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Limits on the decay rate of quantum coherence and correlation

Daniel K. L. Oi1,* and Sophie G. Schirmer2,3,†
1SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom

2Department of Applied Maths and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
3College of Science (Physics), Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom

(Received 30 October 2011; published 26 July 2012)

The study and control of coherence in quantum systems is one of the most exciting recent developments
in physics. Quantum coherence plays a crucial role in emerging quantum technologies as well as fundamental
experiments. A major obstacle to the utilization of quantum effects is decoherence, primarily in the form of
dephasing that destroys quantum coherence, and leads to effective classical behavior. We show that there are
universal relationships governing dephasing that constrain the relative rates at which quantum correlations can
disappear. These lead effectively to speed limits which become especially important in multipartite systems.
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I. INTRODUCTION

One of the principal distinguishing features between
classical and quantum systems is the existence of quantum
coherences leading to correlations that cannot be accounted
for classically. For example, the phenomenon of entangle-
ment [1] and the violation of nonlocal realism [2] are such
consequences. The manipulation and preservation of such
coherences are vital for tasks such as the construction of
quantum information-processing devices [3], quantum com-
munication [4], cryptography [5], and metrology [6]. It has
also been suggested that quantum coherence plays a role in
certain biological processes [7]. Unfortunately, the inevitable
interaction of quantum systems with the environment leads
to decoherence, the dominant form of which is dephasing
or the disappearance of the off-diagonal elements of the
density operator [8]. The rates at which these coherences
decay are crucial as they determine how quickly the system
approaches classicality when quantum correlations are lost.
Considerable effort has been expended on understanding
fundamental properties of decoherence and quantum corre-
lations and how to protect the latter and prevent rapid decay
using encodings in protected subspaces or subsystems, for
example [9].

Some surprising relationships between the dephasing rates
in multilevel quantum systems have been previously uncovered
[10,11]. The need to preserve positivity of the density operator,
or more generally the complete positivity of the superoperator
[12] leads to constraints on the relative rates of dephasing. The
surface of this phenomenon has only been scratched and in this
work we present a general framework to elucidate the general
nature of these constraints focusing on decoherence induced
by pure dephasing processes. Experimental observations for
many systems suitable for quantum information, from trapped
ions [13] and cavity QED [14] to the solid state [15,16],
reveal dephasing (T2) times much shorter than the relaxation
(T1) times; that is, the observed decoherence rates are much
greater than what can be attributed to relaxation. Therefore,
although relaxation processes may be significant, for example,
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in determining the steady states of the system and the dynamics
of relaxation to equilibrium, the rate of coherence loss will
be determined by the fastest decoherence processes. The
experimental results above suggest that on the time scales
relevant for coherence decay most physical decoherence
processes can approximated by a pure dephasing model,
and we expect the constraints on the rate of coherence loss
to be mostly determined by pure dephasing. An important
consequence of the constraints is an effective speed limit on
the decay of correlations and entanglement in multipartite
systems. These limits are independent of the details of the
Hamiltonian evolution or dephasing mechanisms and therefore
apply to a large class of quantum systems from nuclear spins,
to atoms, molecules, and quantum dots.

II. DECOHERENCE MODEL AND DEPHASING
OPERATORS

The Markovian evolution of a quantum system can be
described by a Lindblad master equation [17,18]. A pure
dephasing process leaves the populations of the basis states
invariant but leads to the decay of the the off-diagonal elements
(coherences), as well as anomalous frequency shifts. Previous
work on three-level systems found that the decay rates and
frequency shifts were constrained [10,11]. Additionally, [10]
gave partial results for four-level systems and showed that
similar constraints exist in higher dimensions but the equations
were intractable in general. Here, we present a canonical
form for pure dephasing Lindblad operators that allows us
to explicitly state the constraints for N -level systems and
showing that they form a hierarchy of inequalities, defining
a convex cone of allowed dephasing rates. The general form
also allows us to invert physically observed dephasing rates to
define a unique set of canonical dephasing operators, which
reflect correlations in noise processes such as fluctuations in
the energy levels, and may serve as a useful diagnostic tool. In
multi-partite systems these constraints induce speed limits on
the decay of nonlocal quantum correlations and entanglement
in terms of the local dephasing rates.

