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Qubits as spectrometers of dephasing noise
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We present a procedure for direct characterization of the dephasing noise acting on a single qubit by making
repeated measurements of the qubit coherence under suitably chosen sequences of controls. We show that this
allows a numerical reconstruction of the short-time noise correlation function and that it can be combined with
a series of measurements under free evolution to allow a characterization of the noise correlation function over
many orders of magnitude range in time scale. We also make an analysis of the robustness and reliability of
the estimated correlation functions. Application to a simple model of two uncorrelated noise fluctuators using
decoupling pulse sequences shows that the approach provides a useful route for the experimental characterization
of dephasing noise and its statistical properties in a variety of condensed phase and atomic systems.
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I. INTRODUCTION

A key step in the design of any quantum information
processing device is to gain a quantitative understanding of the
decoherence-inducing noise processes present in the system
under study. Knowledge of the statistical properties of this
noise both informs and constrains theoretical models of the
system, aiding in the design process. In some experimental
qubit realizations, the technological implementation may al-
low for a direct measurement of the noise. In the superconduct-
ing flux qubit, for example, this is as simple as measuring the
magnetic field fluctuations with a superconducting quantum
interference device (SQUID). Statistical properties of the noise
may be readily computed from such a measurement and this
has been very effectively used to measure the spectrum of, for
example, the ubiquitous 1/f noise [1]. Frequently, however,
the noise acting on a quantum system is inaccessible to
such direct measurements and the only recourse is instead to
describe the noise indirectly through its effects on measurable
quantities, such as a qubit decoherence rate.

It has been recognized for some time that appropriately
selected indirect measurements may provide insight into
specific features of the noise source [2,3]. For example,
Schoelkopf et al. showed in 2002 that a single qubit is a
valuable resource for measuring those characteristics of the
power spectrum of an external noise source giving rise to
bit flips (i.e., dissipative characteristics of the noise source)
[2]. In many implementations, however, dephasing is the
dominant decoherence mechanism [4] and the techniques
described by the authors of Ref. [2] are not directly applicable.
Subsequent work has recognized the possibility of using
pulsed spectroscopies as general diagnostic tools of spectral
noise, including both dissipative and dephasing components
[3,5–7]. In particular, it has been shown that dephasing rates
measured under the application of dynamical decoupling pulse
sequences can allow differentiation between weak and strong
environmental fluctuators [8].
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In this work we demonstrate that a controllable single
qubit may be used as a sensitive tool to measure dephasing
noise that allows direct access to the noise correlation
function. We first present a general procedure for estimating
the correlation function of such noise using sequences of
coherence measurements on a single qubit undergoing free
evolution, and then show that the resulting information may
be extended to a significantly larger range of time scales by
use of pulse sequences that extend the coherence of a qubit by
several orders of magnitude [9].

A major feature of our approach is the direct nature of
the procedure. No fitting to parametric forms of correlation
functions or spectral densities is required. Finally, we note
that there has been some recent work [10–13] focusing on
the measurement of the qubit power spectral density. We
emphasize that our reconstruction of the noise characteristics
is explicitly local in the time domain, so our discussion is
more naturally suited to the correlation function picture. If
necessary, one could apply the Wiener-Khinchin theorem [14]
to transform the measured correlation function to a power
spectral density.

II. MODEL

We consider a single qubit subjected to a classical source
of dephasing noise, described by the Hamiltonian

H (t) = 1
2 �a(t) · �σ + 1

2 [η0 + η(t)]σz. (1)

Here �σ = (σx,σy,σz) are Pauli matrices and �a(t) is a control
field. For later convenience, we have separated the second
term into a constant offset field η0 and a zero-mean stochastic
process η(t). Such a Hamiltonian could arise, for instance,
for the spin degree of freedom of an electron in a fluctuating
magnetic field, a common source of environmental noise for
many atomic qubit systems (e.g., dopant spins in silicon) [15].
We assume that the qubit can be initialized in an arbitrary
pure state and that it can be measured in any basis. We
will additionally assume the noise process to be wide-sense
stationary, allowing us to write the correlation function as a
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FIG. 1. (a) Illustration of the various time scales involved in
the measurement of the noise correlation function. The schematic
shows a series of individual measurements (tall, black rectangles)
distributed along a horizontal time axis. For simplicity, we have shown
each measurement as lasting a time approximately equal to T2, the
coherence time of the qubit. Qubit initialization steps cause a delay
�t between measurements and the measurements are repeated until
a final time T . These times define the ranges which are accessible
to direct measurement of the noise correlations (see text) and TX

