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Qubit-assisted thermometry of a quantum harmonic oscillator
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We use the theory of quantum estimation in two different qubit-boson coupling models to demonstrate that
the temperature of a quantum harmonic oscillator can be estimated with high precision by quantum-limited
measurements on the qubit. The two models that we address embody situations of current physical interest due
to their connection with ongoing experimental efforts on the control of mesoscopic dynamics. We show that
population measurements performed over the qubit probe are near optimal for a broad range of temperatures of
the harmonic oscillator.
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I. INTRODUCTION

The improved control over systems of intrinsic complexity
makes the implementation of techniques for the inference of
specific properties of their states a necessary step towards
the achievement of full quantum control. Yet, it is often the
case that the device into which we would like to enforce
quantum mechanical features is not fully or easily addressable.
System interrogation can only be performed, in such cases, in
an indirect way through the use of probes of an appropriate
nature [1]. It is thus very important to devise experimentally
implementable strategies for the inference of properties of
inaccessible quantum systems, identify the optimal state
preparation of the probe as well as the observable that
allows for the maximum extraction of information about the
parameter that we are interested in.

This agenda is dressed of even more relevance due to the
recent experimental efforts produced towards the quantum-
limited management of mesoscopic systems, such as super-
conducting devices [2], light-interfaced cold-atom systems [3],
and mechanical systems operating at the quantum level [4]. All
such systems have in common the use of “quantum interfaces”
with devices of a different nature, which are then exploited for
state preparation, manipulation of information, and possibly
read-out. The quantum-interface paradigm is indeed very
fruitful for the extraction of information out of a system
that is only partially accessible: Through the coupling with
a controllable subsystem, one can indeed arrange for mecha-
nisms able to provide useful knowledge on key features of a
dynamics or a state. Examples of such a possibility, which have
been materialized in successful experimental demonstrations,
include the micro-maser technology for the revelation of the
properties of the field within a high-quality microwave cavity
[5], the coupling of a Bose-Einstein condensate to a (classical)
mechanical oscillator for the investigation on Casimir-Polder
effects [6], and intracavity quantum optomechanics, where the
radiation-pressure force is used to read the noise properties of
a mechanical mode [7]. In the latter context, in particular, a
key parameter is embodied by the temperature at which the
mechanical mode operates. Indeed, unwanted thermal effects
typically spoil the quantum features enforces in the mechanical

system by means of a coherent evolution. Having a precise
quantitative estimate of the entity of such effects [8] would
be crucial not only for prediction purposes but also to design
in the best possible way a quantum-enforcing protocol that
accounts, ab initio, such undesired effects. Needless to say,
these considerations can be extended straightforwardly to any
of the scenarios addressed above.

Recently, strategies for the determination of the temperature
of a harmonic oscillator have been put forward, based on
the coupling to a quantum probe embodied by a two-level
system (a qubit) [9,10]. The coupling model to be used for
the thermometry of the oscillator’s state was the Jaynes-
Cummings one, within and beyond the so-called rotating-wave
approximation [11]. While Ref. [10] proposed the use of the ac
Stark effect as a way to infer the temperature of the oscillator,
Brunelli et al. [9] have applied the proper tools of quantum
estimation theory (QET) [12–14] to design optimal protocols
for the estimate of the system’s temperature.

In this paper, we significantly extend the approach in
Ref. [9] to other physically motivated qubit-oscillator models,
proving that optimal and effective thermometry can indeed be
performed by means of simple measurements onto the qubit’s
state. We tackle both the coupling between a superconducting
qubit and a nanoelectromechanical oscillator and the far-
off resonant interaction between a two-level atom and the
field of a cavity, thus providing an analytical QET-based
study of an ample spectrum of experimentally motivated
situations.

