
PHYSICAL REVIEW A 86, 012111 (2012)

Time-of-arrival probabilities for general particle detectors

Charis Anastopoulos*

Department of Physics, University of Patras, 26500 Greece

Ntina Savvidou†

Theoretical Physics Group, Imperial College, SW7 2BZ, London, United Kingdom
(Received 24 May 2012; published 20 July 2012)

We develop a general framework for the construction of probabilities for the time of arrival in quantum systems.
The time of arrival is identified with the time instant when a transition in the detector’s degrees of freedom takes
place. Thus, its definition is embedded within the larger issue of defining probabilities with respect to time for
general quantum transitions. The key point in our analysis is that we manage to reduce the problem of defining
a quantum time observable to a mathematical model where time is associated to a transition from a subspace of
the Hilbert space of the total system to its complementary subspace. This property makes it possible to derive
a general expression for the probability for the time of transition, valid for any quantum system, with the only
requirement that the time of transition is correlated with a definite macroscopic record. The framework developed
here allows for the consideration of any experimental configuration for the measurement of the time of arrival,
and it also applies to relativistic systems with interactions described by quantum field theory. We use the method
in order to describe time-of-arrival measurements in high-energy particle reactions and for a rigorous derivation
of the time-integrated probabilities in particle oscillations.
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I. INTRODUCTION

The time-of-arrival issue [1,2], in its simplest form, amounts
to the following problem. One considers an initial wave
function |ψ0〉 for a particle centered around x = 0 and with
a positive mean momentum. The question is to find the
probability P (t)dt that the particle is detected at distance
x = L at some moment between t and t + δt . The issue
is important in the foundations of quantum mechanics, in
relation to the role of time in the theory, but also because
of the possibility of measuring time-of-arrival probability
distributions.

In this paper, we develop a general framework for the
construction of probabilities for the time of arrival in quantum
systems. The key idea is the inclusion of the measuring
apparatus in the quantum description; hence, the time of
arrival is defined as a coarse-grained observable associated
with the macroscopic records of the apparatus that corre-
spond to a particle’s detection. Our framework allows for
the consideration of any experimental configuration for the
measurement of the time of arrival. In particular, our method
applies to relativistic systems with interactions described by
quantum field theory, therefore it is particularly suitable for
time-of-arrival measurements in high-energy physics.

A common conclusion emerging from the different ap-
proaches to the topic is that the definition of probabilities
for the time of arrival strongly depends on the specific
experimental setup through which the time of arrival is
determined. The latter observation is the starting point of
our method. Rather than attempting to construct a time-
of-arrival probability for the properties of the microscopic
quantum particle, we consider the larger system including
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the microscopic particle and a measurement apparatus. In
the combined system, the time of arrival is associated with
a definite macroscopic record of particle detection, defined in
terms of the apparatus’ degrees of freedom. We can then treat
the time of arrival as a quasiclassical variable, and construct
the relevant probabilities using standard expressions from the
decoherent histories approach to quantum theory [3–7].

We treat the time of arrival as a special instance of the
more general notion of the time associated to a transition in a
quantum system—here the transition refers to the degrees of
freedom of the measuring apparatus. Thus, in order to describe
the time of arrival, we first derive an operator expression for the
probability associated to transition times in general quantum
systems. This probability distribution depends only on the
Hamiltonian, the projection operators that define the transition,
and the initial state of the system. The derivation requires no
assumptions about specific properties of the physical system;
only that the time of transition is associated to a macroscopic
record of observation. Hence, the most important contribution
of this paper is that it provides a general methodology for the
determination of the time-of-arrival probabilities associated
with an experiment.

A. The time-of-arrival issue

In quantum theory, probability distributions for observables
are constructed using the Born rule, or its generalizations.
However, the Born rule does not directly apply to the time-
of-arrival problem because there is no self-adjoint operator
for time in quantum mechanics [8,9]. The time t appearing
in Schrödinger’s equation is an external parameter and not an
observable. This implies that the squared modulus of the time-
evolved wave function |ψ(x,t)| is not a density with respect
to t , and hence, it cannot serve as a definition for the required
probabilities [10].
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The time-of-arrival problem is a special case of passing
from the classical description of a magnitude to its associated
quantum one. In this case, the methodologies of the classical
theory do not generalize to the quantum theory. In classical
probability theory, time-of-arrival probability distributions are
defined in terms of probability currents. For a nonrelativistic
particle of mass m, the probability current associated to
Schrödinger’s equation is

J (L,t) = − i

2m
〈ψt |p̂δ(x̂ − L) + δ(x̂ − L)p̂|ψt 〉, (1)

where |ψt 〉 = e−iĤ t |ψ0〉 and Ĥ is the free particle’s Hamil-
tonian. However, the current, Eq. (1), gives rise to negative
probabilities for initial states involving superpositions of
different momenta [11].

The time-of-arrival issue is of significant interest because
(1) It provides a simple setup for exploring different

ideas about one of the major foundational issues in quantum
mechanics, namely, the role of time in the theory. This issue
is particularly pertinent in the fields of quantum gravity and
quantum cosmology: the necessity of a reconciliation between
the quantum notion of time as an external parameter to a
physical system and the dynamical notion of time in general
relativity generates the so-called problem of time in quantum
gravity [12]. In particular, ideas about the role of time can be
applied both to the time-of-arrival problem and in quantum
cosmology [7,13,14].

(2) It is a prototype for other physical problems in quantum
theory that involve the definition of probabilities with respect
to time. Examples include the study of tunneling time [15,16];
that is, of the time that it takes a particle to cross a classically
forbidden region, and the construction of well-defined proba-
bilities for nonexponential decays [17,18]. Moreover, the rapid
growth of quantum information theory brings into the forefront
novel issues, such as how entanglement is manifested at the
level of probabilities for time. Conversely, the analogy with
photodetection theory, where temporal correlations provide
significant information about the electromagnetic-field state
[19–21], strongly suggests that probabilities and correlations
with respect to time can provide novel generalized criteria for
entanglement.

(3) Time-of-arrival probability distributions can in principle
be experimentally measured [22] allowing for a comparison
between different theoretical predictions. The recent OPERA
and ICARUS experiments have determined time-of-arrival
probability distribution in the context of neutrino physics
[23,24]. Furthermore, the theory describing particle oscilla-
tions [25,26] (neutrinos and neutral bosons) relies implicitly
on the notion of the time of arrival [27]; the quantity relevant
to the experiments is the total probability of particle detection
integrated over all times of arrival t of a particle at the detector.

Currently, there exist several different approaches to the
time-of-arrival problem. The main limitation of existing
approaches is the lack of generality. There is no precise,
algorithmic procedure allowing for the derivation of the
time-of-arrival probabilities for any specific method of particle
detection. Moreover, investigations are mainly restricted to
nonrelativistic quantum mechanics. They do not incorporate
the quantum-field-theoretic description of interactions, which

would be necessary for the study of time of arrival in high-
energy physics.

