
a Trotter-Suzuki decomposition assisted by a recently devel-
oped algorithm that relies on quantum parallelism to evaluate
local observables [45].

In the present many-body context, the decoherence rate is
separated into two contributions, both of which scale with J 2

SE
and 1/JE , i.e., as an FGR. The rates obtained here do not
depend on the number of spins m. This is strongly related
to the localized initial condition, but this independence does
not hold if the initial condition is a superposition state. It is
also indicative of a specific sum rule relating the local second
moment of the interaction and the DDCS, which in this many-
body case coincides with that resulting from a single-particle
picture.

In the adopted model, the close connection between the LE
and the SP allows for a comparison with the expectancies of
the last magnitude. In particular, we assessed an interpolative
formula [38] that matches the initial quadratic decay with
the exponential regime. Despite the qualitative agreement,
the LE evidences a richer and more complex dynamical
behavior than those predictions. For instance, the breakdown
of single-particle degeneracies due to the S-E interaction and
the appearance of an ergodic regime, manifested as a steady
saturation, are now clearly shown in the numerical results.

The numerical studies performed here confirm that the LE is
better to quantify decoherence than the standard analysis based
on interference degradation, as it recovers information that
escapes such an analysis [31]. Additionally, by compensating
the intrinsic dynamical interferences of the system through
time reversal, the LE gets rid of most of the trivial part of
the S dynamics that conceals the decoherence effects. Thus
the LE provides smooth and continuous access to characterize
decoherence processes.
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APPENDIX A: THE SPIN AUTOCORRELATION FUNCTION

We show here equivalent expressions for the spin autocor-
relation expressed in Eq. (5). The autocorrelation P1,1(t) gives
the local polarization at time t along the z direction at site
1, provided that at time t = 0 the system was in its thermal
equilibrium state plus a local excitation in site 1. In order
to show this assertion explicitly, we rewrite the numerator
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in Eq. (5),

〈�eq|Ŝz
1(t)Ŝz

1(0)|�eq〉
= 〈�eq|

(
Ŝ+

1 (t)Ŝ−
1 (t) − 1

2

) (
Ŝ+

1 (0)Ŝ−
1 (0) − 1

2

) |�eq〉, (A1)

where we have used the identity Ŝz = Ŝ+Ŝ− − 1
2 , which is

valid for spins 1/2. TheS label has been dropped for simplicity.
Then

〈�eq|Ŝz
1(t)Ŝz

1(0)|�eq〉
= 〈�eq|Ŝ+

1 (t)Ŝ−
1 (t)Ŝ+

1 (0)Ŝ−
1 (0)|�eq〉 − 1

4 , (A2)

where we have rearranged the terms and used the
high-temperature hypothesis for |�eq〉 explicitly, i.e.,

〈�eq|Ŝz
1(t)|�eq〉 = 〈�eq|Ŝz

1(0)|�eq〉 = 0. It is crucial now to
identify the meaning of the expectation value 〈�eq| · · · |�eq〉
as a trace over the basis states (see Eq. (3) in Ref. [41]). Hence,
the invariance of the trace under cyclic permutation leads to

〈�eq|Ŝz
1(t)Ŝz

1(0)|�eq〉
= 〈�eq|Ŝ−

1 (0)Ŝ+
1 (t)Ŝ−

1 (t)Ŝ+
1 (0)|�eq〉 − 1

4 , (A3)

and one identifies the nonequilibrium initial condition
Ŝ+

1 (0)|�eq〉, which, after normalization, yields exactly Eq. (6):

|�ne〉 = Ŝ+
S,1|�eq〉

|〈�eq|Ŝ−
S,1Ŝ

+
S,1|�eq〉|1/2

. (A4)

Accordingly, the numerator can be written as

〈�eq|Ŝz
1(t)Ŝz

1(0)|�eq〉
= |〈�eq|Ŝ−

S,1Ŝ
+
S,1|�eq〉|〈�neq|Ŝ+

1 (t)Ŝ−
1 (t)|�neq〉 − 1

4

= 1
2 〈�ne|Ŝ+

1 (t)Ŝ−
1 (t)|�ne〉 − 1

4 . (A5)

The denominator in Eq. (5) is 〈�eq|Ŝz
1(0)Ŝz

1(0)|�eq〉 ≡ 1
4 .

