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Quantum-memory-assisted entropic uncertainty relation under noise
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The measurement outcomes of two incompatible observables on a particle can be precisely predicted when it
is maximally entangled with a quantum memory. In this work, we explore the behavior of the quantum-memory-
assisted entropic uncertainty relation under the influence of local unital and nonunital noisy channels. For a class
of Bell-diagonal states, we demonstrate that while the unital noises only increase the amount of uncertainty, the
amplitude-damping nonunital noises may reduce the amount of uncertainty in the long-time limit. The mechanism
behind this phenomenon is also explored by using two dissimilar methods.
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I. INTRODUCTION

One of the most remarkable features of quantum mechanics
is the restriction of our ability to simultaneously predict the
measurement outcomes of two incompatible observables with
certainty, which is called Heisenberg’s uncertainty relation
[1]. Nowadays, the more modern approach to characterize
the uncertainty relation is to use entropic measures rather
than standard deviations [2]. If we denote the probability
of the outcome x by p(x) when a given quantum state ρ is
measured by an observable X, the Shannon entropy H (X) =
−∑

x p(x) log2 p(x) characterizes the amount of uncertainty
about X before we learn its measurement outcomes [3].
For two noncommuting observables Q and R, the entropic
uncertainty relation can be expressed as H (Q) + H (R) �
log2

1
c

[2], where c = maxα,β |〈φα|ϕβ〉|2 with |φα〉 and |ϕβ〉 the
eigenstates of Q and R, respectively. Since c is independent
of the states of the system to be measured, the widely
studied entropic uncertainty relation provides us with a
more general framework of quantifying uncertainty than the
standard deviations (see the review in [4]).

However, the entropic uncertainty relation may be violated
if a particle is initially entangled with another one [5]. In
the extreme case, an observer holding particle B (quantum
memory), maximally entangled with particle A to be measured
by two incompatible observables Q and R, is able to precisely
predict the outcomes. A stronger entropic uncertainty relation,
conjectured by Renes and Boileau [6] and later proved by Berta
et al. [7], is then

S(Q|B) + S(R|B) � log2
1

c
+ S(A|B), (1)

where S(A|B) = S(ρAB) − S(ρB) is the conditional von Neu-
mann entropy with S(ρ) = −tr(ρ log2 ρ) the von Neumann
entropy [3]. S(X|B) with X ∈ (Q,R) is the conditional
von Neumann entropy of the postmeasurement state ρXB =∑

x(|ψx〉〈ψx | ⊗ 1)ρAB(|ψx〉〈ψx | ⊗ 1) after quantum system
A is measured by X, where {|ψx〉} are the eigenstates of the
observable X and 1 is the identity operator. Although the proof
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of this quantum-memory-assisted entropic uncertainty relation
is rather complex, the meaning is clear: the entanglement
of systems A and B may lead to a negative conditional
entropy S(A|B) [8], which will in turn beat the lower bound
log2

1
c
. Especially when A and B are maximally entangled, the

simultaneous measurement of Q and R can be precisely pre-
dicted [7,9]. Recently, two parallel experiments [10,11] have
confirmed the quantum-memory-assisted entropic uncertainty
relation.

Quantum objects are inevitably in contact with environ-
ments and a consequence of the interaction is decoherence
or dissipation [3,12]. So several questions naturally arise:
How do environmental noises influence the quantum-memory-
assisted entropic uncertainty relation? Will the noisy channels
surely and only increase the amount of uncertainty because
of disentanglement? Is quantum correlation the only key
factor for this uncertainty relation under noise? To answer
these questions, we consider in this paper two categories of
noises: unital and nonunital noisy channels. Intuition tells us
that the uncertainty will increase due to the noise-induced
disentanglement. For a class of Bell-diagonal states, we
demonstrate that this is true for local unital noises, but it may
fail for a local amplitude-damping noise, a typical nonunital
noisy channel, in the long-time limit. The mechanism behind
this phenomenon is explored.

