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Tsallis entropy in phase-space quantum mechanics
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In this paper we define the quantum version of the Tsallis entropy in terms of quantum phase space distribution
functions. The quantum Tsallis entropy is compared with Kenfack’s nonclassicality indicator, for different
systems, such as the Schrödinger cat state, the thermal state, a superposition of the ground and the first excited
number states, and the harmonic oscillator state. These comparisons indicate that the Wigner representation gives
us complete information about the state with the nonextensivity parameter q = 1, while the Husimi representation
hides some information with the nonextensivity parameter q < 1.
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I. INTRODUCTION

In 1932 Wigner introduced the concept of the quantum
distribution function in phase space to further the study
of quantum statistical mechanics in a quasiclassical manner
[1]. In the phase space formalism of quantum mechanics,
we deal with the ordinary functions instead of the tedious
operator algebra. In addition to the Wigner proposal for the
quantum distribution function, several other representations
were presented. The most well-known among them are
Glauber’s [2], Husimi’s [3], Margenau et al.’s [4], Kirkwood’s
[5], P and Q [2,6], positive P [7], and gauge P [8].
Although these representations differ in their specific ordering
rule for noncommutative operators when we pass from the
Hilbert space to the phase space formalism [9], they are not
independent. Lee proposed an integral transformation to show
the relations between the different representations in phase
space quantum mechanics [10].

Sobouti and Nasiri introduced a new derivation of phase
space quantum mechanics in the extended phase space [11,12].
They showed that all representations of the quantum dis-
tribution function are related to any others by an extended
canonical transformation [11,12]. The phase space formalism
for quantum mechanics has found many applications in various
fields of physics, e.g., in fundamental quantum mechanics
[10,13], quantum statistical mechanics [14], condensed matter
[15], Bose-Einstein condensates (BECs) [16], quantum optics
[17], quantum information [18], and so on.

Unlike the classical distribution function, the Wigner
distribution function is not positive definite; the negativities
of the quantum distribution functions may be interpreted as
an indicator of their nonclassical behavior in physical systems
[19–21]. However the negativity of the Wigner distribution
function can be removed by a smoothing method; the result
is a positive definite Husimi distribution function [10]. The
entropy is a key concept even in quantum statistical mechanics.
In the Hilbert space formalism of quantum mechanics, the
entropy of a system is usually defined as a function of its
density operator ρ̂ [22]. One of the common forms for quantum
entropy is the von Neumann entropy [23]. Linear entropy has
also found many applications in quantum information theory
[24]. The quantum Rényi entropy [25] and the quantum Tsallis
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entropy [26] are one-parameter extensions of the von Neumann
entropy and are widely used in quantum optics and quantum
communication [27]. They are also one of the best candidates
for the description of quantum dissipative systems [28,29].

In 1979 Wehrl extended the von Neumann entropy into
the phase space [30]. The Wehrl entropy is the Shannon
information measure associated with the Husimi distribution
function. He used the Husimi representation to avoid the
negativity problem. In another effort, the linear entropy
is developed into phase space quantum mechanics in the
Wigner and Husimi representations [31] and is used in
many applications in quantum optics [32] and the study of
entanglement [33], decoherence [34], purity of quantum states
[35], squeezing [36], chaos [37], and so on.

Aims of this paper are:
(i) To develop the Tsallis entropy into phase space quantum

mechanics in the Wigner and Husimi representations.
(ii) To introduce a relation between the quantum phase

space Tsallis entropy and the nonclassicality indicator δ (δ
is defined by Kenfack et al.). In quantum phase space one
finds a reasonable relation between the quantum entropy and
the quantum uncertainty relation. A correspondence between
the uncertainty relation and the nonclassicality indicator is
also investigated by Sadeghi et al. [21]. Therefore, we expect
a correspondence between the nonclassicality indicator δ and
the quantum Tsallis entropy.