For initial states sharply concentrated in momentum, all
approaches lead to probability distributions that are peaked
around the classical value of the time of arrival. These
probability distributions differ in their details, the differences
being particularly pronounced for initial states with significant
momentum spread. In fact, time-of-arrival probabilities are
strongly contextual, in the sense that they strongly depend on
the experimental procedure through which the time of arrival
is determined.

An axiomatic approach, developed by Kijowski, determines
the probability distribution P (L,t) for the time of arrival of
nonrelativistic particles by requiring Galilean covariance and
correspondence with the classical theory [28]. The resulting
expression is

P (L,t) =
∣∣∣∣
∫

dp

2π

√
p

m
ψ̃0(p)eipL−i(p2/2m)t

∣∣∣∣
2

, (2)

where ψ̃0 is the initial state in the momentum representation.
For wave functions with support on positive values of the
momentum p, the probability density, Eq. (2), is normalized
to unity for t ∈ (−∞,∞). Other properties of the probability
density, Eq. (2), are discussed in Ref. [29], and generalizations
in Ref. [30].

Other approaches to the time of arrival include (1) the
use of complex potentials modeling the absorption of the
particle by a detector at x = L [31–34]; (2) the consideration of
specific detector models [22,35–37] or idealized clocks [38];
(3) formulations within the decoherent histories approach to
quantum mechanics [7,39–43]; and (4) analysis of the time
of first crossing of x = L for quantum-mechanical paths.
Such paths are defined either using Feynman’s prescription
[44], or through Bohmian mechanics [45] or phase-space
quasidistributions [46].

B. The proposed time-of-arrival algorithm

In this paper, we address the issue of constructing time-
of-arrival probability distributions associated to any method
of particle detection. To this end, we develop a method that
is based on the following key ideas: (i) the inclusion of the
detector degrees of freedom into the quantum description;
(ii) the definition of the time of arrival as a coarse-grained
quasiclassical variable associated with macroscopic records
of particle detection; and (iii) the understanding of the time of
arrival as a special case of the more general notion of transition
time, which applies to practically all quantum systems.

Our method is algorithmic: For each experimental setup,
one identifies the operators corresponding to the macroscopic
records of particle detection, the total Hamiltonian (which
includes the Hamiltonian for the microscopic particle, the
Hamiltonian for the self-dynamics of the detector, and an
interaction term), and the initial state of the combined system.
Once the above variables are determined, a unique expres-
sion for the time-of-arrival probability distribution follows.
Moreover, the method involves no restrictions on properties of
the operators through which the time-of-arrival probabilities
are constructed; it applies to any quantum system, including
relativistic systems interacting through quantum field theory.
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Hence, it is particularly suitable for the study of the time-of-
arrival problem in high-energy physics.

We do not define the time of arrival as an intrinsic
variable characterizing microscopic particles, but as a variable
associated to degrees of freedom of macroscopic detectors.
In particular, we identify the time of arrival with the instant
t that the apparatus “clicks”; that is, with the reading of an
external clock simultaneous to the creation of a macroscopic
record of particle detection. A particle detection constitutes
a macroscopic, irreversible amplification of a microscopic
event; thus, the time-of-arrival t is defined as a coarse-grained,
quasiclassical variable associated with internal transitions of
the detector.1 Probabilities for such quasiclassical variables
are given by the decoherent histories approach to quantum
mechanics. We emphasize that in our approach, a particle’s
time of arrival is defined only in the presence of a definite fact
of particle detection.

The time-of-arrival issue then becomes a special case of the
broader issue of defining probabilities with respect to time for
general quantum transitions; other special cases include the
definition of decay probabilities in unstable systems [17] and
the construction of coherence functions of the electromagnetic
field in photodetection [19–21]. The key point in our analysis
is that we manage to reduce the problem of defining a quantum
time observable to a simple mathematical model where time
is associated with a transition from a subspace of the Hilbert
space of the total system to its complementary subspace. This
property makes it possible to derive a general expression for
the probability for the time of transition, valid for any quantum
system, with the only requirement that the time of transition is
correlated with a definite macroscopic record.

Our method involves three steps: (i) the derivation of an
expression for the amplitudes associated to definite values
for the time t that a specific transition takes place in
a quantum system; (ii) the construction of the associated
probabilities through the requirement that the time of transition
t is a coarse-grained quasiclassical variable; and (iii) the
specialization to the time-of-arrival problem, by considering a
system consisting of a microscopic particle interacting with a
macroscopic apparatus at distance L from the particle source.
The result is a general expression for the time-of-arrival
probabilities. This expression involves certain operators that
describe the properties of the particle detector, its interaction
with the microscopic particle, and the type of recorded
observables. These operators are determined by the physics
of the time-of-arrival experiment in consideration; once they
are specified, a unique expression for the time-of-arrival
probabilities association to the experiment follows.

Our main results are the following:
(1) We construct the time-of-arrival probabilities for three

different models of particle detectors. We find that, in general,
the time-of-arrival probabilities are strongly dependent on
the physics of the detector, but there is an important regime
where all information about the detector is encoded in a

1The time-of-arrival variable is coarse-grained in the sense that
its value can only be ascertained with macroscopic accuracy, and
it is quasiclassical in the sense that it is associated with definite
macroscopic records.

single function of the microscopic particle’s momentum, the
absorption coefficient α(p).

(2) We identify a generalization of Kijowski’s probability
distribution that is valid for any dispersion relation for
the microscopic particle, including relativistic ones. This
probability distribution corresponds to the case of constant
absorption coefficient.

(3) We construct a general expression for the time-of-
arrival probability in high-energy processes, in which the
microscopic particle is detected through a reaction described
by relativistic quantumfield theory. In this context, our method
leads to a general quantum-measurement-theoretic description
of particle detectors in high-energy physics.

(4) A nontrivial application of our formalism is the rigor-
ous derivation of the time-integrated probabilities associated
with particle-oscillation experiments. We obtain the standard
oscillation formulas in a regime that corresponds to very short
values of the decoherence times associated to the particle-
detection process. Interestingly, we also find that in the regime
of larger decoherence times a novel nonstandard oscillation
formula appears.

The present work originates from ideas in a broader
program about the role of time in quantum theory [47]. It
employs many concepts from the description of quantum
measurements in the decoherent histories approach [3,5,6] and
it has some similarities to the Davies-Srinivas photodetection
theory [20]. Preliminary versions of the method [10] have
been employed for the description of tunneling time [16],
nonexponential decays [18], and for the study of temporal
correlations in particle detectors in relation to the Unruh
effect [21].