We begin with the result that pure dephasing of an N -
level system may be modeled by a diagonal Hamiltonian
H = diag(λn) and a canoncial set of N − 1 or fewer diagonal
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Lindblad operators {Vk}N−1
k=1 of the special form

Vk = diag
(

0 . . . 0︸ ︷︷ ︸
k

,a
(k)
k+1, . . . ,a

(k)
N

)
, (1)

where the nonzero diagonal elements a(k)
n can be complex

except for the first nonzero element, a
(k)
k+1, which is set to be

real and positive. The density operator elements evolve as

ρmn(t) = e−t(iωmn+�mn)ρmn(0), (2)

with effective frequencies given by ωmn = λm − λn + �ωmn

and dephasing-induced frequency shifts and decoherence
rates,

�ωmn = −
∑

k

Im
(
a(k)

m a(k)
n

∗)
, (3a)

�mn = 1

2

∑
k

(∣∣a(k)
m

∣∣2 + ∣∣a(k)
n

∣∣2) − Re
(
a(k)

m a(k)
n

∗)
. (3b)

The populations are constant as ωnn = �nn = 0 and the
off-diagonal elements decay with the damping rate �mn,

|ρmn(t)| = e−t�mn |ρmn(0)|. (4)

If all a(k)
n are real then the expressions simplify, �mn =

1
2

∑
k(a(k)

m − a(k)
n )2, and there are no frequency shifts,

�ωmn = 0.
As shown in Appendix A, any set of pure dephasing

Lindblad operators can be transformed to this form leaving the
total superoperator unchanged. The key idea is to recombine
the Lindblad operators to form a new set without changing
the observable dynamics. Choosing the special form of the
operators [Eq. (1)] reduces an arbitrary number of parameters,
specified by the nonzero elements of an arbitrary set of
dephasing operators, to N (N − 1)/2 parameters. The number
of free parameters matches the number of dephasing rates �mn

and frequency shifts �ωmn for an N -level system.

III. INVERTING DEPHASING RATES

In this way we can determine a set of standard operators
consistent with experimentally observed dephasing rates �mn

and frequencies ωmn (or frequency shifts). The inversion
process relies on the fact that the dephasing rates involving
the first k + 1 levels depend only on the first k dephasing
operators; that is, �12 determines the first nonzero element
of V1, which together with {�13,�23,�ω23} then determines
a further three real parameters, and so forth. Hence, it is a
simple matter of iteratively solving a nested set of quadratic
equations, as detailed in Appendix B.

A set of constraints on the allowed dephasing rates and
frequency shifts naturally arises in the inversion process. This
takes the form of N − 1 inequalities involving the first N

levels,

2�1n −
n−2∑
�=1

∣∣a(n)
�

∣∣2 � 0, ∀ n = 2, . . . ,N, (5)

where the a
(n)
� can be expanded in terms of the �mn′ with

m,n′ � n. These inequalities form a convex cone of allowed
dephasing rates whose boundary is formed by “hypersurfaces”
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FIG. 1. Convex cone of allowed dephasing rates for N = 3 and
real dephasing, that is, �ω23 = 0. The axes are x = (�12 + �23 +
�13)/

√
3, y = (�13 − �23)/

√
2 and z =

√
2
3 (�12 − 1√

2
(�13 + �23))

and the constraint equation becomes x2/2 � y2 + z2, which defines
a circular cone in the positive octant of in the parameter space of
{�12,�23,�13}, tangential to the �12�23, �23�13, and �13�12 planes.

defined by a
(k)
k−1 = 0 for some k > 1. For N = 3 there is only

a single constraint equation and the convex cone of allowed
dephasing rates can be visualized as shown in Fig. 1.

A symmetric form of the constraints is possible, for
example, for N = 3,

2(�12�23 + �23�13 + �12�13) � �2
12 + �2

23 + �2
13 + �ω2

23,

which reduces to Eq. (25) in [10] if �ω23 = 0. However,
as the number of dephasing rates grows as N (N − 1)/2
and the inequalities involve products of (N − 1)�mn, there
is a combinatorial explosion in the number of terms in the
constraints, which is why previous attempts to obtain a general
form for the constraints failed. For example, the four-level
constraint contains 22 terms and the five-level constraint
contains 130 terms.