(iii) All the information about the state under consideration
maybe extracted in the Wigner representation while the Husimi
representation hides some of the information about the states.
This is shown by a comparison between the values of the
nonextensivities of the Tsallis entropy in the Wigner and
Husimi representations and the corresponding nonclassicality
indicator δ.

(iv) Although the Manfredi and Feix [31] method which
shows some information is hidden in the Husimi representation
works only for the Tsallis entropy with q = 2, our method
shows the same results without this limitation.

(v) The idea that the Husimi representation hides some
information about the state cannot be extended for all entropies
with nonextensivities q �= 2. We show that in our method
the value of the nonextensivity parameter q is a more
suitable indicator for the hidden information in different
representations that we investigated. Therefore even for the
extensive systems the Husimi representation gives us q < 1
and hides some information, while the Wigner representation
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gives us q = 1 and is more suitable to apply to the study
of the extensive systems. All investigated systems in this
paper are extensive, and the application of our method for
the nonextensive systems is an open problem.

As an application, the quantum Tsallis entropy is applied
to study the quantum properties of the Schrödinger cat state,
the thermal state, a superposition of ground and first excited
number states, and the harmonic oscillator. We recognize
a similar behavior between the Tsallis entropy for special
nonextensivity parameters and the nonclassicality indicator
which is introduced by Benedict and Czirják [19] or Kenfack
and Życzkowski [20]. In the Wigner representation we find a
nonextensivity parameter q = 1 in the quantum Tsallis entropy
for the best coincidence between the quantum Tsallis entropy
and nonclassicality indicator. These are not significantly equal
in the Husimi representations. According to the incomplete
information theory, for the nonextensivity parameter q = 1,
whole information is accessible, while for the nonextensivity
parameter q �= 1, some information is hidden [38–40]. There-
fore one may interpret that the Husimi quantum distribution
function hides some information, because the nonextensivity
parameter is not equal to 1, but whole information about the
state is accessible in the Wigner representation. In the next
section, the Tsallis entropy is defined in terms of the Wigner
and Husimi distribution functions. In Secs. III, VI, V, and VI
the phase space Tsallis entropy is applied to the Schrödinger
cat state, the thermal state, a superposition of the ground
and first excited number states, and the harmonic oscillator
in the Wigner and Husimi representations. The quantum
Tsallis entropy is compared with the Kenfack and Życzkowski
nonclassicality parameter to find a suitable nonextensivity
parameters q. The last section is devoted to the conclusions.

II. THE DEVELOPMENT OF THE TSALLIS ENTROPY IN
PHASE SPACE QUANTUM MECHANICS

In 1988 C. Tsallis proposed a new form of entropy,

Sq = 1

q − 1

[
1 −

�∑
i=1

P
q

i

]
, (1)

where Pi stands for the probability of the ith microstate, �

is the number of accessible microstates of the system, and q

is a positive real parameter. Many complex systems in nature
with long range interactions are successfully described by this
entropy [27]. The Tsallis entropy is, in general, nonextensive.
This means that the entropy of the combination of two identical
systems is not equal to the sum of the individual entropies:

Sq(A ⊗ B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B). (2)

The parameter q �= 1 indicates the nonextensivity of a sys-
tem. The Tsallis entropy will be reduced to the Shannon
entropy S = −∑�

i=1 Pi ln Pi , where q = 1. In the framework
of information theory, the deviation of the nonextensivity
parameter from 1 is interpreted as a consequence of incomplete
information about the system [38–40], or in other words we
cannot extract all aspects of a system out of its corresponding
distribution function. The Tsallis entropy in quantum statistical

mechanics for nonextensive systems is given by [26]

Sq = 1

q − 1
[1 − Tr(ρ̂q)]. (3)

For q = 1 and q = 2, it reduces to the von Neumann entropy
S1 = −Tr(ρ̂ ln ρ̂), and the linear entropy S2 = 1 − Tr(ρ̂2),
respectively [24]. Some authors have attempted to develop the
concept of quantum entropy into quantum phase space [30,31].
In the following, the ordinary Tsallis entropy, Eq. (3), is
generalized into quantum phase space:

Sq = 1

q − 1

[
1 −

∫ ∞

−∞
|F (x,p)|qdxdp

]
, (4)

where |F (x,p)| is the absolute value of a distribution function
in phase space. The phase space Tsallis entropy, Eq. (4),
for q = 1 reduces into the Wehrl entropy in the Husimi
representation:

SHusimi = −
∫

H (x,p) ln H (x,p)dxdp. (5)

The Shannon entropy is an approximation limit of the Wehrl
entropy when h̄ → 0 [41,42]. In the Wigner representation,
Eq. (4) reduces to

SWigner = −
∫

|W (x,p)| ln[|W (x,p)|]dxdp, (6)

where q = 1. Also the Manfredi-Feix entropy is obtained from
the phase space Tsallis entropy, Eq. (4):

S2 = 1 −
∫

W 2(x,p)dxdp, (7)

where q = 2. Some applications of the Manfredi-Feix and
Wehrl entropies are found in the Refs. [32–34,36,37,43–45].

Manfredi and Feix claim that for all the Tsallis entropies
q = 2, the value of the entropies in the Husimi representation
is more than the corresponding entropies in the Wigner
representation [31]. Therefore the Husimi representation has
less information and hides some of the information. Their
interesting conclusion is valid just for q = 2, but it is violated
for the Tsallis entropies with q �= 2.

In the next sections, for an application of the phase
space Tsallis entropy and to find a method to recognize the
hiding information by the Husimi representation for the cases
which q �= 2, we study some properties of the phase space
Tsallis entropy for the Schrödinger cat state, the thermal
state, and a superposition of the ground and first excited
number states. We investigate the nonextensivities, q = 1 and
q = 2, for the phase space Tsallis entropy. In addition, these
entropies are compared with the nonclassicality indicator δ,
and a suitable nonextensivity parameter, which makes the best
coincidence between the Tsallis entropy and nonclassicality
indicator, is chosen in the Wigner and Husimi representations.
The results indicate that in the Husimi distribution function
always q �= 1; therefore it hides some information about the
investigated systems. But in the Wigner representation the best
nonextensivity is obtained from q = 1 for all the considered
systems in this paper. Therefore all information is, in general,
extractable. This representation does not hide any information.
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III. THE PHASE SPACE TSALLIS ENTROPY FOR THE
SCHRÖDINGER CAT STATE

In this section the properties of the phase space Tsallis
entropies for the Schrödinger cat state in the Wigner and
Husimi representations are obtained. Suppose a coherent state
field |α〉 is interacted with a microscopic superposition of
two atomic states, |ψ〉atom = 1/

√
2[|0〉 + |1〉]. An out of the

resonance interaction Hamiltonian between the atom and the
field is given by

Ĥeff = −h̄g2

�
[
σ̂zâ

†â + 1

2
(σ̂z + 1)

]
, (8)

where g,�,σ̂z, and â(â†) are, respectively, the atom-field
coupling constant, the detuning parameter, the atomic operator,
and the annihilation (creation) operators for a cavity mode
[46]. The atom-field interacting system is obtained from the
Schrödinger equation Ĥeff |�〉 = ih̄(∂/∂t)|�〉, where |�〉 is
an atom-field state and the atom-field density operator is given
by ρ̂A−F = |�〉〈�|. Making a measurement of the basis of the
atomic state gives us the density operator of the field state that
is called the Schrödinger cat state [14]. The Schrödinger cat
state is given by

|ψ〉field = 1√
2

[|αeiϕ〉 + |αe−iϕ〉], (9)

where ϕ = g2t/� and t is the interaction time. It is a coherent
superposition of two Gaussian wave packets with different
phases. The separation between two coherent states for the
Schrödinger cat in configuration space is denoted by x0 =
2|α| sin ϕ [14]. The total wave function for the Schrödinger
cat state is