The paper is organized as follows. In Sec. II, for a class
of Bell-diagonal states, we present a condition for how the
uncertainty of two incompatible observables can reach the
lower bound. In Sec. III, we study in detail the local unital
and nonunital noise effects on the quantum-memory-assisted
entropic uncertainty relation, and two dissimilar explanations
of the presented phenomena are discussed in Sec. IV. Finally,
we list several open questions and draw our conclusions in
Sec. V.

II. QUANTUM-MEMORY-ASSISTED ENTROPIC
UNCERTAINTY RELATION FOR BELL-DIAGONAL

STATES

We focus on the uncertainty game model illustrated in
Ref. [7]: Bob sends qubit A, initially entangled with another
qubit B (quantum memory), to Alice. Then, Alice measures
either Q or R and announces her measurement choice to
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Bob. Equation (1) captures Bob’s uncertainty about Alice’s
measurement outcome. We assume the two-qubit system to be
initially prepared in a class of states with the maximally mixed
subsystems [ρA(B) = 1A(B)/2] [13]:

ρAB = 1

4

(
1A ⊗ 1B +

3∑
j=1

Cσj
σA

j ⊗ σB
j

)
, (2)

where σj with j ∈ {1,2,3} are the standard Pauli matrices,
and the coefficients Cσj

= trAB(ρABσA
j ⊗ σB

j ) satisfy 0 �
|Cσj

| � 1. A state of this type is also a called Bell-diagonal
state, because it can be diagonalized as a convex combination
of four Bell states: ρAB = λ
+|
+〉〈
+| + λ
−|
−〉〈
−| +
λ�+|�+〉〈�+| + λ�−|�−〉〈�−|, with eigenstates |
±〉 =
(|00〉 ± |11〉)/√2 and |�±〉 = (|01〉 ± |10〉)/√2, and cor-
responding eigenvalues λ
± = (1 ± Cσ1 ∓ Cσ2 + Cσ3 )/4 and
λ�± = (1 ± Cσ1 ± Cσ2 − Cσ3 )/4, respectively. By considering
the positivity requirement λ
± ,λ�± � 0, all Bell-diagonal
states should be confined geometrically within a tetrahedron in
a three-dimensional space spanned by (Cσ1 ,Cσ2 ,Cσ3 ) [13] (see
Fig. 1), providing an intuitive geometric picture for exploring
the quantum-memory-assisted entropic uncertainty relation.

Before investigating the noise effect, we first consider how
to consistently reach the lower bound of Eq. (1). We employ the
set of Pauli observables {σj } with j ∈ {1,2,3}. The conditional
von Neumann entropy after qubit A was measured by one of the

Pauli observables can be expressed as S(σj |B) = Hbin(
1+Cσj

2 ),
where Hbin(p) = −p log2 p − (1 − p) log2(1 − p) is the bi-
nary entropy [3]. Therefore, if we choose two of the Pauli
observables Q = σj and R = σk (j �= k) for measurement,
the left-hand side of Eq. (1) can be written as

U = Hbin

(
1 + Cσj

2

)
+ Hbin

(
1 + Cσk

2

)
. (3)
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FIG. 1. (Color online) The geometry of Bell-diagonal states with
the blue (gray) tetrahedron representing the set of all Bell-diagonal
states, where the meshed surface means the valid Bell-diagonal states
meeting the SPMC condition Cσ2 = −Cσ1Cσ3 . The black solid, red
(gray) solid, and black dotted lines represent trajectories of Bell-
diagonal states (Cσ1 ,Cσ2 ,Cσ3 ) = (−0.5,0.4,0.8) under local bit-flip,
phase-flip, and bit-phase-flip noises, respectively.

On the other hand, the complementarity c of the observables σj

and σk is always equal to 1/2 and the reduced density matrix
of the Bell-diagonal state is a maximally mixed state, i.e.,
S(ρB ) = 1. Therefore, the right-hand side of Eq. (1) reduces
to S(ρAB) and takes the form

Ub = −
∑

χ=
,�;ε=±
λχε log2 λχε . (4)

In general, Eq. (4) provides a lower bound of uncertainty of
Eq. (3). Having in mind the choice of our measurements σj

and σk, we find it convenient to verify that, if the initial Bell-
diagonal state meets the condition

Cσi
= −Cσj

Cσk
, (i �= j �= k), (5)

U ≡ Ub will be strictly satisfied in Eq. (1), implying a direct
measurement of the degree of uncertainty by the joint entropy
S(ρAB) of the whole system. In what follows, we name Eq. (5)
as the state preparation and measurement choice (SPMC)
condition for this new entropic uncertainty relation.