denotes one of the time scales on which correlations are inaccessible
to measurement. (b) Schematic reconstruction of a noise correlation
function. For times shorter than T2, a continuous estimate is made
by inversion of dynamical decoupling sequences (Sec. IV). For long
times, a discrete estimate is made at times equal to integer multiples
of the measurement time �t from measurements under free qubit
evolution (Sec. III). The time axis is scaled logarithmically here for
greater clarity. In some systems, the short- and long-time estimates
will overlap (i.e., T2 > �t ).

function of only a single time interval

C(t) = 〈[η0 + η(t)][η0 + η(0)]〉 = η2
0 + Cη(t). (2)

Here we have explicitly separated the full correlation function
into its constant offset contribution η2

0 and its zero-mean
stochastic contribution Cη(t) = 〈η(t)η(0)〉.

Experimental constraints will necessarily introduce time
scales that limit what may be learned about the statistical
properties of the noise from measurements on the qubit. The
proposed experiment will consist of sequences of control
pulses and measurements, each of which impose a specific
time-scale constraint. The longest of these time scales is the
total length of time T over which the entire experiment is
performed. No matter what measurements are made during
T , correlations long compared to this time cannot affect these
measurements and are therefore not accessible. A second
constraint is that the state of the qubit must be reinitialized
between each measurement, introducing a delay �t between
experiments, or conversely, a ceiling on the maximum
repetition rate to a single measurement in time �t . The shortest
time scale is that of the individual measurements. Since the
coherence of the qubit may be extended to a maximum
time T2 by the application of control pulses, beyond which
the coherence has decayed to a point where it is no longer
measurably different from zero, we take this coherence time
as the longest time available for a measurement of the qubit.

Taken together, these experimental constraints provide a
natural separation of the problem into short time scales within
the coherence time t � T2, and long time scales lying in
the range �t � t � T . Noise correlations occurring on time
scales intermediate between T2 and �t are inaccessible to
measurement if T2 < �t , as illustrated in Fig. 1. This puts
limitations on the conversion of the directly determined noise
correlations to a noise spectral density (see the Appendix)
and clearly implies that it is advantageous to make the
measurement repetition time as short as possible.

In the following section, we construct the experimental
procedures necessary to extract the correlation function for
(i) times long compared to the measurement separation time
�t , and (ii) times short compared to the maximum coherence
time T2. While both methods yield direct estimates of the
correlation function, the two approaches differ in the type and
sequence of both the control pulses and qubit measurements
that are employed.

III. LONG-TIME CORRELATIONS

To estimate the correlation function on time scales longer
than the intermeasurement time �t we construct a sequence of
qubit measurements following different times of free evolution
δt according to the following protocol:

(1) initialize qubit in the +1 eigenstate of σx ;
(2) allow qubit to evolve for a short time δt ;
(3) measure qubit in the basis of eigenstates of σy .

We shall refer to these as free evolution (FE) measurements.
We will assume that the j th run of this experiment begins at
time tj = j�t (i.e., the runs are equally spaced in time). This
is a convenient but not essential requirement. During step (2)
above, the qubit acquires a relative phase

φj =
∫ tj +δt

tj

[η0 + η(s)]ds.

Upon measurement in the σy basis, the measurement proba-
bilities are

P ±
y (j ) = 1

2 (1 ∓ sin φj ) � 1
2 (1 ∓ φj ). (3)

Here we have taken a small angle approximation, which is
valid if the total evolution time is chosen sufficiently small
[i.e., such that δt

√
C(0) � 1]. The probabilities in Eq. (3) are

approximately linear in the accumulated phase and may be
used to estimate the noise correlation function as follows.