ψfield(x) = N

2
[ψ+(x) + ψ−(x)], (10)

where ψ±(x) = ( 1
π

)1/4 exp[− 1
2 (x ± x0)2 + ip0(x ± x0)] is the

wave function for the Schrödinger cat state. The normaliza-
tion coefficient is N = [1 + cos(2x0p0)e−x2

0 ]−1/2 and p0 =
2|α| cos ϕ. Therefore, the Wigner distribution function in the
phase space [20] for the Schrödinger cat state is obtained as

W (x,p) = N2

2π
[e−(x+x0)2−(p−p0)2 + e−(x−x0)2−(p−p0)2

+ 2 cos(2px0)e−x2−(p−p0)2
]. (11)

The Husimi distribution function is also obtained by a
Gaussian smoothing of the Wigner distribution function [10]
as

H (x,p) = 1

π

∫
dx́dṕW (x́,ṕ)e−(x−x́)2−(p−ṕ)2

. (12)

From the Eqs. (11) and (12), the Husimi distribution function
is given for the Schrödinger cat state:

H (x,p) = N2

4π
{e− 1

2 (x+x0)2− 1
2 (p−p0)2 + e− 1

2 (x−x0)2− 1
2 (p−p0)2

+ 2e− 1
2 x2− 1

2 x2
0 − 1

2 (p−p0)2
cos[x0(p + p0)]}. (13)

According to Manfredi and Feix’s claim, the Tsallis
entropy in the Husimi representation is always more than the

corresponding Tsallis entropy in the Wigner representation
for q = 2. But their claim, in general, is not valid for other
nonextensive parameters. For example, one can choose q = 1
in the phase space Tsallis entropy, Eqs. (5) and (6), to obtain
the Wehrl entropy. Figure 1 shows the Wehrl entropy (the
Tsallis entropy for q = 1 in Husimi representation) for the
Schrödinger cat state in the Wigner and Husimi representations
for different phases p0. There are some points at which
the entropy in the Husimi representation is less than the
corresponding entropy in the Wigner representation. Figure 1
shows the violation of Manfredi and Feix’s claim for q = 1.

The Wigner distribution function, Eq. (11), is used to
determine the nonclassicality indicator

δ =
∫

|W (x,p)|dxdp − 1, (14)

which measures its negativity [20]. This nonclassicality indi-
cator, which is defined by Kenfack and Życzkowski, is plotted
in Fig. 2 for the Schrödinger cat state in terms of x0.

In Fig. 2 the nonclassicality indicator δ and the phase space
Tsallis entropy Sq in the Wigner and Husimi representations
are plotted for the Schrödinger cat state in terms of x0 for
different p0. The nonclassicality indicator and the phase space
Tsallis entropy in the Wigner representation coincide closely
for q = 1. The behavior of the phase space Tsallis entropy in
the Husimi representation is very similar to the behavior of
the nonclassicality indicator but is not as close as the phase
space Tsallis entropy in the Wigner representation. In Fig. 2,
the Tsallis entropy is normalized to 1, to be comparable with
the nonclassicality indicator. The best coincidence occurs for
the nonextensivity parameters q = 1 in the Wigner representa-
tion. The best coincidence for the Husimi representation occurs
for q = 0.37 and q = 0.50, corresponding to p0 = 0 and
p0 = 7, respectively. Their standard deviations in the Wigner
and Husimi representations are 5.6 × 10−5 and 2.4 × 10−2,
respectively. The nonextensivity parameter for the Wigner
representation is equal to 1; therefore all information about
the system in the Wigner representation is extractable. But
the nonextensivity parameter for the Husimi representation
is less than 1. This means that some information (e.g., the
interference patterns as a quantum signature [21]) are hidden
in the Husimi representation. So complete information about
the systems is not extractable in the Husimi representation.
The correspondence between the nonclassicality indicator
and uncertainty principle for the Schrödinger cat state is
shown by Sadeghi et al. [21]. The similarity between the
nonclassicality indicator and the phase space Tsallis entropy
leads us to another correspondence between the phase space
Tsallis entropy and the uncertainty principle. Thus the more
the value of the entropy corresponds to the more the value of
the uncertainty and the less the information, and vice versa.