III. NOISE EFFECTS ON THE QUANTUM-MEMORY-
ASSISTED ENTROPIC UNCERTAINTY RELATION

We assume that qubit A will experience a local noisy
channel when sent to Alice, but qubit B is a quantum
memory free from noise. The evolved state of the whole
system can be characterized by the quantum map M(ρAB) =∑

μ(κμ ⊗ 1)ρAB(κμ ⊗ 1)† with {κμ} the local Kraus operators
satisfying

∑
μ κ†

μκμ = 1. In the following sections, we will
discuss two categories of noises, i.e., unital and nonunital local
noisy channels [14].

A. Unital noise

We first consider several paradigmatic types of local
unital noisy channels: bit-flip, bit-phase-flip, and phase-
flip (equivalent to phase damping), satisfying the unital
condition [14]:

�A
u

(
1
21

A
) = 1

21
A, (6)

with �A
u (ρA) = ∑

μ κμρAκ†
μ. The corresponding Kraus op-

erators are denoted by κl
0 = √

1 − ηl1, κl
1 = √

ηlσl, with
l = 1,2,3 representing bit-flip, bit-phase-flip, and phase-flip
channels, respectively (in the following, bit-flip, bit-phase-flip,
and phase-flip noises are also called �1, �2, and �3 noises,
respectively), and ηl represents the probability of the noise
taking place. It is convenient to verify that the state of
qubits A and B initially prepared in a Bell-diagonal state
(Cσ1 ,Cσ2 ,Cσ3 ) will still be of a Bell-diagonal type when
passing through one of the three noisy channels: M(ρAB) =∑

χ=
,�;ε=± λ
′
χε |χε〉〈χε|, where λ

′

± = [1 ± C ′

σ1
∓ C ′

σ2
+

C ′
σ3

]/4 and λ
′
�± = [1 ± C ′

σ1
± C ′

σ2
− C ′

σ3
]/4 [15] with the

three parameters

C ′
σl

= Cσl
, C ′

σm
= (1 − 2ηl)Cσm

(m �= l). (7)

Here l = 1, 2, and 3 represent qubit A suffering from
�1, �2, and �3 noisy channels, respectively. Equation (7)
implies a subtle relation between the noise and the quantum-
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memory-assisted entropic uncertainty relation, which leads to
the following theorem.

Theorem 1. Assuming qubit A will experience one of
the three noises (�1, �2, or �3), for quantum states initially
prepared in Bell-diagonal states meeting the SPMC condition
Cσi

= −Cσj
Cσk

, the quantum-memory-assisted entropic un-
certainty of the observables σj and σk can consistently reach
the lower bound, if no �i noise takes place.

Proof. Given the �i noise takes place, we may have C ′
σi

=
Cσi

, C ′
σj

= (1 − 2ηi)Cσj
, and C ′

σk
= (1 − 2ηi)Cσk

according
to Eq. (7). Assuming that the SPMC condition can still be
consistently satisfied under �i noise, i.e., C ′

σi
= −C ′

σj
C ′

σk
, we

may get the relation Cσi
= −Cσj

Cσk
(1 − 2ηi)2, which requires

(1 − 2ηi)2 = 1, i.e., ηi = 0 or 1 (just two extreme cases). �
For an illustration, the geometric picture of Bell-diagonal

states satisfying the SPMC condition Cσ2 = −Cσ1Cσ3 is
depicted as the meshed surface in Fig. 1. On this surface, the
uncertainty of the observables σ1 and σ3 is equal to S(ρAB ). The
black solid, red (gray) solid, and black dotted lines represent,
respectively, trajectories of the Bell-diagonal state, initially
prepared in (Cσ1 ,Cσ2 ,Cσ3 ) = (−0.5,0.4,0.8), under �1, �3,
and �2 noises. Apparently, �1 and �3 noises will not break
the SPMC condition, since their trajectories are always on
the surface, whereas �2 noise, due to the departure from the
surface, will definitely break the SPMC condition (except
for two points). As a result, the SPMC condition will be
consistently satisfied if no �2 noise takes place.