The structure of this paper is the following. In Sec. II,
we derive a general formula for the probability distribution
associated with the time of transition in any quantum system,
and then we employ this formula in order to define probabilities
associated with general time-of-arrival measurements. In
Sec. III, we study the time of arrival using idealized models
for the particle detection process, we obtain a generalization
of Kijowski’s probability distribution, and we apply our for-
malism to time-of-arrival experiments in high-energy physics.
Section IV contains a nontrivial application of our formalism,
in the rigorous derivation of the time-integrated probability in
particle-oscillation experiments.

II. DERIVATION OF A GENERAL FORMULA FOR
TIME-OF-ARRIVAL PROBABILITIES

In this section, we derive an expression for the time-of-
arrival probabilities, applicable to any scheme of detection
for the microscopic particle. To this end, we first construct
probabilities associated with the time of transition for a general
quantum system; the time-of-arrival probabilities arise as a
special case. In particular, in Sec. II A we present the physical
assumptions and the notations of the formalism; in Sec. II B we
construct the quantum amplitudes associated with a definite
value of the time of transition; in Sec. II C we construct
the probabilities with respect to the time of transition t by
assuming that t is a coarse-grained quasiclassical variable;
and in Sec. II D we consider the special case of time-of-arrival
measurements where the transitions under consideration
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correspond to the recording of a particle event by a macro-
scopic detector.

A. Preliminaries

The key points of our derivation of the probabilities
associated with the time of transition of a generic quantum
system are the following:

(1) Physical transitions in a quantum system are described
as transitions between two complementary subspaces in the
system’s Hilbert space.

(2) The time of a transition is defined in terms of a
macroscopic record in an apparatus that is correlated to the
microscopic transition event. Hence, the time of transition is a
coarse-grained, decoherent observable, for which probabilities
can be meaningfully defined.

Point (1) is standard in ordinary quantum theory. For
example,

(i) the emission of a photon from an atom corresponds to a
transition from the one-dimensional subspace, defined by the
electromagnetic field vacuum, to the subspace of single-photon
states [20];

(ii) a von Neumann measurement corresponds to a transition
from the subspace in which the pointer variable X̂ takes
its premeasurement values, to a subspace corresponding to
possible measurement outcomes; and

(iii) any particle reaction can be described as a transition
from the subspace of states associated to the initial particles to
the subspace of the product particles.

Point (2) restricts the context of this study to observed
transitions, i.e., to transitions associated with definite macro-
scopic facts of observation. The existence of a macroscopic
record necessitates that we include a measurement apparatus
in the quantum description of the process.

We proceed to definitions of the quantities relevant to our
construction of time-of-transition probabilities. We denote
by H the Hilbert space of the combined system, describing
the degrees of freedom of both the quantum system under
consideration and the macroscopic apparatus.

We assume that H splits into two subspaces: H = H+ ⊕
H−. The subspace H+ describes the accessible states of the
system given that a specific event is realized; the subspace
H− is the complement of H+. For example, if the quantum
event under consideration is a detection of a particle by a
macroscopic apparatus, the subspace H+ corresponds to all
accessible states of the apparatus after a detection event has
occurred. We denote the projection operator onto H+ as P̂ and
the projector onto H− as Q̂ := 1 − P̂ .

Once the transition has taken place, it is possible to measure
the values of variables for the microscopic system through
their correlation to a pointer variable of the measurement
apparatus. We denote by P̂λ projection operators (or, more
generally, positive operators) corresponding to different values
λ of some physical magnitude that can be measured only if the
quantum event under consideration has occurred. For example,
when considering transitions associated with the detection of a
particle, the projectors P̂λ may be correlated to properties of the
microscopic particle, such as position, momentum, and energy.
The set of projectors P̂λ is exclusive (P̂λP̂λ′ = 0, if λ �= λ′). It
is also exhaustive given that the event under consideration has

occurred; i.e.,
∑

λ P̂λ = P̂ . We also assume that the system
is initially (t = 0) prepared at a state |ψ0〉 ∈ H+, and that the
time evolution is governed by the self-adjoint Hamiltonian
operator Ĥ .

B. Probability amplitudes with respect to the time of transition

Quantum-mechanical probabilities are defined in terms of
squared amplitudes. Hence, in order to define probabilities
for the time of transition, it is necessary to first construct the
relevant amplitudes. In particular, we employ the definitions
of Sec. II A, in order to derive the probability amplitude
|ψ ; λ,[t1,t2]〉 that, given an initial state |ψ0〉, a transition occurs
at some instant in the time interval [t1,t2] and a recorded value
λ is obtained for some observable.

We first consider the case that the relevant time interval is
small, i.e., we set t1 = t and t2 = t + δt , and we keep only
terms leading to δt . Since the transition takes place within the
interval [t,t + δt], at times prior to t the state lay within H−.
This is taken into account by evolving the initial state |ψ0〉
with the restriction of the propagator into H−; that is, with the
operator

Ŝt = lim
N→∞

(Q̂e−iĤ t/NQ̂)N . (3)

By assumption, the transition occurs at an instant within the
time interval [t,t + δt], after which a value λ for a macroscopic
observable is recorded. This means that in the time interval
[t,t + δt] the amplitude transforms under the full unitary
operator for time evolution e−iĤ δt 
 1 − iδtĤ . At time t + δt

the event corresponding to P̂λ is recorded, so the amplitude
is transformed by the action of P̂λ (or of

√
P̂λ, if P̂λ is not a

projector). For times greater than t + δt , there is no constraint,
so the amplitude evolves unitarily until some final moment T .

At the limit of small δt , the successive operations above
yield

|ψ0; λ,[t,t + δt]〉 = −i δt e−iĤ (T −t)P̂λĤ Ŝt |ψ0〉. (4)

The amplitude |ψ0; λ,[t,t + δt]〉 is proportional to δt .
Therefore, it defines a density with respect to time: |ψ0; λ,t〉 :=
limδt→0

1
δt

|ψ0; λ,[t,t + δt]〉. From Eq. (4),

|ψ0; λ,t〉 = −ie−iĤ (T −t)P̂λĤ Ŝt |ψ0〉 = −ie−iĤT Ĉ(λ,t)|ψ0〉,
(5)

where the class operator Ĉ(λ,t) is defined as

Ĉ(λ,t) = eiĤ t P̂λĤ Ŝt . (6)

Since the amplitude |ψ0; λ,t〉 is a density with respect to
the time of transition t , its integration with respect to t is well
defined. Hence, the total amplitude that the transition occurred
at some time in a time interval [t1,t2] is

|ψ ; λ,[t1,t2]〉 = −ie−iĤT

∫ t2

t1

dt Ĉ(λ,t)|ψ0〉. (7)

Equation (7) involves the restricted propagator, Eq. (3),
which may be difficult to compute in practice. However, there
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is an important regime where Eq. (7) simplifies significantly.
We note that if [P̂ ,Ĥ ] = 0, i.e., if the Hamiltonian evolution
preserves the subspaces H±, then |ψ0; λ,t〉 = 0. For a Hamil-
tonian of the form Ĥ = Ĥ0 + ĤI , where [Ĥ0,P̂ ] = 0, and HI

is a perturbing interaction, we obtain to leading order in the
perturbation

Ĉ(λ,t) = eiĤ0t P̂λĤI e
−iĤ0t , (8)

and the restricted propagator, Eq. (3), does not appear in the
amplitude, Eq. (7).