Making a large number N of repetitions of the above
procedure will yield N measurement results. We put these
results in a vector �r , with rj = ±1 the result of the j th
measurement. As shown in the Appendix, this measurement
result vector may be used to estimate the full noise correlation
function at times tk = k�t :

E[C(k�t )] = 1

δ2
t (N − k)

N−k∑
i=1

riri+k. (4)

The expected error of this estimate will scale inversely with
the number of measurements performed for each interval,

var{E[C(tk)]} ∝ 1

N − k
.
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So for a given k this error can be reduced by increasing N , the
total number of FE measurements.

Note that if we were to measure in the σx basis instead
of σy , the measurement probabilities would then depend
quadratically on the phase P +

x (j ) = cos2 φj and P −
x (j ) =

sin2 φj . Such probabilities are independent of the sign of the
acquired phase and are therefore not useful for determining
the long correlations. However, repeated measurements in σx

are nevertheless able to give useful information about the
zero-time correlation C(0) = 〈η2〉. In particular, by making
a series of σx measurements and recording the values in a
vector �r , we may obtain an estimate of the variance of η [i.e.,
〈η2〉 = (1 − 〈σx〉)/(2δ2

t )].

IV. SHORT-TIME CORRELATIONS

Noise correlations on time scales between t = 0 and t =
T2 cannot be investigated by the method described in the
previous section as these time scales are generally shorter
than the minimum time between measurements (�t ). For
these short time scales we show instead that judiciously
constructed sequences of control pulses allow us to make direct
measurement of the overlap integral of the noise correlation
function with a filter function that is defined in terms of the
applied control field.

We begin by transforming the Hamiltonian (1) into an
interaction picture which removes the explicit dependence on
the control fields

HT (t) = 1
2 [η0 + η(t)]U †

a (t)σzUa(t).

Here Ua(t) = e−i
∫ t

0 �a(s)·�σds/2 is the unitary operator deriving
from just the control field. The simplest dynamical decoupling
procedures typically limit the control fields to π pulses
polarized along σx [16]. Since σxσzσx = −σz, the Hamiltonian
in the interaction picture remains proportional to σz and
becomes

HT (t) = 1
2y(t)[η0 + η(t)]σz, (5)

where we have introduced the pulse function y(t), defined by

y(t) =
{

1 after even number of π pulses,

−1 after odd number of π pulses.

Though we do not consider it here, the effects of nonzero
pulse widths may be included to first order [17] through the
modification

y(t) =

⎧⎪⎨
⎪⎩

1 after even number of π pulses,

0 during application of π pulses,

−1 after odd number of π pulses.

The pulse function describes the fact that, from the
perspective of the qubit, each π pulse acts to change the sign of
the noise. When averaged over all possible noise trajectories
η(t), evolution under this Hamiltonian results in dephasing
of the qubit, which may be quantified by the decay of the
expectation value of the coherence σ+ = (σx + iσy)/2. Taking

the average over all possible noise trajectories yields

〈〈σ+(t)〉〉 = 〈
Tr

(
ei

∫ t

0 HT (s)ds σ+ e−i
∫ t

0 HT (s)ds ρ0
)〉

=
〈
exp

(
i

∫ t

0
[η0 + η(s)]y(s) ds

)〉
Tr (σ+ρ0)

= exp

(
−

∑
l

χ (l)(t)

)
Tr (σ+ρ0), (6)

where we have made use of a cumulant expansion in the last
line [18] and the terms χ (l)(t) will be defined below. Note the
two different sources of averaging for the qubit coherence. On
the right-hand side we have indicated averages over random
variables (i.e., the stochastic average over all consistent
trajectories of the noise term, with a single expectation value,
〈·〉). The double expectation 〈〈·〉〉 of the coherence operator
on the left-hand side represents both this stochastic average
over the noise realizations and the quantum average over the
initial qubit states, denoted by the usual Tr operation on the
right-hand side. For our purposes here, we are interested in
experiments in which the qubit is initialized into the +1
eigenstate of σx , a pulse sequence is applied, and the coherence
is measured at a time τ . In this case, Tr (σ+ρ0) = 1/2. For
notational convenience, we will drop the explicit dependance
on t from the cumulant expansion, assuming that it is always
implicitly evaluated at t = τ , at the end of the pulse sequence
when the coherence has maximally refocused. The first term
in the cumulant series, the zeroth-order cumulant, is

χ (0) = −iη0

∫ τ

0
y(t1)dt1.