IV. SPEED LIMITS FOR ENTANGLEMENT DECAY

The constraints for the decoherence rates and frequency
shifts have important implications for a wide range of physical,
chemical, and biological systems where phase relaxation is
the dominant process. A consequence is the imposition of
speed limits on the relative rates at which coherences can
decay, especially in multipartite systems where entanglement
decay is strictly bounded above by the single qubit dephasing
rates. Though the Markovian condition constrains the temporal
correlations in the noise, noise can be spatially correlated and
the dephasing rates can be of a nonlocal form in general.

Let us start with two qubits where we label the basis
states by |1〉 = |00〉, |2〉 = |01〉, |3〉 = |10〉, and |4〉 = |11〉.
Assuming that both qubits have the same local dephasing
rate, that is, � = �12 = �13 = �24 = �34, then the allowed
decoherence rates for the nonlocal coherences �14 and �23

are determined by �. The first nontrivial constraint (a(3)
2 )2 �

0 gives 0 � �23 � 4�. The second constraint (a(4)
3 )2 � 0
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FIG. 2. (Color online) Constraint violation leads to nonphysical
states. A plot of the minimum eigenvalue of ρ(t) starting with ρ(0) =
|�CS〉〈�CS| subject to pure dephasing (H = 0) with �23 = �14 = μ�

for different values of μ shows the emergence of negative eigenvalues
for μ > 2.

leads to �23 + �14 � 4�.1 Thus, to ensure complete pos-
itivity of the evolution, the nonlocal coherences ρ23 and
ρ14 can decay at most four times as fast as the local
coherences, and the sum of the nonlocal decay rates can
be no more than 4�. If they are equal �23 = �14 = �e we
obtain �e � 2�, and Fig. 2 demonstrates that violation of the
bound leads to violations of positivity, that is, nonphysical
states.

The constraints on nonlocal coherence decay induce limits
to the decay of entanglement between qubits. For example, for
an array of identical noninteracting qubits, starting with the
maximally entangled Bell state |�0〉 = 1√

2
(|00〉 + |11〉), the

state evolving under pure dephasing,

ρ�0 (t) = 1

2

⎛
⎜⎝

1 0 0 e−t�14

0 0 0 0
0 0 0 0

e−t�14 0 0 1

⎞
⎟⎠,

has concurrence C(t) = e−t�14 [19]; thus, �14 + �23 � 4�

implies that the concurrence cannot decay faster than four
times the local decoherence rate �. Here, the decay of
nonlocal coherences is not lower bounded; that is, non-
local coherences can survive indefinitely even for finite
local decay rates and in this case the entanglement is
preserved if �14 = 0; that is, there is no sudden death of
entanglement [21].

1An upper bound of 4� on the nonlocal dephasing time was
also found in the Markovian limit for a specific exactly solvable
model of phonon decoherence, in contrast to the non-Markovian
regime, where much faster entanglement decay was shown to be
possible [20].

FIG. 3. (Color online) Constraint violation map for three qubits
with local dephasing rates �, two-qubit dephasing rates μ1�, and
three-qubit dephasing rates μ2�. For 0 � μ1 � 2 the first four of
the eight constraints are satisfied but additional constraints may be
violated; for example, in the yellow region, constraint 5 is violated.
Additional constraints further restrict the set of allowed rates.

Alternatively, an initial maximally entangled two-qubit
cluster state |�CS〉 = 1

2 (|00〉 + |01〉 + |10〉 − |11〉) decays as

ρCS(t) = 1

4

⎛
⎜⎜⎝

1 e−�t e−�t −e�14t

e−�t 1 e−�23t −e−�t

e−�t e−�23t 1 −e−�t

−e−�14t −e−�t −e−�t −1

⎞
⎟⎟⎠.