To investigate the quantum-memory-assisted entropic un-
certainty relation under a general local unital channel, we prove
the following theorem.

Theorem 2. The lower bound of quantum-memory-assisted
entropic uncertainty Ub will not decrease under local unital
noise if a bipartite system is initially prepared with the
maximally mixed subsystems (e.g., Bell-diagonal state).

Proof. Consider a bipartite system AB with dimension
dAB = dA × dB. If the initial state is prepared in
the maximally mixed subsystems, i.e., ρA(B) = 1A(B)

dA(B)
,

then quantum memory B free from noise will keep
maximally mixed: S(ρB) ≡ log2 dB [3]. Therefore Ub = log2
1
c

+ S(A|B) = log2
1
c

+ S(ρAB) − S(ρB) is fully dependent
on S(ρAB). With the help of the monotonicity
of the relative entropy for quantum maps, then
S[M(ρAB)||M(1

AB

dAB
)] � S[ρAB ||1AB

dAB
]. [16] Then we have −S

[M(ρAB)] − tr[M(ρAB) log2 M(1
AB

dAB
)] � −S(ρAB) − tr[ρAB

log2
1AB

dAB
] = −S(ρAB) + log2 dAB. Since the local noisy

channel �A
u is unital, the map Mlu = [�A

u ⊗ 1B] is
still unital. The proof is straightforward: Mlu(1

AB

dAB
) =∑

μ(κμ ⊗ 1)1
AB

dAB
(κμ ⊗ 1)† = ∑

μ(κμ
1A

dA
κ†

μ) ⊗ 1B

dB
=1A

dA
⊗ 1B

dB
=

1AB

dAB
. Then tr[Mlu(ρAB) log2 Mlu(1

AB

dAB
)] = tr[Mlu(ρAB)

log2
1AB

dAB
] = − log2 dAB. Finally, we may obtain

S[Mlu(ρAB)] � S(ρAB), (8)

which implies that Ub will not decrease under local unital noisy
channels. �

As entanglement will not increase under local noisy
channels [16], the noise-induced disentanglement can be

employed to account for the nondecreasing of uncertainty
in Theorem 2. However, entanglement is not the only way
to characterize quantum correlations. In order to explore the
influence of quantum correlations beyond entanglement on this
uncertainty relation, we relate the lower bound of Eq. (1) to the
definition of discord: D = −S(A|B) + min{Bk}

∑
k qkS(ρk

A)
[17], where min{Bk}

∑
k qkS(ρk

A) (denoted by M in the follow-
ing) captures the minimal missing information about A after
B is measured, and ρk

A = trB{BkρABB
†
k}/qk is the resulting

state after the complete measurement {Bk} on qubit B, and
qk = trAB{BkρABB

†
k}. Therefore, we have

U � log2
1

c
+ M − D. (9)

For Bell-diagonal states, M can be expressed as [18]

M = Hbin

(
1 + Cmax

2

)
, (10)

with Cmax = max{|C ′
σ1

|,|C ′
σ2

|,|C ′
σ3

|}. According to Eq. (7),
if �i noise takes place, as long as |Cσi

| � |Cσj
|,|Cσk

|,
we may have M = Hbin(

1+|Cσi
|

2 ), which is a constant, and
this implies that the uncertainty is fully dependent on the
quantum correlations between qubit A and quantum memory
B. Especially, if initial state is prepared according to SPMC
condition Cσj

= −Cσi
Cσk

(or Cσk
= −Cσi

Cσj
), the equality

in Eq. (9) can be consistently satisfied, which suggests that
measuring the uncertainty of the observables σi and σk (or σi

and σj ) can be directly related to quantum discord,

D = const. − U, (11)

with const. = log2
1
c

+ Hbin(
1+|Cσi

|
2 ) a constant.