This term, which is purely imaginary, represents the coherent
precession of the qubit due to the offset field. The zero-order
cumulant vanishes if we select any of the many refocusing
pulse sequences for which

∫ τ

0 y(s)ds = 0. The next term in
the expansion vanishes

χ (1) = −i

∫ τ

0
〈η(t1)〉y(t1)dt1 = 0,

because the stochastic term η(t) has zero mean by construction.
In fact, all odd-order cumulants are purely imaginary and will
vanish provided the unconditioned probability of a given noise
realization P [η(t)] is symmetric so that negative and positive
contributions to the integral of y(t1) cancel. All even-order
cumulants l = 2 and greater are purely real and therefore
contribute to the decay of the coherence. These are therefore
the terms that are responsible for dephasing of the qubit. The
dominant decoherence-causing term in the expansion (6) is
the l = 2 cumulant

χ (2)(τ ) =
∫ τ

0
dt1

∫ τ

0
dt2〈η(t1)η(t2)〉y(t1)y(t2). (7)

If the noise is Gaussian, as it is in many physical systems,
then the all higher-order cumulants vanish identically and
the series may be truncated without approximation. For
non-Gaussian noise sources the second-order cumulant will
dominate if (i) the correlation time is short compared to the
time t and/or (ii) the product of the coupling and evolution
time τ is much less than unity. In the first case, the central
limit theorem implies that the accumulated phase will tend to
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a Gaussian distribution in the long-time limit. In the second
case, higher-order cumulants are suppressed by powers of
〈η2〉τ 2. We will not consider the case of highly non-Gaussian
noise, although we expect that the explicit inclusion of
higher-order cumulants into our approach will extend the
applicability of this method to such situations.

Making use of the assumption of wide-sense stationarity
that we imposed earlier, Eq. (2), allows us to relate this
expression to the stochastic part of the noise correlation
function Cη(t2 − t1) = 〈η(t1)η(t2)〉. By changing variables
from t1,t2 to u = t2 − t1, v = t2 + t1, Eq. (7) may be expressed
as a single-variate integral over the stochastic part of the
correlation function

χ (2)(τ ) =
∫ τ

0
du Cη(u)F(u), (8)

with F(u) given as a second single-variate integral over a
quadratic function of the control pulse sequence

F(u) =
∫ 2τ−u

u

dv y

(
v + u

2

)
y

(
v − u

2

)
. (9)

Equation (8) is known as the coherence integral and defines the
correlation filter function (CFF), F(t). The CFF specifies the
regions of the correlation function that contribute to dephasing
under a particular pulse sequence and is only defined for u ∈
[0,τ ]. Some examples of CFFs resulting from different pulse
sequences are shown in Fig. 2.

We note that discussion of spin coherence decay is usually
given in terms of the noise spectral density (see, e.g., Ref. [19]),
which is the Fourier transform of the correlation function [20].
As explained earlier, the current formulation in terms of
the time-domain correlation function is preferred here since
it allows for consistency with the method of elucidating
long-time correlations presented in the previous section.

By taking the absolute value of Eq. (6) we can remove the
dependance on the zero-order cumulant (since this is purely

FIG. 2. (Color online) Example correlation filter functions, F(t).
Black, solid line: Free evolution. Red, dashed line: Hahn echo. Blue,
dotted line: four-pulse Uhrig [16] sequence, UDD(4).

imaginary), resulting in

|〈〈σ+(τ )〉〉| � | exp(−χ (0) − χ (2))| = exp(−χ (2)). (10)

This equation relates the CFF, which is determined by and
calculable from the pulse sequence, to the qubit coherence and
to the noise correlation function. Since the qubit coherence is
measurable while the noise correlation function is unknown,
this suggests that a direct estimate of the latter may be obtained
from the former by a suitable discretization and inversion of
Eq. (10). We now show how this may be done numerically.