IV. THE PHASE SPACE TSALLIS ENTROPY FOR THE
THERMAL STATE

Another interesting example is the application of the
phase space Tsallis entropy to the thermal state. Con-
sider the nonlinear interaction of the microscopic super-
position of an entangled two-mode harmonic oscillator,
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FIG. 1. (Color online) The phase space Tsallis entropy is shown for q = 1 in the Wigner and Husimi representations for the Schrödinger
cat state with p0 = 0 and p0 = 7. The Tsallis entropy, p0, and x0 are dimensionless quantities.

|ψ〉atom = 1/
√

2[|0〉 + |1〉], with a thermal state

ρth(v,d) =
∫

d2αpth(v,d)|α〉〈α|, (15)

where pth(v,d) = [2/π (v − 1)] exp[(−2|α − d|2)/(v − 1)],
and |α〉 is a coherent state [47]. The displacement in the phase
space and variance which are shown by d and v are dependent
on the field strength and temperature T , respectively. The
nonlinear interaction Hamiltonian corresponding to the cross-
Kerr nonlinearity is Ĥint = h̄λâ†âb̂†b̂, where λ is the nonlinear
strength, and â†(â) and b̂†(b̂) are the creation (annihilation) op-
erators of the oscillator and field, respectively [47]. Therefore,
the Wigner distribution function for the thermal state is given
by

W (x,p) = N [Wth(x,p; d) + Wc(x,p; d)

+Wc(x,p; d)∗ + Wth(x,p; deiϕ)], (16)

where N is the normalization coefficient, ϕ = λt , and t is the
interaction time. The different terms in Eq. (16) are given by

Wth(x,p; d) = 2

πv
exp

[
− (x − √

2d)2 + p2

v

]
, (17)

Wth(x,p; deiϕ) = 2

πv
exp

{
− 1

v
[(x −

√
2d cos ϕ)2

+ (p −
√

2d sin ϕ)2]

}
, (18)

and

Wc(x,p; d) = 2

πJK
exp

[
− 2d2

K
(1 − eiϕ)

− 1

2J
(x2 + p2) +

√
2dx

JK
(1 + eiϕ)

+
√

2dpi

JK
(1 − eiϕ) − 4d2

JK2
eiϕ

]
, (19)

where K = 2 + (v − 1)(1 − eiϕ) and J = [sin(ϕ/2) +
iv cos(ϕ/2)]/[2v sin(ϕ/2) + 2i cos(ϕ/2)]. Using Eqs. (12)

and (16) to (19) to obtain the Husimi distribution function for
the thermal state [21],

H (x,p) = N [Hth(x,p; d) + Hc(x,p; d)

+Hc(x,p; d)∗ + Hth(x,p; deiϕ)], (20)

where the different terms in Eq. (20) are given by

Hth(x,p; d) = 2

π (v + 1)
exp

[
− (x − √

2d)2 + p2

v + 1

]
, (21)

Hth(x,p; deiϕ) = 2

π (v + 1)
exp

{
− 1

v + 1
[(x −

√
2d cos ϕ)2

+ (p −
√

2d sin ϕ)2]

}
, (22)

and

Hc(x,p; d) = 2

π (2J + 1)K
exp

[
− 2d2

K
(1 − eiϕ)

− (x2 + p2)

2J + 1
+

√
2dx

(2J + 1)K
(1 + eiϕ)

+
√

2dpi

(2J + 1)K
(1 − eiϕ) + 8d2eiϕ

(2J + 1)K2

]
. (23)

In Fig. 3 the phase space Tsallis entropy for q = 1 is shown
in the Wigner and the Husimi representations. It is shown that
in spite of Manfredi and Feix’s claim for q = 2, the Tsallis
entropy in the Husimi representation is not in total more than
corresponding entropy in the Wigner representation.