C. Probabilities with respect to the time of transition

The amplitude, Eq. (5), squared defines the probability
p(λ,[t1,t2]) that at some time in the interval [t1,t2] a detection
with outcome λ occurred:

P (λ,[t1,t2])

:= 〈ψ ; λ,[t1,t2]|ψ ; λ,[t1,t2]〉
=

∫ t2

t1

dt

∫ t2

t1

dt ′ Tr(eiĤ (t−t ′)P̂λĤ Ŝ
†
t ρ̂0Ŝt ′Ĥ P̂λ), (9)

where ρ̂0 = |ψ0〉〈ψ0|.
However, the expression P (λ,[t1,t2]) does not correspond

to a well-defined probability measure, because it fails to satisfy
the Kolmogorov additivity condition for probability measures.
To see this, consider the probability corresponding to an
interval [t1,t3] = [t1,t2] ∪ [t2,t3]. This equals

P (λ,[t1,t3])

= P (λ,[t1,t2]) + P (λ,[t2,t3])

+ 2 Re

{∫ t2

t1

dt

∫ t3

t2

dt ′ Tr[Ĉ(λ,t)ρ̂0Ĉ
†(λ,t ′)]

}
. (10)

Hence, the Kolmogorov additivity condition P (λ,[t1,t3]) =
P (λ,[t1,t2]) + P (λ,[t2,t3]), necessary for a consistent defini-
tion of a probability measure, fails, unless

2 Re

{∫ t2

t1

dt

∫ t3

t2

dt ′ Tr[Ĉ(λ,t)ρ̂0Ĉ
†(λ,t ′)]

}
= 0. (11)

In the consistent-decoherent histories framework, Eq. (11) is
referred to as the consistency condition [3–5]. It is the minimal
condition necessary for the association of a consistent proba-
bility measure in histories. It appears naturally in the present
framework, because we construct probabilities associated with
properties of the system at different moments of time; that is,
probabilities associated with histories.

Equation (11) does not hold for generic choices of t1, t2,
and t3. However, in a macroscopic system (or in a system
with a macroscopic component) one expects that Eq. (11)
holds with a good degree of approximation, given a sufficient
degree of coarse-graining [6,7]. Thus, if the time of transition
is associated with macroscopic records in a measurement
apparatus, there exists a coarse-graining time scale σ , such
that the nonadditive terms in Eq. (10) are strongly suppressed
if |t2 − t1| � σ and |t3 − t2| � σ . Then, Eq. (9) does define a
probability measure when restricted to intervals of size larger
than σ . Hence, assuming a finite coarse-graining time scale
σ , such that Eq. (11) is approximately valid for |t2 − t1| � σ

and |t3 − t2| � σ , Eq. (9) provides a consistent definition of a
probability measure for the time of transition.

It is convenient to define the time-of-arrival probabilities
by smearing the amplitudes, Eq. (5), at a time scale of order
σ rather than employing probabilities for sharply defined
time intervals, as in Eq. (9). Then, the time-of-transition
probabilities are expressed in terms of densities with respect
to a continuous time variable.

To this end, we introduce a family of functions fσ (s),
localized around s = 0 with width σ , and normalized so
that limσ→0 fσ (s) = δ(s). For example, one may employ the
Gaussians

fσ (s) = 1√
2πσ 2

e−s2/2σ 2
. (12)

The Gaussians, Eq. (12), satisfy the following equality:√
fσ (t − s)fσ (t − s ′) = fσ

(
t − s + s ′

2

)
gσ (s − s ′), (13)

where

gσ (s) = exp[−s2/(8σ 2)]. (14)

Using the functions fσ , we define the smeared amplitude
|ψ0; λ,t〉σ that is localized around the time t with width σ , as

|ψ0; λ,t〉σ :=
∫

ds
√

fσ (s − t)|ψ0; λ,s〉

=
∫

ds
√

fσ (s − t)Ĉ(λ,s)|ψ0〉. (15)

The square amplitudes

Pσ (λ,t) = σ 〈ψ0; λ,t |ψ0; λ,t〉σ
=

∫
ds ds ′√f (s − t)f (s ′ − t)Tr[Ĉ(λ,s)ρ̂0Ĉ

†(λ,s ′)]

(16)

provide a well-defined probability measure: they are of the
form Tr[ρ̂0	̂(λ,t)], where

	̂(λ,t) =
∫

ds ds ′√fσ (s − t)fσ (s ′ − t)Ĉ†(λ,s ′)Ĉ(λ,s)

(17)

is a density with respect to both variables λ and t .
The positive operator

	̂τ (N ) = 1 −
∫ ∞

0
dt

∫
dλ 	̂τ (λ,t) (18)

corresponds to the alternative N that no detection took place
in the time interval [0,∞). 	̂τ (N ) together with the positive
operators, Eq. (17), define a positive-operator-valued measure
(POVM). The POVM, Eq. (17), determines the probability
density that a transition took place at time t , and that the
outcome λ for the value of an observable has been recorded.

Using Eq. (13), and setting S = (s + s ′)/2, τ = s − s ′,
Eq. (16) becomes

Pσ (λ,t) =
∫

dS fσ (t − S)P̃ (λ,t), (19)

where

P̃ (λ,t)
∫

dτ gσ (τ )

[
Ĉ

(
λ,t + τ

2

)
ρ̂0Ĉ

†
(

λ,t − τ

2

)]
. (20)

012111-5



CHARIS ANASTOPOULOS AND NTINA SAVVIDOU PHYSICAL REVIEW A 86, 012111 (2012)

Equation (19) demonstrates that the probability distribution
Pσ is obtained by coarse-graining the classical probability
distribution P̃ at a scale of σ . For systems monitored at a
time scale much larger than σ the two probability distributions
essentially coincide. In that case, the probability density P̃

may be employed instead of Pσ . Moreover, if the resolution
scale σ is much larger than any time scale characterizing the
microscopic system, we can take the limit σ → ∞ in Eq. (20),
i.e., we set gσ = 1. The resulting probability distribution

P̃ (λ,t) =
∫

dτ Tr

[
Ĉ

(
λ,t + τ

2

)
ρ̂0Ĉ

†
(

λ,t − τ

2

)]
(21)

is independent of the coarse-graining scale σ .
Equation (21) is a general expression for the time of

transition in a quantum system, which depends only on the
initial state and the class operators Ĉ(λ,t), which are con-
structed solely from the Hamiltonian operator and the positive
operators associated with the recorded observables. Thus, we
have reduced the methodological problem of defining time-of-
arrival probabilities to a problem of applying a general formula
to experiments involving time-of-arrival measurements.