To reconstruct the correlation function on short time scales,
one must measure the coherence decay for a number of
different pulse sequences. Each pulse sequence i determines a
filter function Fi(t) as well as a coherence integral χ

(2)
i =∫ τi

0 Cη(t)Fi(t)dt . We define |〈〈σ+〉〉i | as the norm of the
coherence measured after the pulse sequence associated with
filter function Fi(t). Now because the norm of the coherence is
an experimentally accessible quantity, Eq. (10) then allows us
to calculate the coherence integral χ (2)

i at time τ . The procedure
is then repeated for this particular pulse sequence sufficiently
many times to gather good statistics. By subsequently repeat-
ing the entire procedure for a large number of different pulse
sequences {i} we will gather a set of measured coherence
integrals and filter functions from which an estimate of the
short-time correlation function E[Cη(t)] may be regressed by
making use of the theory of underdetermined least squares
[21]. This results in the expression

E[Cη(t)] =
∑
ij

χ
(2)
i F+

ij Fj (t), (11)

where Fij = ∫ ∞
0 Fi(t)Fj (t)dt is the filter function overlap

matrix which may be constructed analytically for dynamical
decoupling sequences, or numerically for more general pulse
sequences. This set of equations is underdetermined because
we are trying to reconstruct a continuous function by mea-
suring a finite set of real numbers. Consequently, there are in
general an infinite number of possible correlation functions
that are capable of reproducing the measured coherences and
it is necessary to impose an optimality constraint. Our estimate
uses the Moore-Penrose pseudoinverse F+, which yields the
solution with minimal Euclidean norm [21].

The propagation of uncertainty allows us to compute the
variance of the estimator Eq. (11) from the measurements.
Suppose for each pulse sequence, corresponding to filter
function Fi(t), one measured the + 1 eigenstate of σx for ni out
of Ni measurements. This corresponds to an estimate of χi =
− ln(2ni/Ni − 1), with variance σ 2

χi
= n2

i (ni − Ni)2/(Ni −
2ni)2. The variance of the estimate of C(t) is therefore

Var{E[C(t)]} =
∑

i

σ 2
χi

∑
j

[F+
ij Fj (t)]2. (12)

We note that if one possesses a theoretical model for the
noise correlation function it may be experimentally much less
demanding to fit to the free parameters of that model. In such
a situation one can appeal to the myriad numerical solvers for
(possibly overdetermined) nonlinear least squares [22].
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A. Choosing pulse sequences

The particular choice of pulse sequences will drastically
affect the quality of the correlation function estimate, both
by dictating the range of time over which the correlation
function may be measured and by influencing the accuracy of
the estimate within that range. For instance, limiting oneself
to a series of free evolution experiments will only allow for
an estimate of the correlation function at very short times.
Decoupling sequences greatly extend the average coherence
time, facilitating a concomitant extension of the region of the
correlation function that one can estimate with this procedure.

To quantify the sensitivity of a particular set of pulse
sequences to the correlation function at a particular time,
consider a perturbation of the noise correlation function
Cη(t) → Cη(t) + λτ δ(t − τ ). To first order, this perturbation
changes the correlation function estimate to

E[Cη(t)] → E[Cη(t)] + λτ

∑
i,j

Fi(τ )F+
ij Fj (t).

Taking the variation of this with λ gives a measure of the effect
of the perturbation on the estimated correlation function

δE[Cη(t)]

δλτ

=
∑
i,j

Fi(τ )F+
ij Fj (t).

Squaring this quantity and integrating over t provides us with a
positive scalar measure of the sensitivity of our reconstruction
to variation of the correlation function at t = τ

Q(τ ) =
∑
i,j

∫ ∞

0
[Fi(τ )F+

ij Fj (t)]2dt. (13)

This quality function depends only on the filter functions Fi(t)
and the overlap matrix F . An examination of the quality func-
tion for various sets of filter functions has empirically shown
that the estimated correlation function becomes unreliable at
times for which

Q(t) < max[Q(t)]/5. (14)