Therefore,

P1,1(t) = 2〈�ne|Ŝ+
1 (t)Ŝ−

1 (t)|�ne〉 − 1. (A6)

In the Schrödinger picture it yields

P1,1(t) = 2〈�ne|eiĤtotalt/h̄Ŝ+
1 Ŝ−

1 e−iĤtotalt/h̄|�ne〉 − 1, (A7)

P1,1(t) = 2〈�ne|eiĤtotalt/h̄
(
Ŝ+

1 Ŝ−
1 − 1

2

)
e−iĤtotalt/h̄|�ne〉, (A8)

P1,1(t) = 2〈�ne|eiĤtotalt/h̄Ŝz
1e

−iĤtotalt/h̄|�ne〉. (A9)

Thus, the autocorrelation P1,1(t) written in the form of
Eq. (A9) is, in fact, the expectation value of the Ŝz

1 operator
over the evolved nonequilibrium state e−iĤtotalt/h̄|�ne〉. We note
that an equivalent reasoning can be performed in the case of
the local LE in Eq. (15) just replacing the forward propagator

e−iĤtotalt/h̄ by the LE propagator e
− i

h̄
(−ĤS+	̂)tR e

− i
h̄

(ĤS+	̂)tR .

APPENDIX B: NUMERICAL SIMULATIONS
WITH TROTTER-SUZUKI EVOLUTIONS

The computation of the time-dependent observable in
Eq. (5) requires the evolution of each of the states partic-
ipating in the ensemble. However, its implementation for
large systems, e.g., by means of a fourth-order Trotter-
Suzuki decomposition [44], soon becomes quite expensive
in computational resources. Instead, the local nature of the
excitation allows the employment of an algorithm exploiting
the quantum parallelism [45] to give an exponential reduction
of computational efforts. The evolution of a few pure states
is enough to describe the ensemble-averaged excitation dy-
namics. Thus, a typical initial state representing the whole
ensemble has the form

|�〉 = |↑1〉 ⊗
⎧⎨
⎩

22m−1∑
r=1

1√
22m−1

eiϕr |βr〉
⎫⎬
⎭ ,

(B1)
ϕr = random phase,

which exploits the quantum superposition over the whole spin
set. Typically, a few of these entangled states are enough to get
rid of statistical noise and obtain local physical observables
with a good accuracy. This highly efficient technique for
spin-ensemble calculations is enhanced by the parallelization
enabled by its implementation on a general-purpose graphical
processing unit.
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[35] R. Schäfer, H.-J. Stöckmann, T. Gorin, and T. H. Seligman, Phys.

Rev. Lett. 95, 184102 (2005).
[36] P. Jacquod and C. Petitjean, Adv. Phys. 58, 67 (2009).
[37] T. Gorin, T. Prosen, T. H. Seligman, and M. Znidaric, Phys. Rep.

435, 33 (2006); A. Goussev, R. A. Jalabert, H. M. Pastawski,
and D. Wisniacki, arXiv:1206.6348 [nlin.CD].

[38] V. V. Flambaum and F. M. Izrailev, Phys. Rev. E 64, 026124
(2001).

[39] P. R. Levstein, H. M. Pastawski, and R. Calvo, J. Phys.: Condens.
Matter 3, 1877 (1991).

[40] S. Zhang, B. H. Meier, and R. R. Ernst, Phys. Rev. Lett. 69, 2149
(1992).

[41] E. P. Danieli, H. M. Pastawski, and P. R. Levstein, Chem. Phys.
Lett. 384, 306 (2004).

[42] A. Abragam, The Principles of Nuclear Magnetism, The Inter-
national Series on Monographs on Physics (Oxford University
Press, Oxford, 1986).

[43] C. P. Slichter, Principles of Magnetic Resonance, Springer
Series in Solid State Sciences, 2nd ed. (Springer, Berlin, 1980).

[44] M. Rieth and W. Schommers, Handbook of Theoretical and
Computational Nanotechnology: Quantum and Molecular Com-
puting, Quantum Simulations, Nanotechnology Book Series
(American Scientific, Valencia, CA, 2006).
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