D. Derivation of the time-of-arrival probability distribution

Next, we employ Eq. (21) for constructing probabilities
associated with time-of-arrival measurements for a single
particle. To this end, we select the relevant Hilbert space of the
theory and the operators that appear in Eq. (21), so that they
describe the internal transitions of a macroscopic apparatus
that take place when a microscopic particle is detected.

The system under consideration consists of a microscopic
particle and a macroscopic apparatus. The Hilbert space is
the tensor product F ⊗ Ha , where Ha is the Hilbert space
describing the apparatus’ degrees of freedom and F is the
Fock space,

F = C ⊕ H1 ⊕ (H1 ⊗ H1)S,A ⊕ · · · . (22)

In Eq. (22), H1 stands for the Hilbert space associated with
a single particle and S and A denote symmetrization and
antisymmetrization, respectively. The reason we employ a
Fock space is that in many detection processes, the microscopic
particle is annihilated by the interactions at the detector. Hence,
it is necessary to consider interactions where the number of
microscopic particles is not conserved.

The Hamiltonian of the total system is Ĥm ⊗ 1 + 1 ⊗ Ĥa +
Ĥint, where Ĥm describes the dynamics of the microscopic
particle, Ĥa describes the dynamics of the apparatus, and Ĥint

is an interaction term.
Finally, we specify the macroscopic variables associated

with particle detection. These correspond to degrees of
freedom of the macroscopic apparatus and they are expressed
in terms of the positive operators 1 ⊗ 	̂λ on F ⊗ Ha , labeled
by the values λ of a macroscopic observable. The operators 	̂λ

are defined on Ha and they satisfy the completeness relation∫
dλ 	̂λ = P̂ , where P̂ is the projector onto the subspace H+.
A model for particle detection is defined through the

specification of the Hilbert spaces H1 and Hm and of the
operators Ĥm,Ĥa , Ĥint, and 	̂λ. For each such specification,
the POVM, Eq. (21), is uniquely constructed and it defines the
time-of-arrival probabilities associated with this model. In this
sense, the method we develop here is fully algorithmic, and

it can be employed to construct different models according to
the different physics of the detection scheme.

In particular, we assume that the Hamiltonian Ĥm for the
microscopic particle is invariant under spatial translations.
Hence, it depends only on the particle’s momentum operator.
We denote the particle’s energy as a function of momentum
(the particle’s dispersion relation) as εp. We also consider an
interaction Hamiltonian

Ĥint =
∑

i

∫
d3x[âi(x)Ĵ i

+(x) + â
†
i (x)Ĵ i

−(x)], (23)

where âi(x),â†
i (x) are the annihilation and creation operators

on Fs , i labels nontranslational degrees of freedom (e.g.,
spin), and Ĵ±(x) are current operators on Ha with support
in the region D where the detector is located. The interaction
Hamiltonian Ĥint corresponds to a detection process where
the microscopic particle is annihilated at the detector. This
includes the cases that the particle is absorbed by an atom,
or that several product particles are created, or a localized
excitation is produced. Detection by absorption is not the only
possibility; the incoming particle may be detected from energy
or momentum transfer associated with a scattering process. In
this case, the appropriate interaction Hamiltonian is

Ĥint =
∑
ij

∫
d3x �̂ij (x,x′)â†

i (x′)âj (x), (24)

expressed in terms of a composite operator �̂ij (x,x′) defined
on the Hilbert space Ha . In this paper, we shall restrict our
considerations to interaction Hamiltonians of the form (23),
noting that the alternative Hamiltonian (24) poses no particular
problem for our approach.

We place no restriction on the apparatus’ Hamiltonian Ĥa ,
except for the requirement that it does not lead to any spurious
detection events, i.e., that detection records appear only when
particles interact with the apparatus. This condition is that
[Ĥa,P̂ ] = 0. It follows that [1 ⊗ P̂ ,Ĥs ⊗ 1 + 1 ⊗ Ĥa] = 0;
hence, the class operators Ĉ(λ,t) are obtained from Eq. (8).

Finally, we consider a single-particle state for the micro-
scopic system

|ψ0〉 =
∑

i

∫
d3x ψ0i(x)â†

i (x)|0〉 (25)

and an initial state of the apparatus |0〉 stationary with respect
to the apparatus Hamiltonian Ĥa . We assume that the state |0〉
satisfies the condition Ĵ−(x)|0〉 = 0, which guarantees that
the only transitions in the detector are caused by the interaction
with the microscopic particle. We also set the scale of energy
so that Ĥa|0〉 = 0.

For the class of models specified above, the operator,
Eq. (8), takes the form

Ĉ(λ,t)(|ψ0⊗〉|0〉) =
∑

i

∫
d3x ψi(x,t)|0〉

⊗ (eiĤa t

√
	̂λĴi(x)|0〉), (26)

where ψ(x,t) is the evolution, under e−iĤmt , of the state |ψ0i〉
in H1 in the position representation of a single-particle state.
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Then,

Tr[Ĉ(λ,s)ρ̂0Ĉ
†(λ,s ′)]

=
∑
ij

∫
d3x d3x ′ ψi(x,s)ψ∗

j (x′,s ′)

×〈0|Ĵ−
j (x′)

√
	̂λe

−iĤa (s ′−s)
√

	̂λĴ
+
i (x)|0〉. (27)

In order to simplify the analysis, we ignore the nontrans-
lational degrees of freedom of the particle and we reduce the
system to one spatial dimension, which corresponds to the axis
connecting the source and the detection region. Substituting
Eq. (27) in Eq. (20), the probability density takes the form

P̃ (λ,t) = 〈ψt |Ŝ(λ)|ψt 〉, (28)

where Ŝ(λ) is an operator defined in terms of its matrix
elements in the momentum basis

〈p′|Ŝ(λ)|p〉 =
∫

dτ e−i(εp+εp′ )τ/2
∫

dx dx ′ eipx−ip′x ′

×〈0|Ĵ−(x′)
√

	̂λe
iĤaτ

√
	̂λĴ

+(x)|0〉. (29)

In a time-of-arrival measurement, the pointer variable λ

corresponds to position X along the particle’s axis of motion.
We assume the detector is located at a macroscopic distance L

from the source, and that the accuracy of the detector’s position
sampling is of order δ. Then, we consider positive operators√

	̂L corresponding to an unsharp Gaussian sampling of
position at X = L,√

	̂L = 1

(πδ2)1/4

∑
a

∫
dX e−(L−X)2/2δ2 |X,a〉〈X,a|. (30)

The index a in Eq. (30) refers to the degrees of freedom
of the apparatus other than the pointer variable. Substituting
Eq. (30) into Eq. (29), we obtain the general form for the
time-of-arrival distribution for the particle.