The remainder of this work is organized as follows: In
Sec. II we describe the general system that we address
and introduce the QET tools for our analysis. Section III
studies the first model of our investigation, which addresses
the capacitive coupling of a superconducting qubit and a
nanoelectromechanical oscillator. In Sec. IV we assess our
QET-based approach in the case of a qubit that is off-resonantly
coupled to a harmonic oscillator, such as for a two-level
atom in a far-off resonant cavity. In both instances, population
measurements over the probing qubit allow for the optimized
estimate of the oscillator’s temperature. Finally, in Sec. V we
summarize our findings and open up new perspectives.
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II. APPROACH TO THE PROBLEM

Let us consider a general quantum harmonic oscillator with
frequency � and at thermal equilibrium with its environment.
The state of the oscillator is described by the Gibbs density
operator (we use natural units, i.e., h̄ = 1, throughout the
manuscript):

ρo = e−β� a†a

Z =
∞∑

n=0

nn

(n + 1)n+1
|n〉〈n|, (1)

where n = (eβ� − 1)−1 is the average number of thermal
excitations, |n〉 is a Fock state with n quanta, Z = Tr[e−β� a†a]
is the partition function, and â (â†) is the bosonic annihilation
(creation) operator of the harmonic oscillator. Our aim is to
estimate the inverse temperature β = 1/kBT of the oscillator
by coupling it with a qubit encoded in the logical states
{|0〉q,|1〉q} of a two-level system that is initially prepared in
the general pure state:

|ψ〉q = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉. (2)

Here (θ,ϕ) are the angles defining the orientation of the qubit’s
Bloch vector in the corresponding Bloch sphere, while kB is the
Boltzmann constant. We assume no initial correlation between
the probe and the oscillator and also assume that the interaction
Hamiltonian has the general form,

ĤI = g Âo ⊗ Âq , (3)

where Âo (Âq) is an operator in the Hilbert space of the
oscillator (qubit) and g a coupling constant. In what follows,
we shall call {|x〉o} a basis of states of the harmonic oscillators
that are eigenstates of Âo, i.e., Âo|x〉o = x|x〉o.

Any measurement aimed at estimating the temperature of
the oscillator is performed on the state �q of the probing qubit
after its joint evolution with system o, that is,

�q(β) = Tro[Û |ψ〉qq〈ψ | ⊗ ρo Û †]

=
∫

dx ρo(x)e−igtxÂq |ψ〉qq〈ψ | eigtxÂq ,

where ρo(x) = o〈x|ρo|x〉o are the diagonal matrix elements
of the initial thermal state in the basis |x〉o of the oscillator
operator Âo. In what follows, we make use of the apparatus
of QET to design the optimal probing state and measurements
needed to estimate the inverse temperature β. According to
the Cramér-Rao inequality, the variance δ(γ ) of any unbiased
estimator of an arbitrary quantity γ satisfies the inequality,

δ(β) � 1

MF (β)
, (4)

with M the number of measurements used in order to perform
the estimate and F (β) the Fisher information of β, which is
defined as

F (β) =
∑

j

pj (∂β ln pj )2 =
∑

j

|∂βpj |2
pj

, (5)

where pj is the probability to get outcome j from mea-
surements performed over the qubit state and described, in
general, by the positive operator valued measurement (POVM)
{�̂j : �̂j � 0,

∑
j �̂i = 1}. Such probabilities are calculated

assuming the oscillator at the inverse temperature β, i.e.,
pj = Trq[�q(β)�̂j ].

The quantum mechanical counterpart of the Fisher Infor-
mation is defined as

H (β) = Tr[�qL̂
2(β)], (6)

with L̂(β) the symmetric logarithmic derivative operator,
satisfying the equation,

∂β�q = [L̂(β)�q + �qL̂(β)]/2. (7)

The quantum Fisher information (QFI) is an upper bound for
F (β) as it embodies the optimization of the Fisher information
over any possible measurement performed over the probing
qubit states. The QFI is thus independent of the specific
measurement strategy and is an intrinsic feature of the family
of probing states. Equation (4) can then be rewritten as