Here, the entanglement may decay even if both nonlocal
dephasing rates vanish, �14 = �23 = 0, in which case the
concurrence satisfies 2C1(t) = |e−�t + 1| − |e−�t − 1|, which
tends to zero as t → ∞. If one of the two nonlocal con-
currences is 4� and the other is 0, for example, �14 = 4�,
�23 = 0, the concurrence similarly decays asympotically but
faster. When the nonlocal coherences decay at the same rate
�14 = �23 = 2� we have C2(t) = max{0, 1

2 (2e−�t + e−2�t −
1)}, and the concurrence vanishes when 2e−�t + e−2�t − 1 =
0, that is, t∗ = −�−1ln(

√
2 − 1) ≈ 0.383�−1, that is, we

observe sudden death of entanglement.
Extending this, given n qubits with the same local dephasing

rate � we can simply apply the results above to any subsystem
consisting of two qubits; that is, the entanglement between
any two qubits in the system cannot decay faster than 2�. As
the number of qubits grows, there are more constraints so in
practice the rate of entanglement decay between any two qubits
would be even more restricted. For example, for a three-qubit
system (N = 23 = 8), assuming the local dephasing rate for
each qubit is �, and the dephasing rate involving two- and
three-qubit transition terms are μ1� and μ2� respectively,
there are eight constraints restricting the allowed values for μ1

and μ2. From the constraints for the two-qubit system we know
that 0 � μ1 � 2, but Fig. 3 shows that the set of (μ1,μ2) that
satisfies all the constraints is much smaller. Each additional
constraint reduces the set of allowed dephasing rates.
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V. DISCUSSION

The underlying basis for the dephasing constraints is
correlation between noise acting on different energy levels
of the system. The canonical dephasing operators reflect
underlying physical processes with different correlation prop-
erties. For example, a canonical dephasing operator with a
single nonzero element can be interpreted as the result of the
fluctuation of a single energy level. Multiple nonzero diagonal
entries correspond to correlated perturbations of more than
one level. An example of noise correlation is magnetic field
fluctuations acting on a spin-1 particle where the coupling
is of the form BZSZ . This leads to antiphase perturbations
of the SZ = ±1 levels and the canonical operator in the basis
{|0〉,|1〉,| − 1〉} is ∝diag(0,1, − 1). If the coupling was instead
of the form BZS2

Z , then the canonical operator would be
∝ diag(0,1,1).

Dephasing not only leads to exponential damping of the
coherences but may also produce shifts in their frequencies.
Not all of these frequency perturbations can be accommodated
by modifying the system Hamiltonian. In general, the residual
shifts are intrinsic to the decoherence processes. While pure
damping can be generated by phase diffusion due to random
drift of the energy levels (Wiener-Levy process) [22], the
frequency shifts can be caused by phase kicks or discrete
random phase jumps with a Poissonian arrival time [23].
Phase kicks can occur by collisional processes in gases, for
example, whereas phase diffusion can be generated by white
noise acting on the energy levels. It is possible to derive
dephasing constraints from physical models of the noise
directly, though deriving the general multilevel constraints
is considerably more difficult than the methods shown here.
However, once the observed dephasing rates have been de-
composed into their corresponding canonical set of dephasing
operators, we can assign physical mechanisms by which they
occur, and hence perform system diagnostics or analysis.
The ability to identify sources of dephasing will be vital
in producing coherent quantum devices and improving their
performance.

In the context of multipartite systems, the constraints we
have derived have implications for the preservation of nonlocal
correlations. As the number of parties increases, the decay of
the nonlocal coherences becomes constrained even more by
the local dephasing rates. This reflects the general robustness
of the nonlocal correlations in multipartite systems [24].
Conversely, there are suggestions that dephasing can play
a positive role in biological processes [25,26], where it has
been mooted to enhance the transport of energy in networks
such as photosynthetic harvesting complexes. Measurement
and analysis of the dephasing may illuminate these processes
and lead to better energy collection devices.