We note that the familiar probability current, Eq. (1), for a
nonrelativistic particle of mass m is of the form Eq. (28), with
Ŝ(L) = 1

2 [p̂δ(x̂ − L) + δ(x̂ − L)p̂]. However, the operator
Ŝ(L) of Eq. (1) is nonlocal when acting on configuration-
space wave functions, making the probabilities (28) nonlocal
functionals of the wave functions ψt (x). Thus, an interpretation
of Ŝ(L) as a probability-current operator is untenable.

Equations (28) and (29) define a probability density for
the time of arrival that applies to any detection scheme, in
which the particle is annihilated. The explicit form of the
probability density above depends on the physics of particle
detection. In the following section, we will consider specific
models for the detector and its interaction with the microscopic
particle.

III. TIME-OF-ARRIVAL PROBABILITIES FOR
DIFFERENT MODELS OF PARTICLE DETECTION

In this section, we explain how Eq. (28) is to be employed
for the derivation of explicit time-of-arrival probabilities asso-
ciated with specific experiments. We derive such probabilities
for different detector models, and we demonstrate that there
exists a special regime in which all information about the

detector is encoded in a single function of momentum, the
absorption coefficient α(p). From these models, we obtain a
generalization of Kijowski’s probability distribution, valid for
any dispersion relation for the microscopic particle. Finally, we
adapt our formalism for the description of the time of arrival
in high-energy physics, where the detection process involves
the creation of several product particles on the detector.

A. Three particle-detection models

The time-of-arrival probability distribution, Eq. (28), does
not depend only on characteristics of the particle (the initial
state and the dispersion relation), but also on characteristics of
the detector. The latter are incorporated into (i) the Hamiltonian
Ĥ that describes the detector’s self-dynamics, (ii) the current
operator Ĵ+(x) that describes the interaction of the microscopic
particle with the detector, (iii) the initial quantum state of the
detector |0〉, and (iv) the set of positive operators 	̂λ that
correspond to the pointer variables of the apparatus. Hence,
the description of any particular time-of-arrival experiment
involves a modeling of the detector through a specification of
the aforementioned mathematical objects. In what follows,
we will consider three different types of detector models,
and study the properties of the associated time-of-arrival
probabilities.

1. Detection of a coherent particle excitation

First, we consider the case that the detection of a micro-
scopic particle is accompanied by the creation of a particlelike
excitation at the detector. The relevant pointer variable is
the excitation’s position X at the locus of the interaction.
For example, the excitation may correspond to an excited
nucleus or an atom. We assume that the pointer variable X

is approximately an autonomous variable, in the sense the
interaction with the remaining degrees of freedom at the
apparatus is weak. Thus, we can identify the subspace Ha+
of Ha of accessible states in the apparatus after a particle
detection with the Hilbert space L2(R,dX) of a single particle.

The Hamiltonian. Assuming negligible interaction with the
remaining degrees of freedom, the pointer variable evolves
unitarily. We consider a Hamiltonian on Ha+ that describes a
nonrelativistic particle of effective mass μ+,

Ĥa = E0 + 1

2μ∗
P̂ 2, (31)

where P̂ is the excitation’s momentum and E0 is a constant
corresponding to the energy gap in the detector, which is the
energy required for the creation of the excitation.

Initial state and current operator. Since the pointer variable
X is correlated to the point x where the microscopic particle
has been annihilated, we expect that 〈X|Ĵ+(x)|0〉 
 0, if
|x − X| is significantly larger than δ. We therefore write
〈X|Ĵ+(x)|0〉 = u(x − X), where u(x) is a function that
vanishes for |x| � δ. The function u(x) incorporates all
information about the initial state of the apparatus and its
interaction with the microscopic particle. Later, we shall
establish that u(x) is closely related to an absorption coefficient
associated with the detector.
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Pointer variables. For the Hilbert space L2(R,dX), the
positive operators (30) simplify√

	̂L = 1

(πδ2)1/4

∫
dX e−(L−X)2/2δ2 |X〉〈X|. (32)

With the assumptions above, Eq. (29) becomes

〈p′|Ŝ(L)|p〉 = 1√
πδ2

∫
dτ e−i(εp+εp′ )τ/2

∫
dx dx ′

∫
dX dX′

× e−[(X−L)2+(X′−L)2]/2δ2
u(x − X)u∗(x ′ − X′)

× eipx−ip′x ′
G(X − X′,τ ), (33)

where

G(X − X′,τ ) := 〈X|ei[E0+(P̂ 2/2μ∗)]|X′〉
=

√
μ∗

−2πiτ
e−i[μ∗(X−X′)2/2τ ]+iE0τ . (34)

Carrying out the integrations over x,x ′ and (X + X′)/2 in
Eq. (33), we obtain

〈p′|Ŝ(L)|p〉
= e−δ2(p−p′)2/4ũ(p)ũ∗(p′)ei(pL−ip′L)

∫
dτ e−i(εp+εp′ )τ/2

×
∫

dZ e−Z2/4δ2
ei(p+p′)Z/2G(Z,τ ), (35)

where Z = X − X′ and ũ(p) is the Fourier transform of u(x).
We consider initial states |ψ0〉 emitted from the source at

x = 0 with support on positive values of p. For macroscopic
values of L, the probability density, Eq. (28), is strongly
suppressed if t < 0. Thus, when we consider the time-
integrated time of arrival probability, we can extend the range
of integration from [0,∞) to (−∞,∞). We then obtain

P̃ (L) :=
∫ ∞

0
dt P̃ (t,L) 


∫ ∞

−∞
dt P̃ (t,L)

=
∫

dp

2π

〈p|Ŝ(L)|p〉
|vp| |ψ̃0(p)|2, (36)

i.e., the time-integrated probability is L independent. In
Eq. (36), ψ̃0 is the particle’s initial state in the momentum
representation, and vp = ∂εp/∂p is the particle’s velocity.