δ(β) � 1

MH (β)
, (8)

which extends the Cramér-Rao bound to the quantum domain
and embodies the ultimate limit to the precision of the estimate
of β. A measurement is optimal when the corresponding Fisher
information F (β) equals the quantum Fisher information
H (β). Although various instances of optimal measurement
may be found, depending on the model at hand, the observable
embodied by the spectral measure of L̂(β) is certainly optimal.
Upon diagonalization of the probe state �q = �+|ψ+〉〈ψ+|q +
�−|ψ−〉〈ψ−|q , the QFI can be computed explicitly as

H (β) =
∑
k=±

(∂β�k)2

�k

+ 2γ
∑

k �=l=±

∣∣∣∣∣∣
∑
j=0,1

(∂β〈j |ψk〉)〈ψl|j 〉
∣∣∣∣∣∣
2

,

(9)

with γ = (1 − 2�+)2 [9]. In what follows, we consider two
exactly solvable models corresponding to interesting physical
situations and compute the QFI to assess the ultimate precision
in the estimation of temperature achievable by any measure-
ments performed on the states of the probing system. We will
compare such optimal performance to what is obtained through
the Fisher information associated with population measure-
ments of the probe, that is, for {�̂j } = {|0〉〈0|q,|1〉〈1|q}. We
show that in some cases, population measurements are indeed
optimal for the estimation of temperature.

III. JAYNES-CUMMINGS COUPLING BEYOND THE
ROTATING-WAVE APPROXIMATION

The first model that we address corresponds to the choice
Âo ≡ X̂o = (â + â†)/

√
2, that is, the in-phase quadrature

operator of the harmonic oscillator, and Âq = σ̂x , which is the
x-Pauli spin operator. Correspondingly, the interaction reads

ĤI = g X̂o ⊗ σ̂x .

This model is encountered in a few different contexts. On
one hand, it describes the effective interaction Hamiltonian
for the electric-dipole coupling between a two-level atom and
the field of a cavity, thus embodying the celebrated Jaynes-
Cummings Hamiltonian [11] beyond the so-called rotating-
wave approximation. Moreover and rather less intuitively, the

012125-2



QUBIT-ASSISTED THERMOMETRY OF A QUANTUM . . . PHYSICAL REVIEW A 86, 012125 (2012)

island
CPB

d

x

FIG. 1. (Color online) A physical model for the realization of the
coupling Hamiltonian ĤI = gX̂o ⊗ σ̂x between a harmonic oscillator
and a qubit. An electrically driven nanomechanical oscillator (bias
voltage Vx) is coupled to a CPB through the capacitance Cx . The state
of the CPB is controlled by the gate voltage Vg (coupled to the box
through the capacitance Cg) and the Josephson energy EJ . We work
at the charge degeneracy point.

same model is achieved by considering a nanomechanical
oscillator (a nano beam) coupled capacitively to a Cooper-pair
box (CPB) operating at the so-called charge degeneracy point
[16], where the dynamics of the CPB can righteously be
approximated to that of a two-level system encoded in the
space spanned by states |±〉 = (|0〉 ± |1〉)/√2. Here {|0〉,|1〉}
are states with exactly 0 and 1 excess Cooper pairs in the
large superconducting island shown in Fig. 1. The natural
Hamiltonian of the system reads

Ĥ1 = (Q̂ − Qg)2

2Ct

− EJ cos φ̂ + �â†â, (10)

with Q̂ and φ̂ the canonical charge and phase operator of the
CPB, Ct the total capacitance of the island, Qg = CgVg +
CxVx the total gate charge, EJ the Josephson energy, and �

the frequency of the nanomechanical oscillator, as indicated
above [16]. By defining σ̂x = |+〉〈−| + |−〉〈+|, expanding Ĥ1

in series of the ratio x/d between the actual position of the
mechanical oscillator and its equilibrium distance from the
CPB (the amplitude of the oscillations is assumed to be small
enough that only terms proportional to x/d are retained in such
expansion) and adjusting the gate and driving voltages such
that Qg 	 0, the interaction Hamiltonian of the system can be

cast into the form,

Ĥ1 = λ(â + â†) ⊗ σ̂x ≡ gX̂ ⊗ σ̂x, (11)

with λ = g/
√

2 an effective coupling rate whose form is
inessential for our tasks.