Although as we have seen, relaxation processes dominated
by dephasing play a crucial role in determining coherence
and entanglement decay in many systems, it is an interesting
question whether simple canonical forms can be derived for
other types of relaxation processes, and whether these permit
a systematic inversion that leads to a canonical form of the
constraints. This may be useful in those cases where dephasing
processes do not dominate, such as in optical phonons [27] and
transmon qubits [28].
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APPENDIX A: DERIVATION OF CANONICAL
DEPHASING OPERATORS

We start with the Lindblad master equation (LME) for
Markovian open quantum system evolution,

ρ̇(t) = −i(Hρ(t) − ρ(t)H ) + LD(ρ(t)), (A1)

where ρ(t) is the density operator describing the system state
(defined on the system Hilbert space Hs), H is an effective
Hamiltonian H , and the superoperator LD(ρ) takes the form
LD(ρ) = ∑

k D[Vk]ρ with [17,18]

D[Vk]ρ = VkρV
†
k − 1

2 (V †
k Vkρ + ρV

†
k Vk) (A2)

for operators Vk on HS .
The operators (H,Vk) define a pure dephasing process with

respect to the basis B = {|n〉}Nn=1 if and only if H and all Vk

are simultaneously diagonal with respect to B; that is, we have

H =
∑

n

λn	n = diag(λn), λn ∈ R, (A3a)

Vk =
∑

n

γnk	n = diag(γnk). (A3b)

This is easy to see since by definition of a pure dephasing
process the populations of the basis states remain constant,
and thus each basis state |n〉 is a steady state of the system.
This is possible only if the subspace spanned by each basis
state |n〉 is Vk invariant for all Vk [29]. This shows that all Vk

must be diagonal in the chosen basis. Since 	n is diagonal and
diagonal operators commute we have D[Vk](	n) = 0 for all
n and all k. As |n〉 is a steady state, that is, 	̇n(t) = 0, it also
follows that −iH	n + i	nH = 0 for all n. Inserting this into
the general form of the LME (A1) gives the explicit equation

ρ̇mn(t) = − (iωmn + �mn) ρmn(t) (A4)

for the evolution of the matrix elements ρmn = 〈m|ρ|n〉 of
the density operator, or in integral form (2) with frequencies
ωmn = λm − λn + �ωmn and dephasing-induced frequency
shifts and decoherence rates given by (3).

Any set of diagonal Lindblad operators {Vk} generates pure
dephasing dynamics but the set of Lindblad operators {Vk}
generating a certain dynamical evolution is not unique. In
particular, we have unitary invariance, that is, given any set of
Lindblad operators {Vk}, the set of operators {Wj } defined by

Wj =
∑

k

ujkVk, (A5)

where ujk are elements of a unitary matrix, generates the same
dynamics as

∑
k D[Wk]ρ = ∑

k D[Vk]ρ. Furthermore, adding
multiples of the identity, Vk → Vk + αI, to a Lindblad operator
Vk only changes the effective Hamiltonian

D[Vk + αI]ρ = 1
2 [αV

†
k − α∗Vk,ρ(t)] + D[Vk]ρ, (A6)
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and thus the dynamics is unchanged if we replace Vk with
Vk + αI and H with H + i

2 (αV
†
k − α∗Vk).

The invariance of the dephasing dynamics under the two
“gauge transformations” (A5) and (A6) allows us to transform
any set of dephasing operators {V�} into an equivalent set
of dephasing operators in canonical form defined in Eq. (1),
which yield the same observable dephasing rates {�mn} and
dephasing shifts {�ωmn}, using the algorithm given here.

V ← CanonicDephasing (W )
Calculate Canonical Dephasing Operators

In: W Matrix (N × K), kth column equals diagonal ele-
ments of Lindblad operator Vk

Out: V Lower triagonal matrix, columns equals diagonal el-
ements of canonical Vk

1: R ← Number of rows of W
2: C ← Number of columns of W
3: V ← W−ones(R, 1) ∗ W [1, :]
4: k ← 1 // Running column index
5: for r ← 2, . . . , N
6: i1 ← Index 1st nonzero entry of V [r, k : C]
7: i1 ← i1 + k − 1 // shift index

8: while more than one element of V [r, k : C] non-zero
9: i2 ← Index 2nd nonzero entry of V [r, k : C]

10: i2 ← i2 + k − 1 // shift index
11: r1 ← |V [r, i1]|, r2 ← |V [r, i2]|
12: φ1 ← Phase(V [r, i1]), φ2 ← Phase(V [r, i2])