The time-integrated probability P̃ (L) is a density with
respect to L, hence for a detector of size d in the x

direction, the total fraction of detected particles equals
P̃ (L)d. For a monochromatic initial state with momentum p0,
|ψ̃0|2 
 2πδ(p − p0), the total detection probability equals
d〈p0|Ŝ(L)|p0〉/|vp0 |. This implies that we can define an ab-
sorption coefficient α(p) for the detector2 defined, standardly,
as the fraction of incoming particles with momentum p > 0
absorbed per unit length of the absorbing medium

α(p) = 〈p|Ŝ(L)|p〉
|vp| . (37)

2The definition of an absorption coefficient depends crucially on
the property, established earlier, that the time-integrated probability
is L independent.

Next, we evaluate the matrix elements of the operator Ŝ(L),
Eq. (35), at the limit Eμ∗δ2 � 1; that is, under the assumption
of a very narrow localization of the particle excitation. In this
regime, the integral over Z in Eq. (35) is approximated by∫

dZ e−Z2/4δ2
ei[(p+p′)/2]ZG(Z,τ )



√

μ∗δ2

−iτ
exp

[
−δ2

4
(p + p′)2 + iE0τ

]
. (38)

Integrating Eq. (35) over τ , we obtain

〈p′|Ŝ(L)|p〉

=
√

πμ∗δ2√
εp+εp′

2 − E0

ũ(p)ũ∗(p′)e−(δ2/2)(p2+p′2)eipL−ip′L. (39)

Equation (39) simplifies for initial states ψ̃0(p) with mean
momentum p0 such that E0 � εp0 and with momentum spread
�p such that �p � p0. In this regime, εp + εp′ 
 2

√
εpεp′ .

The probability density, Eq. (28), becomes

P̃ (L,t) = K

∣∣∣∣∣
∫

dp

2π
e−δ2p2/2 ũ(p)

ε
1/4
p

ψ̃0(p)eipL−iεpt

∣∣∣∣∣
2

, (40)

where K =
√

πδ2μ∗/2.
Equation (40) is straightforwardly generalized to initial

mixed states of the form

ρ̂ =
∫

dp0 f (p0)|ψp0〉〈ψp0 |, (41)

where |ψp0〉 denotes an overcomplete set of pure states (for
example, coherent states) with mean momentum p0 and spread
�p, such that �p � p0, and f (pf 0) is a positive-valued
function. To see this, let as denote the probability density,
Eq. (40), evaluated for initial state |ψp0〉 as P̃ (L,t ; ψp0). Then
the probability density P̃ (L,t ; ρ̂) associated to the initial state
ρ̂, Eq. (41), is

P̃ (L,t ; ρ̂0) =
∫

dp0 f (p0)P̃ (L,t ; ψp0). (42)

In particular, there is no requirement that the momentum
spread of the initial mixed state ρ̂ be smaller than its mean
momentum for Eq. (46) to hold.

The presence of the cut-off factor e−δ2p2
in Eq. (40) implies

that the detection of particles with momenta p � δ−1 is
strongly suppressed. For values of p � δ−1, such that the
suppression factor e−δ2p2

can be ignored, the current operator
Ŝ(L) becomes

Ŝ(L) = Kũ∗(p̂)ĥ−1/4δ(x̂ − L)ĥ−1/4ũ(p̂), (43)

where ĥ is the particle’s Hamiltonian.
The absorbtion coefficient α(p) corresponding to Eq. (40)

is

α(p) = K
|ũ(p)|2
|vp|√εp

, (44)

where vp = ∂εp/∂p is the particle’s velocity.
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Equation (44) implies that

ũ(p) =
√

α(p)|vp|√εp

K
eiθ(p), (45)

where θ (p) is a momentum-dependent phase. The phase θ (p)
contributes to the total phase factor i[θ (p) + pL − εpt] of the
integral in Eq. (40). The variation of θ (p) is expected to define
a microscopic time scale much smaller than L (|θ ′(p)| � L),
hence, its contribution to the phase of Eq. (40) is negligible.
Then, Eq. (40) becomes

P̃ (L,t) =
∣∣∣∣
∫

dp

2π

√
α(p)|vp|ψ̃0(p)eipL−iεpt

∣∣∣∣
2

. (46)

Thus, in this regime all information about the measurement
apparatus is contained in the absorption coefficient α(p).

2. Detection of a decoherent excitation

A more realistic description of detection through the
creation of a particlelike excitation involves taking into account
the influence of the remaining degrees of freedom of the
apparatus in the evolution of the pointer variable. To this end,
we treat the other degrees of freedom as an environment which
results in nonunitary dynamics on the excitation. The evolution
of the pointer variable X is then treated using the theory of
quantum open systems.

The model we consider here involves the same Hilbert
space, and the same expressions for the initial state, the
interaction current, and the positive operators 	̂L as the
model of Sec. III A1. The difference is in the choice of the
Hamiltonian. We model the effect of the environment by
introducing a stochastic term in the Hamiltonian Ĥa of Eq. (31)
for the pointer variable X̂,

Ĥa = E0 + 1

2μ∗
P̂ 2 + P̂ ξ (t), (47)

where ξ (t) is a Markovian process satisfying

M[ξ (t)] = 0, M[ξ (t)ξ (t ′)] = Dδ(t − t ′). (48)

In Eq. (48), M denotes ensemble average and D is a
phenomenological constant.

In this model, the matrix elements of the operator Ŝ(L) are
of the form Eq. (33), where

G(X − X′,τ ) := 〈X′|M[Û (s ′)Û †(s)]|X〉, (49)

where τ = s ′ − s.
We evaluate the kernel G to second order in perturbation

theory for the noise:

G(X − X′,τ )

= 〈X′|ei�τ+i(P̂ 2/2μ∗)τ−(D/2μ2)P̂ 2|τ ||X〉
=

√
μ∗

−2πi(τ + iD|τ |/μ∗)
e−i[μ∗(X−X′)2/2(τ+iD|τ |/μ∗)]+iE0τ .

(50)

The regimes D/μ∗ � 1 of weak coupling to the environ-
ment correspond to leading order in D/μ∗ to the model studied
in Sec. III A1. Here, we consider the opposite limit D/μ∗ � 1
of strong coupling to the environment. In this regime, the
exponential damping behavior dominates in G(X − X′,τ ), and

the excitation rapidly loses all quantum coherence. In this
regime,

G(X − X′,τ ) 
 μ∗√
2πD|τ |e

−μ2
∗(X−X′)2/2D|τ |+iE0τ . (51)

Thus, ∫
dZe−(Z2/4δ2)+i(p+p′)Z/2G(Z,τ )

=
(

1 + D|τ |
2δ2μ2∗

)−1/2

exp

⎡
⎣− δ2(p + p′)2

4
(
1 + 2μ2∗δ2

D|τ |
)
⎤
⎦ . (52)

In the integration of the right-hand side of Eq. (52) over τ ,
the dominant contribution comes from values of |τ | � τdec :=
μ2

∗δ
2/D. The time scale τdec is a decoherence time scale: virtual

processes with a difference �t in the time of arrival, do not
contribute to the total probability if �t � τdec.