The estimate of the temperature in this particular context
is especially relevant. Indeed, the nanobeam is in contact
with a thermal phononic background due to the substrate
onto which it is nanofabricated [17]. The coupling with the
superconducting qubit addressed above holds the potential
to prepare nonclassical states of the nanobeam. Indeed, the
time-evolution operator corresponding to Eq. (11) reads, in
the qubit basis, as

Û (t) = cos(gtX̂)1q − i sin(gtX̂)σ̂x .

Let us assume that the nanobeam is initialized in a coherent
state |α〉(α ∈ R), while the qubit is prepared in |+〉q . The
evolution will generate the qubit-oscillator state,

|η(α)〉qo = 1√
2

(|α + igt〉o|0〉q + |α − igt〉o|1〉q). (12)

As |〈α − igt |α + igt〉|2 = e−4g2t2
, for gt 	 π the two coher-

ent states |α ± igt〉 are quasiorthogonal and Eq. (12) is almost
maximally entangled. By projecting the qubit onto |+〉q ,
we achieve the coherent-state superposition N (|α + igt〉o +
|α − igt〉o) (N is a normalization factor) which embodies, in
the limit of quasiorthogonal coherent states mentioned above, a
highly nonclassical state. However, a thermal-state preparation
of the harmonic oscillator will smear out such nonclassicality,
pushing the state towards the statistical mixture,

ρo,th =
∫

d2α G(α,V ) |η(α)〉oo〈η(α)|, (13)

where G(α,V ) is a Gaussian distribution of width V =
2n + 1 [18]. Determining the exact initial temperature of the
nanobeam is thus key for the success of such conditional
strategies for the enforcement of nonclassical features. Our
approach to the estimate of β will follow the general strategy
described above, which we now describe for the specific model
in Eq. (11).

The elements of the state of the probing qubit after the
interaction with the oscillator and the trace over its degrees of
freedom can be calculated explicitly as

�q(β) = 1

2

[
1 + cos θe−ζ sin θ (cos ϕ − i sin ϕe−ζ )

sin θ (cos ϕ + i sin ϕe−ζ ) 1 − cos θe−ζ

]
, (14)

with ζ = coth( β

2 )τ 2, where β = �
kBT

and τ = gt are, respec-
tively, the dimensionless inverse temperature and interaction
time. The Fisher information associated with a measurement of
the populations of �q(β), that is, a measurement of the z-Pauli
operator σ̂z, reads

F (β) = cos2 θ csch4(β/2)

e2ζ − cos2 θ

τ 4

4
,

which is a function of β, θ , τ . Compared to the case where
the rotating wave approximation is invoked [9], that is, for a
qubit-oscillator interaction of the form g(â†σ̂− + H.c.) with
σ̂± the ladder operators of the qubit, the Fisher information
displays a symmetric behavior with respect to θ and is no
longer a periodic function of the time τ . The maximum
is achieved by choosing θ = {0,π} (i.e., by preparing the
qubit either in |0〉 or |1〉), while for θ = π

2 the Fisher
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FIG. 2. (Color online) (Left) The functional form of τopt(β),
which is the optimal time at which the Fisher information is maximum
for the coupling model Ĥ1 = gX̂ ⊗ σ̂x at set temperature β and
for an optimal preparation of the probe qubit. (Right) For the
same interaction model, we show a typical behavior of the Fisher
information F (β = 3) against the dimensionless interaction time τ

between probe and oscillator and the angle θ that parametrizes the
initial preparation of the probe. Clearly, the Fisher information is
optimized at θ = 0,π and quickly decays as τ grows.