13: nc ← r2
1 + r2

2

14: V [:, i1] ← (r1e
+iφ2V [:, i1] + r2e

+iφ1V [:, i2])/nc

15: V [:, i2] ← (r2e
−iφ1V [:, i1] − r1e

−iφ2V [:, i2])/nc

16: if V [r, k : C] has non-zero entries
17: k0 ← Index of 1st non-zero entry
18: k0 ← k0 + k − 1

√

19: V ← Swap columns k and k0 of V
20: k ← k + 1
21: V ← Remove 0 columns of V , apply phase corrections

The process is constructive and, using the notation ank instead
of a(k)

n , the key steps can be described as follows.
(1) Using (A6) we ensure that a1k = 0 for all Vk , modifying

the Hamiltonian by

�H = i

2

∑
k

a1kV
†
k − a∗

1kVk (A7)

as necessary.
(2) We replace the Lindblad operators V1 =

diag(0,a21,a31, . . .) and V2 = diag(0,a22,b32, . . .) with
a21 = r21e

iφ21 and a22 = r22e
iφ22 by {W1,W2} with

W1 = u11V1 + u12V2 = diag(0,c, . . .), (A8a)

W2 = u21V1 + u22V2 = diag(0,0, ∗ , . . .), (A8b)

with the unitary coefficient matrix

u = 1

c

(
r21e

iφ22 r22e
iφ21

r22e
−iφ21 −r21e

−iφ22

)
(A9)

and c =
√

r2
21 + r2

22, which is dynamically equivalent to
{V1,V2} due to (A5).

This result allows us to reduce an arbitrary number of
parameters, specified by the nonzero elements of a general
set {Vk} of dephasing operators to N (N − 1)/2 parameters in
the canonical form. Note that the number of free parameters
matches the number of dephasing rates �mn for an N -level
system. The procedure will produce a set of canonical
dephasing operators that reproduce the observed dephasing
rates and shifts provided that these satisfy the positivity
constraints. Furthermore, if the observed dephasing rates and
shifts lead to constraint violations these will be detected and
flagged, and this information can be used to further investigate
if the violations can be explained in terms of uncertainty in
the observed data, for example, due to noise, or if they are
indicative of processes that would invalidate the Markovian
dephasing assumption.

We note that if one has the usual Kossakowski form of
Markovian evolution [18], we can “diagonalize” the sets
of operators to arrive at a Lindblad form [17] where the
decoherence operators are orthogonal and traceless. However,
this standard form is not convenient for inversion, nor does
it give much physical insight into the possible processes
leading to dephasing. The canonical form Eq. (1) decomposes
the dephasing into operators representing correlated level
perturbations of orders 1 to N − 1.

APPENDIX B: CONSTRAINTS FOR
MULTIPARTITE SYSTEMS

The constraints derived on the decay rates of nonlocal
coherences are based on the assumption that the dominant
sources of decoherence are pure dephasing processes. For
many experimental systems of interest it has been found that
T2 times are much shorter than the T1-relaxation times—
supporting this assumption—even for systems involving many
qubits. For example, work on 14-qubit ion entanglement [13]
has shown decoherence to be dominated by dephasing (T2 100
ms for a single qubit), in this case nonlocal dominated by
long-wavelength background field inhomogeneities, despite
one of the qubit levels being metastable with a lifetime of
only 1 s. Pure dephasing by definition implies the existence
of a Lindblad relaxation operator that commutes with the
Hamiltonian, or equivalently, that decoherence takes place in
the eigenbasis of the Hamiltonian. One may ask what this
means for a multipartite system such as a qubit register.

For qubits far removed from each other, in a quantum
communications setting or distributed quantum computer, any
local noise which is purely dephasing will also produce global
dephasing. More generally, for a qubit register consisting
of noninteracting qubits the intrinsic system Hamiltonian
H is the sum of the single qubit system Hamiltonians,
the computational basis states |00 . . .〉, |100 . . .〉, etc., are
eigenstates of H , and any dephasing operator V that is a sum
or product of local dephasing operators σ (n)

z acting on the nth
qubit commutes with the Hamiltonian. Note that ideal quantum
registers are generally assumed to consist of qubits that are
noninteracting except when a two-qubit control Hamiltonian
is applied, and these interactions are switched off for most
qubits most of the time. For instance, in 14-ion example
above the coupling between ions is switched off once they
are entangled during the delay period in the Ramsey sequence
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and during this time the dephasing operator commutes with
the Hamiltonian. Thus, the dephasing rates can be interpreted
in terms of local and nonlocal dephasing, and the constraints
on the dephasing rates are directly applicable and induce speed
limits on entanglement decay in this case.