In Fig. 4 the nonclassicality indicator δ is shown and
compared with the phase space Tsallis entropy which is plotted
for the thermal state in the Wigner and Husimi representations.
The best coincidence for the nonclassicality indicator δ and the
phase space Tsallis entropy is obtained for the nonextensivity
parameter q = 1 in the Wigner representation and q = 0.191
for the Husimi representation, and their standard deviations
are 9.604 × 10−5 and 3.684 × 10−2, respectively. In Fig. 4
the entropy and nonclassicality indicator are close to each
other and indistinguishable. As well as the Schrödinger cat
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FIG. 2. (Color online) The Tsallis entropy is shown in the Wigner and Husimi representations for the Schrödinger cat state, where
p0 = 0 and p0 = 7. The best coincidence happened between the Tsallis entropy and the nonclassicality indicator δ for q = 1 in the Wigner
representation and q = 0.37 and q = 0.50 in the Husimi representation corresponding to p0 = 0 and p0 = 7, respectively. The Tsallis entropy
and the (dimensionless) nonclassicality indicator δ are normalized to 1, for a comfortable comparison.

state, the thermal state in the Wigner representation shows
complete information about the system. However, the Husimi
representation hides some information about the system.

V. THE PHASE SPACE TSALLIS ENTROPY FOR A
SUPERPOSITION STATE

Another example for the application of the phase space
Tsallis entropy is the superposition of two levels of number
states,

|ψ〉 = (
√

1 − a2|0〉 + a|1〉), (24)
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4

4.5

5

5.5

6

d

S
q

Husimi
Wigner

FIG. 3. (Color online) The Tsallis entropy is plotted in terms of
the displacement d for the thermal state where ϕ = π/16 and v = 2
for q = 1 in the Wigner and Husimi representations. Quantities d and
v are dimensionless.

where a is the real probability amplitude. The states |0〉 and
|1〉 are the ground and first excited number states, respectively.
Figure 5 shows that the Tsallis entropy in the Husimi repre-
sentation is not in total more than the corresponding Tsallis
entropy in the Wigner representation, for q = 1. Therefore
the generalization of Manfredi and Feix’s claim for q �= 2 is
violated, and one cannot recognize the nonextensivity of the
system.

The nonclassicality indicator and the Tsallis entropy in the
Wigner and Husimi representations are plotted in Fig. 6 in
terms of the probability a2. The best coincidence between the
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FIG. 4. (Color online) The Tsallis entropy and the nonclassicality
indicator are plotted in terms of the displacement d for the thermal
state where ϕ = π/16 and v = 2 in the Wigner and Husimi repre-
sentations with the nonextensivity parameters q = 1 and q = 0.191,
respectively.

012119-5



PARVIN SADEGHI, SIAMAK KHADEMI, AND AMIR H. DAROONEH PHYSICAL REVIEW A 86, 012119 (2012)

0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

a2

S
q

Husimi
Wigner

FIG. 5. (Color online) The Tsallis entropy for q = 1 is plotted
versus the probability a2 for the superposition of the ground and the
first excited number states in the Wigner and Husimi representations.

Tsallis entropy and the nonclassicality indicator δ occurs for
q = 1 and q = 0.687 in the Wigner and Husimi representa-
tions, respectively. Their corresponding standard deviations
are 5.026 × 10−5 and 3.424 × 10−3.

According to the values of the suitable nonextensivity pa-
rameters in different representations, one finds that the Husimi
representation hides some information for the Schrödinger cat
and the thermal and superposition states. In spite of the Husimi
representation, all information about the considered system is
available in the Wigner representation.
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FIG. 6. (Color online) The Tsallis entropy and the nonclassicality
indicator δ are plotted versus the probability a2 for the superposition
of the ground and the first excited number states in the Wigner and
Husimi representations for the nonextensivity parameters q = 1 and
q = 0.687, respectively.
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FIG. 7. (Color online) The Tsallis entropy and the nonclassicality
indicator δ are plotted versus the integer quantum number n for
the harmonic oscillator, in the Wigner and Husimi representations.
We obtain q = 1 and q = 0.23 by coincidence between the Tsallis
entropy and the nonclassicality indicator, in the Wigner and Husimi
representations, respectively.