As an example, we consider the phase-damping channel

with the Kraus operators κ
pd

0 = |0〉〈0| + e− �pd t

2 |1〉〈1| and
κ

pd

1 = √
1 − e−�pd t |1〉〈1|, which is equivalent to the phase-flip

channel with η3 = (1 − e− �pd t

2 )/2 [3]. Qubit A and quantum
memory B are initially prepared in a Bell-diagonal state
(Cσ1 ,Cσ2 ,Cσ3 ) = (−0.5,0.4,0.8) satisfying the SPMC condi-
tion Cσ2 = −Cσ1Cσ3 , then qubit A, which is sent through the
phase-damping channel, will not break the SPMC condition,
and the uncertainty of the observables σ1 and σ3 can be directly
related to quantum discord D = const. − U, with const. =
1 + Hbin(0.9) and U = Hbin(0.9) + Hbin(0.5 − 0.25e−�pd t/2).
As shown in Fig. 2(a) and 2(b), the uncertainty will increase
in the long-time limit due to the gradually missing quantum
correlations (measured by discord and concurrence [19]).

Since M(ρAB) = ∑
χ=
,�;ε=± λ

′
χε |χε〉〈χε| holds for bit-

flip, bit-phase-flip, and phase-flip (phase-damping) noises, we
may conclude that these unital channels are also semiclassical
according to the definition presented in Ref. [20]. Therefore,
quantum correlations never increase under the above local
unital channels. Here, the decrease of quantum correlations
including entanglement and discord makes the outcomes
of two incompatible observables more uncertain. Will this
phenomenon still appear under the influence of nonunital
channels?

012113-3



Z. Y. XU, W. L. YANG, AND M. FENG PHYSICAL REVIEW A 86, 012113 (2012)

0 2 4 6 8 10

1.1

1.2

1.3

1.4

1.5 U

0 2 4 6 8 10
pdt

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10
pdt

0.42
0.44
0.46
0.48
0.50
0.52

PAB

(a)

M

E

D

(b)

(c)

pdt

FIG. 2. (Color online) (a) Uncertainty of the observables σ1

and σ3 with initial state (Cσ1 ,Cσ2 ,Cσ3 ) = (−0.5,0.4,0.8) under
the local phase-damping channel with �pd as the damping rate.
(b) Entanglement (E), discord (D), and minimal missing information
about A after B is measured (M) vs �pdt . (c) Purity of state
ρAB vs �pdt.

B. Nonunital noise

To further explore this problem, we consider a nonunital and
nonsemiclassical local channel, i.e., the amplitude-damping
noise with Kraus operators κad

0 = e− �ad t

2 |0〉〈0| + |1〉〈1|, κad
1 =√

1 − e−�ad t |1〉〈0| [3,21]. Here �A
nu( 1

21
A) = [e−�ad t |0〉〈0| +

(2 − e−�ad t )|1〉〈1|]/2 is not maximally mixed, which implies
that the state through a noisy channel to be measured by
Alice is not a Bell-diagonal state, and the SPMC condition
presented above is no longer satisfied. We may only study the
lower bound of uncertainty instead. Given the initial condition
|Cσ1 | � |Cσ2 |, M can be expressed as

M = min{Mx,Mz}, (12)

where Mx = Hbin( 1+u
2 ) with u =√

e−�ad t [C2
σ1

+ 2 cosh(�adt) − 2] and Mz = Hbin(v+)+Hbin(v−)
2

with v± = (1 ± Cσ3 ) exp(−�adt)/2 (see the Appendix), which
is time dependent and may also be nonmonotonic. Figure 3(a)
demonstrates an interesting phenomenon: the uncertainty of
two incompatible observables might be reduced under the
influence of the amplitude-damping noise in the long-time
limit [22]. The key factor for the uncertainty reduction
should not be the quantum correlations, which are decreasing
in this case [shown in Fig. 3(b)]. Therefore, the quantum
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FIG. 3. (Color online) (a) U and Ub of the observables σ1

and σ3 with initial state (Cσ1 ,Cσ2 ,Cσ3 ) = (−0.5,0.4,0.8) under the
local amplitude-damping channel with �ad as the damping rate.
(b) Entanglement (E), discord (D), and minimal missing information
about A after B is measured (M) vs �ad t . (c) Purity of state
ρAB vs �ad t.

correlation is not the only decisive factor for the amount of
the uncertainty.