If there are always-on interactions between qubits, as is the
case for nuclear spin qubits in close proximity, for example,
then the Hamiltonian is no longer exactly diagonal in the
computational basis and the local single qubit dephasing
operators σ (n)

z generally will not commute with the intrinsic
system Hamiltonian. Instead, pure dephasing in this case
takes place in the eigenbasis of the Hamiltonian and involves
an element of nonlocality, mediated by a common bath.
For example, consider the Hamiltonian for N spins with
homogeneous nearest-neighbor Heisenberg coupling,

H =
N∑

n=1

σ (n)
z + J

N−1∑
n=1

σ (n)
x σ (n+1)

x + σ (n)
y σ (n+1)

y + σ (n)
z σ (n+1)

z .

(B1)

For N = 2 the Hamiltonian takes the explicit form

H =

⎛
⎜⎝

J + 2 0 0 0
0 −J 2J 0
0 2J −J 0
0 0 0 J − 2

⎞
⎟⎠ = UEU †, (B2)

where

U =

⎛
⎜⎜⎝

1 0 0 0
0 2−0.5 −2−0.5 0
0 2−0.5 2−0.5 0
0 0 0 1

⎞
⎟⎟⎠, (B3)

E =

⎛
⎜⎝

J + 2 0 0 0
0 J 0 0
0 0 −3J 0
0 0 0 J − 2

⎞
⎟⎠. (B4)

The computational basis states |01〉 and |10〉 are eigenstates
only for J = 0. Thus, for J = 0 a pure dephasing operator V

that is diagonal, V = diag(0,a1,a2,a3), in the eigenbasis of H ,

takes the form

Ṽ = UV U † = 1

2

⎛
⎜⎝

0 0 0 0
0 a1 + a2 a1 − a2 0
0 a1 − a2 a1 + a2 0
0 0 0 2a3

⎞
⎟⎠ (B5)

in the computational basis. The constraints on the dephasing
rates �nk still apply, although �nk now refers to dephasing rate
between the (nonlocal) eigenstates n and k of the Hamiltonian
and thus we can no longer directly identify �12, �13, �24,
and �34 with local single qubit dephasing rates, for instance,
although we can still relate �14 to entanglement. For example,
the concurrence of the Bell state 1√

2
[|00〉 + |11〉] still decays

as e−�14t , while the Bell states 1√
2
[|01〉 ± |10〉] are eigenstates

of H and thus not affected by pure dephasing.
Futhermore, if the interqubit couplings are weak (J � 1)

and the always-on interaction Hamiltonian is thus only a small
perturbation to the local Hamiltonian then the interpretation of
the dephasing rates in terms of local and nonlocal coherences is
still approximately valid. This is the case in NMR experiments
where the couplings between spins are very small compared
to the local Hamiltonians; hence, the local eigenstates are very
close to those of the entire system. Again, even in experiments
involving 12 spins T2 processes have been shown to dominate
over T1 and the evolution is well approximated as a pure
dephasing process [30].

Where subsystems become close enough to interact so
strongly as to perturb the eigenstates greatly, it may not be
a safe assumption that the environment still interacts locally
with each subsystem. For instance, for spins located close to
each other in the solid state, it is likely that they will interact
with the same phonon bath. The deformation potential that one
sees will be highly correlated with the potential the others see.
Hence, it is quite possible for the coupling to the bath to be of a
collective nature yet still be diagonal in the energy eigenbasis
of the system. One would have to specifically engineer a system
whereby the subsystems interacted strongly but only interacted
with local baths. We therefore contend that even when looking
at multipartite systems, unless they are of a very special type,
if T2 type processes dominate then we can well approximate
the decoherence as pure dephasing and our results apply.
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