V. NUMERICAL SIMULATIONS

To illustrate the efficacy of our approach, we apply the
procedure to a single qubit dephasing under the action of
two mutually uncorrelated random telegraph (RT) fluctuators,
using Monte Carlo techniques to simulate a statistically con-
sistent noise trajectory for each measurement. Each fluctuator
is capable of existing in either of two states ±ηi , and will
randomly transition from one state to the other at a rate
γi . To capture both the short- and long-time correlations
that may be characterized by this spectrometry, we choose
a weak, fast fluctuator with parameters η1 = 1,γ1 = 10 and
a strong, slow fluctuator with parameters η2 = 10,γ2 = 0.01.
For simplicity, we set the offset field to zero, η0 = 0. The
resulting noise correlation function may be calculated to be
C(t) = η2

1e
−2γ1|t | + η2

2e
−2γ2|t |. We simulated a sequence of

Ns = 5 × 104 experiments to measure short-time correlations
and Nl = 106 experiments to measure the long-time cor-
relations. The long-time correlation experiments were brief
free evolution experiments performed at integer multiples of
the time unit. The pulse sequences chosen to investigate the

TABLE I. Pulse sequences used in numerical simulations to
measure short-time noise correlations as discussed in Sec. V. For
each pulse sequence and each of the 10 final times, one thousand noise
trajectories are simulated and their effects on the qubit coherence is
measured. We have chosen the Uhrig decoupling sequence [16] as
the basis for this simulated experiment because of their demonstrated
success [24] in extending coherence. Here FE = free evolution, i.e.,
no pulses, and UDD(m) = mth-order Uhrig dynamical decoupling
sequence.

Sequence Final time range Time divisions

FE 0.01−0.1 10
UDD(1) 0.1−1.0 10
UDD(3) 0.1−1.0 10
UDD(5) 0.1−1.0 10
UDD(7) 0.1−1.0 10

short-time coherences are given in Table I. For each of the Nl

free evolution measurements, we simulated noise trajectories
of length tFE = 0.04. For each of the Ns dynamical decoupling
measurements a noise trajectory of length tn = 1 was sim-
ulated. To accurately capture the long-time correlations, the
initial state of each simulated trajectory was conditioned on
the final state of the previous trajectory. Each measurement was
simulated by first evolving the qubit under the combined action
of the applied the pulse sequence and the simulated noise
trajectories, then randomly selecting a measurement outcome
based on probabilities calculated from the Born rule [23].

The resulting numerically reconstructed correlation func-
tion is shown in Fig. 3, where it is compared with the exact,
analytical correlation function. The inset shows a plot of
the corresponding quality function Q(t). Using the heuristic
Eq. (14), we are able to disregard the short-time reconstruction
of the noise for times, log10(t) > −1.3. We see that the
reconstructed time correlation function of the dephasing noise
demonstrates remarkable overlap with the analytic correlation
function at both short and long times, validating the direct
reconstruction approach.

We note that for this example of random telegraph noise, the
applicability of the short time correlation function extraction
relies on the validity of the truncation of the cumulant
expansion Eq. (6). In general, since random telegraph noise is
strongly non-Gaussian and the measurement time necessarily
short relative to the correlation time, we cannot assume the
recovery of Gaussian behavior via the long time limit and it is
necessary that the expected evolved phase over the evolution
period be small for the truncation to be valid. The pulse
sequences were chosen explicitly so that this later criterion
is satisfied.

VI. DISCUSSION

By inverting the conventional use of control pulse se-
quences, we have shown that a single qubit can be a valuable
resource for direct measurement of dephasing noise. In
particular, we have demonstrated that direct reconstruction of
short- and long-time noise correlation functions may be made
using a combination of control pulse sequences, coherence
measurements and free evolution measurements.
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Analytical correlation function

Quality function

Short–time reconstruction
Long–time reconstruction

FIG. 3. Combined reconstruction of the correlation function of two mutually uncorrelated RT fluctuators at both short and long times,
obtained with the use of the set of pulse sequences given in Table I. The dashed line is the analytical correlation function, the solid line
is the short-time reconstruction, and the black dots represent the long-time correlations. Inset is the quality function for the short-time
reconstruction. Dashed-dotted lines demarcate low-quality regions. The short-time reconstruction is unreliable at times for which the quality
function Q(t) < 0.2, corresponding to log10(t) > −1.3. This unreliable portion is separated by the dot-dashed line in the main figure.