IV. EXPLANATIONS FOR THE ABOVE PHENOMENA

In this section, we first summarize the above phenomena:
(i) The uncertainty (or lower bound) will increase under local
unital noisy channels while it may be reduced under the
nonunital noise channel. (ii) The relation between quantum
correlations and uncertainty is subtle, since the reduced uncer-
tainty occurs in the case in which quantum correlations, includ-
ing discord and entanglement, are also reduced under the above
local amplitude-damping channel. In what follows, we present
two qualitative methods to explain the above phenomena.

A. Competition between M and D

In order to understand the physical origin of the above
phenomena, we reconsider the treatment in Eq. (9). Appar-
ently, the uncertainty is related to the discrepancy between
M and D, not just the quantum correlations only, and it is
decided by the competition between quantum correlations
and the minimal missing information of a single particle
after local measurement on another one. For illustration,
the competition between M and D are depicted with blue
(gray) shades in the insets of Figs. 2(b) and 3(b). Quan-
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tum correlations, including entanglement and discord, will
decrease in both cases. However, the most difference is
that Eq. (12) is not a monotonic function, which may even
decrease under an amplitude-damping channel. That is to
say, the missing information by local measurements may
be reduced in the long-time limit, which in turn lowers the
uncertainty. For the operational interpretations of M and D see
Ref. [23]

B. Purity of state ρAB

Another possible way to explain the above phenomena is
to employ the purity of state ρAB :

PAB = trAB

(
ρ2

AB

)
, (13)

which would be anticorrelated with the uncertainty (i.e., a purer
state will cause less uncertainty) [24]. As shown in Figs. 2(c)
and 3(c), the increase (decrease) of the uncertainty is caused
by the reduction (growth) of state purity.

V. CONCLUSION

Before ending this paper, we mention some open problems
waiting for solution: Is it possible to find the minimum
uncertainty achievable in the presence of nonunital noise? Can
we find similar phenomena by other entropy measures, such as
smooth entropy [25]? Finally, is it possible to directly utilize
the decoherence or dissipation properties illustrated in this
paper to perform quantum information tasks such as quantum
channel testing?

In summary, we have studied the noise effect on
quantum-memory-assisted entropic uncertainty relation on
Bell-diagonal states. By investigating different noises, we
have demonstrated in this case that local unital noises will
surely increase the uncertainty, but under the influence of
a nonunital amplitude-damping channel, we found that the
uncertainty might even be reduced. Our work is the first step
toward the study of the noise effect on the quantum-memory-

assisted entropic uncertainty relation and can be immediately
investigated by all-optical setups, where the state preparation
and measurement can be realized like in Refs. [10,11] and the
noisy channels can be simulated according to Refs. [26,27].
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APPENDIX: EXPRESSION FOR EQ. (12)

Although a Bell-diagonal state under a local amplitude-
damping channel will no longer be of the Bell-diagonal type,
it is still of “X” type,

ρAB(t) = 1

2

⎛
⎜⎝

v+ 0 0 w−
0 v− w+ 0
0 w+ 1 − v+ 0

w− 0 0 1 − v−

⎞
⎟⎠ , (A1)

with v± = e−�ad t (1 ± Cσ3 )/2 and w± = e−�ad t/2(Cσ1 ±
Cσ2 )/2. In general, we may employ projectors {Bk} =
{cos θ |0〉 + eiξ sin θ |1〉, e−iξ sin θ |0〉 − cos θ |1〉} [17]. If
|w+ + w−| � |w+ − w−|, i.e., |Cσ1 | � |Cσ2 |, the optimal mea-
surement is either {(|0〉 + |1〉)/√2,(|0〉 − |1〉)/√2}, i.e., σ1

operation, or {|0〉, − |1〉}, i.e., σ3 operation [28]. Therefore,
the minimal missing information after local measurement can
be expressed as

M = min{Mx,Mz}, (A2)

where Mx = Hbin( 1+u
2 ) with u =√

e−�ad t [C2
σ1

+ 2 cosh(�adt) − 2] and Mz = Hbin(v+)+Hbin(v−)
2 .

With M , D can be calculated straightforwardly.
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