information identically vanishes. Finally, upon choosing one
of the optimal qubit preparations, we found that the maximum
value of the Fisher information only depends on temperature.
In fact, the value of the dimensionless time at which the
Fisher information is maximized is the following function
of β:

τopt(β) =
√[

1 + 1

2
W

(
− 2

e2

)]
tanh

(
β

2

)

	 0.893(1 − e−β), (15)

with W (y) the Lambert function of argument y [20]. The
behavior of τopt(β) is shown in the left panel of Fig. 2, while
in the right one we give examples of the form of the F (β) for
large temperatures. Remarkably, in the relevant regime β � 1
(low temperatures), the optimal interaction time becomes
almost independent on β. This means that no fine tuning
of the interaction time is needed and only a rough a priori
information is needed to implement the optimal measurement.

In order to evaluate the quantum Fisher information, we
have diagonalized the state of the probe, as described in Sec. II.
The explicit calculation, which produces expressions too
involved to be reported here, shows that H (β) is maximized for
two independent sets of choices of the qubit-state parameters.
One can either prepare the qubit in one of the basis states |0〉 or
|1〉, independently of the angle ϕ, or choose ϕ = {π/2,3π/2},
regardless of θ (cf. Fig. 3). The values of the QFI are the same
in both cases, and the analytic expression of H (β) reduces to
the one taken by F (β) for the choice θ = 0. This demonstrates
that population measurements are optimal for the whole range
of temperatures.

This conclusion is further strengthened by the analysis of
the spectral measure of the symmetric logarithmic derivative
L̂(β). For both the optimal probe-state preparations, L̂(β) is
diagonal and reads

L(β) = −τ 2

4
csch2

(
β

2

)
[(coth ζ − 1)1̂ + csch ζ σ̂z], (16)

0.3

0.6

0.9

1.2

10
-9 H

0. 6

1. 2

0 π/4 π/2 3π/4 π

0 π/2 π

τ

10
-9 H

FIG. 3. (Color online) Temporal evolution of the quantum Fisher
information for the interaction model Ĥ1 = gX̂ ⊗ σ̂x for inverse
temperature β = 10. The probe qubit is prepared in states having ϕ =
0 and θ = 0 (blue solid), θ = π

4 (magenta dashed), and θ = π

2 + 0.1
(green dot-dashed). For θ = 0, the quantum Fisher information is
maximum (independently on ϕ) and equals the Fisher information
associated with population measurements, while for θ = π

2 H (β)
identically vanishes. (Inset) The quantum Fisher information evalu-
ated at the optimal time, plotted against θ and for ϕ = 0 (blue solid),
ϕ = π

4 (red dashed), and ϕ = π

2 (orange dot-dashed). The last choice
leads to the same maximum value of the quantum Fisher information
and does not depend on θ .

with σ̂z the z-Pauli operator. The explicit presence of such an
operator in Eq. (16) demonstrates the optimality of population
measurements for the estimation of temperature in this model.

We end the section by noticing that if the harmonic
oscillator is moved away from the equilibrium position, that
is, its initial state is described by the displaced thermal state
D(α)�oD

†(�), D(α) = exp{αa† − ᾱa} being the displacement
operator, then the probe qubit after the interaction is given by

�q(α,β) = e−igασxτ �q(β)eigασxτ ,

where �q(β) is the probe state of Eq. (14). The QFI is equal to
the zero displacement case, whereas the Fisher information is
in general smaller than for zero displacement.

IV. FAR OFF-RESONANT SPIN-BOSON INTERACTION

We now address a second qubit-oscillator interaction
model, specified by taking Âo = â†â and Âq = σ̂x . The
interaction Hamiltonian thus becomes

Ĥ2 = g â†â ⊗ σ̂x . (17)

This model describes for a two-level system interacting far
off-resonantly with a bosonic mode. Let us consider a two-
level system (bosonic mode) with transition frequency ω (�),
interacting through a Jaynes-Cummings model with strength
λ. We call � = � − ω the detuning between the two systems.
The corresponding time-evolution operator can be written, in
the basis {|1〉,|0〉} of the two-level system, as [15]