VI. THE PHASE SPACE TSALLIS ENTROPY FOR THE
HARMONIC OSCILLATOR

In this section the eigenstates of the harmonic oscillator
are applied to the phase space Tsallis entropy. The Wigner
function for the harmonic oscillator state |n〉 is given by

W (x,p) = (−1)n

π
exp[−x2 − p2]Ln[2(x2 + p2)], (25)

where Ln is the Laguerre polynomial of the n-th order.
Quantum uncertainty increases with the increasing quantum

numbers n. Furthermore, increasing the uncertainty reduces
the information about the systems and increases their entropy.
Figure 7 shows the relation between the phase space Tsallis
entropy and the nonclassicality indicator δ.

In Fig. 7 we make the best coincidence of quantum Tsallis
entropy in the phase space and nonclassicality indicator δ

for nonextensivity parameters q = 1 and q = 0.23, in the
Wigner representation (with standard deviation 5.336 × 10−5)
and the Husimi representations (with standard deviation
1.923 × 10−3), respectively. The nonextensivity of the Tsallis
entropy for the Husimi representation is less than 1; therefore,
according to the incomplete information theory [38–40], we
cannot extract complete information about the systems in
this representation while in the Wigner representation all
information is extractable. These results are obtained for the
systems investigated in this paper.

In Fig. 8 the Tsallis entropy for q = 1 is plotted versus
the integer quantum numbers n in the Wigner and Husimi
representations. The value of the entropy in the Husimi
representation for n = 0 is more than the value of entropy in
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FIG. 8. (Color online) The Tsallis entropy for q = 1 is plotted
versus the integer quantum number n for the harmonic oscillator, in
the Wigner and Husimi representations.

the Wigner representation. Therefore, the idea that the Husimi
representation hides some information about the state cannot
be extended for all entropies with nonextensivities q �= 2. In
our method, the value of the nonextensivity parameter q is a
more suitable indicator of the hidden information in different
investigated representations. Therefore even for the extensive
systems, the Husimi representation gives us q < 1 and hides
some information while the Wigner representation gives us
q = 1 and is more suitable to apply to the study of the extensive
systems.

VII. CONCLUSION

In this paper we developed the Tsallis entropy in phase
space quantum mechanics. The quantum Tsallis entropy
reduces to the previously known Wehrl and Manfredi-Feix
phase space entropies for the nonextensivity parameters q = 1
and q = 2, respectively.

As an application, our method is applied to the Schrödinger
cat state, the thermal state, a superposition of states, and
the harmonic oscillator state. It is known that the entropy
measures the amount of information about these systems.
Furthermore the uncertainty principle and nonclassicality
indicator δ have similar behavior. It is also shown that the
entropy and nonclassicality indicators have similar behavior.
It is expected reasonably that the amount of information is also
measured by the nonclassicality indicator. In this paper we set
the nonextensivity parameter q to make the best coincidence
between the Tsallis entropy and the nonclassicality indicator δ,
in the Wigner and Husimi representations. The nonextensivity
parameter is obtained at q = 1 for all investigated systems in
the Wigner representations, but in the Husimi representation
the nonextensivity parameter has different values which are all
less than 1, q < 1. According to the incomplete information
theory, for the nonextensivity parameter q = 1, the whole
information is accessible, while for q �= 1 some information
is hidden. Therefore in the Wigner representation for our
investigated systems, complete information is accessible while
the Husimi representation hides some of the information. So
the value of the nonextensivity parameters, in our method,
is a more suitable indicator to show the hidden information
in the Husimi representation. It is clear that the Wigner
representation of Wehrl entropy (the Tsallis entropy with q =
1 in the Wigner representation) is more suitable with respect
to the corresponding entropy in the Husimi representation,
especially for inherently extensive systems.
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