Dephasing noise, pervasive in many quantum systems, is
still relatively poorly understood. Our direct reconstruction
method is general and not dependent on any specific physical
features of the probe qubit. It may therefore be applied
to any system for which dephasing is the dominant source
of noise. It is particularly well suited to the measurement
of dephasing noise at interfaces (e.g., for trapped ions or
for dopants in semiconductors). One significant possible
application of this approach is to the measurement of interface
noise experienced by donor qubits in silicon-based devices.
As shown in Ref. [4], donor qubits in silicon near an oxide
interface demonstrate a marked increase in coherence time as
the distance from the oxide is increased. Theoretical models
of the noise process causing this decoherence suggest that
the presence of fluctuating dangling bonds at the interface is
responsible for decoherence [15]. However, these theoretical
models require a dangling bond density which is inconsistent
with the measured density [15,25]. The ability to make direct
measurements of the statistical properties of this noise could
aid greatly in developing understanding of its microscopic
origin and in construction of new theoretical models to describe
the interplay of donor spins and interfaces.

Lastly, we note that the direct reconstruction method
described here is not restricted to use with a single qubit
and may also be used for measurement of dephasing noise
acting on ensembles of qubits. In this situation, however, unless
the measurements can be spatially resolved, the reconstructed
correlation function will be necessarily restricted to noise that
is spatially correlated across the sample, such as that deriving
from fluctuations in the applied magnetic field of a magnetic
resonance experiment.
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APPENDIX: ESTIMATE OF LONG-TIME CORRELATION
FUNCTION FROM FREE EVOLUTION MEASUREMENTS

The correlation function at long times is sampled by a series
of free evolution measurements, yielding a results vector �r . We
define the correlator of this result vector as

Ck = 1

N − k

N−k∑
i=1

riri+k. (A1)

The expected value of this correlator may be calculated from
the measurement probabilities given in Eq. (3) according to

〈Ck〉 � 1

N − k

∑
i

〈riri+k〉 (A2)

�
N−k∑
i=1

∑
m,n=±1

〈
[(−1)m + φi][(−1)n + φi+k]

4(N − k)

〉

= 1

N − k

N−k∑
i=1

〈φiφi+k〉. (A3)

The covariance of the acquired phases φ may be simplified as

〈φiφi+k〉 =
∫ ti+δt

ti

dt1

∫ ti+k+δt

ti+k

dt2〈[η0 + η(t1)] [η0 + η(t2)]〉

= δ2
t η

2
0 +

∫ ti+δt

ti

dt1

∫ ti+k+δt

ti+k

dt2〈η(t1)η(t2)〉

= δ2
t η

2
0 +

∫ k�+δt

k�−δt

Cη(u)Fk(u)du. (A4)

In the last equality we have changed variables in the integral
from t1 and t2 to v = t2 + t1 and u = t2 − t1 and then integrated
over v. The filter function F(u) that appears in the integral is
defined as

Fk(u) =

⎧⎪⎨
⎪⎩

√
2(u − k�t + δt ) u ∈ [k�t − δt ,k�t ]√
2(1 − u + k�t ) u ∈ [k�t ,k�t + δt ]

0 otherwise.
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However, from small δt we can assume that Cη(t) is constant
over the range t ∈ [k�t − δt ,k�t + δt ] and so comes out of
the integral. We can now rewrite the correlation function as

〈φiφi+k〉 = δ2
t η

2
0 + δ2

t Cη(k�t ).

Combining this with Eq. (A3) we see that

〈Ck〉 = δ2
t η

2
0 + δ2

t Cη(k�t ).

Because the best estimate of 〈Ck〉 is the sample correlation Ck ,
given in Eq. (A1), we are left with

δ2
t η

2
0 + δ2

t Cη(k�t ) � 1

N − k

N−k∑
i

riri+k.

This may be solved for the full correlation function C(k�t )
as

C(k�t ) � 1

δ2
t (N − k)

N−k∑
i

riri+k.

In the very-long-time limit we expect that the stochastic part
becomes completely uncorrelated

lim
t→∞ Cη(t) ≡ lim

t→∞〈η(t)η(0)〉 = 0.

The stochastic part of the correlation function may thus be
recovered from the full correlation function by subtracting

Cη(t) = C(t) − lim
t→∞ C(t).
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