Û =
[

cos(�̂n+1t) − i�
2 K̂1+n −iλâK̂n

iλâ†K̂n cos(�̂nt) + i�
2 K̂n

]
, (18)
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where

K̂n = sin(�̂nt)

�̂n

,

�̂n =
√

1
4�2 + λ2â†â is the effective Rabi frequency operator,

and â (â†) are the field operators of the boson. For �2/4 �
λ2〈â†â〉, we have

Û10 = Û01 	 0,

Û11 	 e−i�̂n+1t Û00 	 ei�̂nt , (19)

and by moving to a reference frame rotating at frequency �,
we gain the effective picture [19],

Û 	 e−i λ2

�
ââ†t |1〉〈1| + ei λ2

�
â†ât |0〉〈0|. (20)

We can now shift the energy of the two-level system so that
|g〉 becomes the zero-energy state and

Û = e−iĤ ′
2t = e−i λ2

�
ââ†|1〉〈1|t ,

with Ĥ ′
2 the interaction Hamiltonian between the boson and

the two-level system. By reminding one that |1〉〈1| = 2σ̂z + 1
and neglecting an inessential term depending only on the
qubits’ degrees of freedom, we gather the nontrivial interaction
term 2λ2

�
â†â ⊗ σ̂z. This is locally equivalent (via a Hadamard

gate applied to the two-level system) to the model Ĥ2 in
Eq. (17). We now assume this interaction model for the probe-
oscillator dynamics and the protocol for the estimate of the
temperature.

The matrix elements of the probe state after evolution and
the trace over the oscillator are

�q,00 = cos2 θ

2
+ �[2ζ cos θ sinc2τ− sin θ sin ϕ sin(2τ )],

�q,01 = sin θcos ϕ

2

+ i�{[eβ − cos(2τ )]sin θ sin ϕ − cos θ sin(2τ )},
(21)

0.1

0.2

0.3

0.4

10-4 F

τ
0 π/4 π/2 3π/4 π

0.3

0.6

0.9

1.2
10-8 F

0 π/4 π/2 3π/4 π
τ

FIG. 4. (Color online) (Left) We consider the model Ĥ2 =
gâ†â ⊗ σ̂x and plot the Fisher information against the dimensionless
interaction time τ for inverse temperature β = 10 and the probe qubit
prepared in states having ϕ = π

2 and θ = 0 (blue solid), θ = 0.01
(magenta dashed), and θ = 0.1 (green dot-dashed). For θ = 0 the
Fisher information does not depend on ϕ. (Right) Fisher information
for β = 10 and θ = π

4 as a function of time for different ϕ: ϕ = π

2
(blue solid), ϕ = π

3 (magenta dashed), and ϕ = π

6 (green dot-dashed).
Although the choice ϕ = π

2 maximizes the Fisher information, it is
evident that the relevant parameter in setting the qubit is θ .

with �q,10 = �∗
q,01, �q,11 = 1 − �q,00, and

� = 1−e−β

4[cos(2τ )− cosh β]
.

The expression taken by the Fisher information is, in this
case, too lengthy to be reported. Qualitatively, F (β) depends
on both θ and ϕ and, as in the Jaynes-Cummings model under
the rotating-wave approximation, is a periodic function of
time τ . The probe state preparation that optimizes the Fisher
information is again θ = {0,π}. For both such choices, F (β) is
independent of ϕ. However, as soon as the qubit initialization
deviates from the optimal cases, F (β) suddenly drops by
several orders of magnitude, as shown in the left panel of
Fig. 4, displaying a weak dependence on ϕ [taking ϕ = π

2
gives the maximum of F (β); see the right panel of Fig. 4].
However, the values attained by the Fisher information in at
such optimal values of ϕ are negligible with respect to those
associated with θ = {0,π} (there is a difference of four orders
of magnitude between the values in the left and the right panels
of Fig. 4), which makes θ the only effective qubit parameter.

If we prepare the qubit in an eigenstate of σ̂z, the
Fisher information associated with a population measurement
reads

F (β)opt = 2e2β sin2 τ [1 + sinhβ − cos(2τ )e−β ]2tanh
(

β

2

)
(eβ − 1)[1 + (eβ − cos(2τ ))(2eβ − 1) − eβ cos(2τ )][cos(2τ ) − coshβ]2

β�1	 e−β sin2 τ. (22)

On the other hand, by inspecting H (β) we found, as before, a
symmetric behavior with respect to the qubit parameters: At
a given dimensionless time τ , H (β) is maximum either for
θ = {0,π} (regardless of ϕ), or ϕ = {π

2 , 3
2π} (regardless of θ )

and the values achieved by the QFI are equal in both cases.
Hence the effective contribution to the dynamics comes from
one octant of the Bloch sphere. The analytic expression of the

optimal quantum Fisher information is

Hopt(β) = sin2 τ [2 cos(2τ ) − 2 coshβ − sinh2β]

2[cos(2τ ) − coshβ]3
,

(23)
β�1	 e−β sin2 τ.
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FIG. 5. (Color online) We consider the model Ĥ2 = gâ†â ⊗ σ̂x

and show the logarithmic plot of the quantity [Hopt(β)−Fopt(β)]/
Hopt(β) for β = 10 (blue solid), β = 5 (magenta dashed), and β = 1
(green dot-dashed).

The crucial point here is that, for this model, the optimal
Fisher information and its quantum mechanical counterpart
are no longer the same (i.e., population measurements are not
the optimal ones for the whole set of parameters): At low
temperatures, provided that we choose an optimal qubit-state
preparation, we retrieve the optimality of σ̂z measurements
as Fopt(β) = Hopt(β). When the temperature is raised, on the
other hand, small discrepancies appear between the temporal
behavior of these quantities, suggesting that σ̂z is no longer
the best measurement strategy. This is shown in Fig. 5, where
we study the relative difference between optimized Fisher and
quantum Fisher information.

Some insight comes from the analysis of the symmetric
logarithmic derivative, which reads

L(β) = L01̂ − Lxσ̂z + Lzσ̂z, (24)

showing the presence of a contribution coming from a term
proportional to σ̂x , which is responsible for the differences
between the two estimators. The expression of the coefficients
reads as follows:

L0 = sinhβ

2[cos(2τ )−cosh(β)]

β�1	 −1

2
− e−β cos 2τ,

Lx = eβ(eβ − 1)| sin(2τ )|2
[1 + e2β−2eβ cos(2τ )]3/2

β�1	 e−β sin2 2τ,

Lz = eβ + 1

2[1 + e2β − 2eβ cos(2τ )]1/2

β�1	 1

2
+ e−β cos2 τ,

(25)

and shows explicitly that optimality of population measure-
ment is recovered for in the low-temperature regime β � 1.

V. CONCLUSIONS

We have addressed the thermometry of a (directly inac-
cessible) quantum harmonic oscillator through its coupling
to a quantum probe embodied by a controllable qubit that
can be subjected to any measurement. By focusing our
attention on two models of current physical relevance and
using the framework of the (quantum) estimation theory,
we have determined the preparation of the probe qubit, the
measurement and the value of the interaction time that optimize
the estimate of the oscillator’s temperature. We found that
population measurements performed over the probing system
are nearly optimal for an ample range of temperatures. This
is quite important from the operational point of view, given
the handiness of implementing σ̂z measurements in all of the
settings that have been explicitly addressed here. Our work thus
aims at proposing an experimentally viable pathway towards
the quantum-limited inference of the properties of inaccessible
quantum systems, demonstrating that the paradigm of the
coupling with a (fully controllable) low-dimensional quantum
system is indeed effective. We are working towards the exten-
sion of this framework to explicitly open-system dynamics and
the characterization of the environmental properties affecting
the dynamics of the harmonic oscillator.
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