For sufficiently strong coupling D to the environment, the
damping term in Eq. (52) dominates and the right-hand-side
term of Eq. (52) equals exp[−D(p+p′)2

2μ2∗
|τ |]. Integration over τ

in Eq. (33) leads to a multiplicative term 4μ2
∗

D(p+p′)2 , and Eq. (33)
becomes

〈p′|Ŝ(L)|p〉 = 4μ2
∗

D(p + p′)2
ũ(p)ũ∗(p′)e−δ2(p−p′)2/4eipL−ip′L.

(53)

In Eq. (53), contributions from different momenta are sup-
pressed by a factor e−δ2(p−p′)2/4. This is the most significant
qualitative difference from the model of a coherent excitation
of Sec. III A1, in which the coherence of momentum superpo-
sitions is preserved.

Since the diagonal matrix elements of Ŝ(L) are independent
of L, the consideration of initial states with support on positive
values of p, leads to a definition of the absorption coefficient

α(p) = μ2
∗

Dvpp2
|ũ(p)|2. (54)

For pure states with mean momentum p0 and momentum
spread �p, such that �p � δ−1 and �p � p0, Eq. (53) leads
again to Eq. (46), with α(p) given by Eq. (54), which is valid
for all mixed states of the form Eq. (41).

3. Particle detection from energy absorption

The third model to be considered here describes an
apparatus where the microscopic particle is detected through
the excitation of the detector’s energy levels. A variation of
this model has been studied in detail in Ref. [21], where it
was shown that it corresponds to a Glauber-type photodetector
in one regime and to a macroscopic Unruh-Dewitt detector in
another. The main features of this model are the following.

Hamiltonian. This model requires no specific form of the
Hilbert space Ha of the apparatus degrees of freedom and of
the corresponding Hamiltonian Ĥa . We only assume that the
energy eigenstates spanning Ha correspond to a density of
states w(E).

Pointer variable. We consider a single pointer variable X̂

corresponding to the location of the detector, and we assume
that X̂ is invariant under time translations generated by the
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Hamiltonian X̂: [X̂,Ĥ ] = 0. For example. X̂ may describe
different independent subdetectors, whose location is fixed
in space. We employ Eq. (30) for the positive operators
corresponding to position sampling.

Initial state and current operator. Denoting the eigenstates
of the Hamiltonian Ĥa by |a〉, Eq. (29) for the time-of-
arrival probabilities involves matrix elements of the form
〈X,a|Ĵ+(x)|0〉. We assume that these matrix elements de-
pend on the label a only through the energy eigenvalue E(a)
associated to a; that is, we express

〈X,a|Ĵ+(x)|0〉 = u(x − X,E(a)), (55)

for some function u(x,E) of position x and energy E.
With the above assumptions, Eq. (29) becomes

〈p′|Ŝ(L)|p〉
=

√
2πe−δ2(p−p′)2/4

∫
dE w(E)ũδ(p,E)ũ∗(p′,E)eipL−ip′Lδ

×
(

E − εp + εp′

2

)
. (56)

The diagonal matrix elements of Ŝ(L) are independent
of L, leading to the following expression for the absorption
coefficient:

α(p) =
√

2π
w(εp)|ũδ(p,εp)|2

|vp| . (57)

Again, for pure states with mean momentum p̃ and momentum
spread �p, such that �p � δ−1 and �p � p̄, Eq. (56) leads
to Eq. (46), with α(p) given by Eq. (57).

B. General expressions for the time-of-arrival probability

As demonstrated in the three models of Sec. III A, the
probability densities for the time of arrival depend sensitively
on the detailed physics of the particle detection scheme. In
what follows, we shall show that, nonetheless, there exist
particular regimes where they take similar form, and that one
particular regime corresponds to a generalization of Kijowski’s
probability distribution [28].

1. Initial states with sharp momentum

For initial states ψ̃0(p) with mean momentum p0 and spread
�p and �p � p0, Eqs. (39), (56), and (53) define a probability
density of the form

P̃ (L,t) 
 K(p0)

∣∣∣∣
∫

dp ψ̃0(p)eipL−iεpt

∣∣∣∣
2

+ O(�p/p̄), (58)

where K(p0) depends on the special characteristics of each
measurement scheme, and it is proportional to the absorption
coefficient α(p0). The total detection probability depends
on the measurement scheme; however, the time-of-arrival
probabilities conditioned upon detection depend only on the
initial state. For initial states ψ0 centered around x = 0, the
probability density, Eq. (58), is peaked around the stationary
phase point L − (∂εp/∂p)t , and corresponds to a mean time
of arrival tcl = L/vp.

2. The classical regime

Before studying the classical limit of the time-of-arrival
probabilities derived in Sec. III A, we first examine a version of
the classical time-of-arrival problem. We consider an ensemble
of classical free particles, described at t = 0 by a phase-space
probability distribution ρ0(x,p), where x and p are a particle’s
position and momentum, respectively. The time of arrival at
x = L is an observable on the state space, defined as t = (L −
X)/vp. Thus, the probability density for the time of arrival is
given by

P (t) =
∫

dx dp δ

(
t − L − x

vp

)
ρ0(x,p). (59)

The corresponding equation for quantum-mechanical par-
ticles is obtained from Eq. (28) by expressing the initial state
ψ0 in terms of its Wigner function W0(x,p),

P̃ (L,t) =
∫

dx dp WS(t,x,p)W0(x,p), (60)

where

WS(t,x,p) =
∫

dξ

2π
eixξ

〈
p − ξ

2

∣∣∣∣ eiĤmt Ŝ(L)e−iĤmt

∣∣∣∣p + ξ

2

〉
(61)

is the Wigner transform of the operator eiĤmt Ŝ(L)e−iĤmt .
We compute Eq. (61), the operator Ŝ(L) of Eq. (46), which

as we saw, applies for a large class of initial states in different
detection schemes. The integral, Eq. (61), contains the term
of the form vp±(ξ/2),α(p ± ξ

2 ), and εp±(ξ/2). Expanding those
terms around p and keeping the leading-order terms with
respect to ξ , we obtain

WS(t,X,P ) = α(p)δ

(
t − L − x

vp

)
. (62)

Hence, the time-of-arrival distribution becomes

P̃ (t,L) =
∫

dx dp α(p)δ

(
t − L − x

vp

)
W0(x,p). (63)

Equation (63) corresponds to the classical probability distri-
bution (59) modified by the absorption coefficient α(p) that
takes into account the momentum dependence of the particle’s
detection probability. Equation (63) is not normalized to unity;
to normalize, one has to divide by the total probability of
detection

∫
dt P̃ (t,L).

We also calculate the first quantum correction by keeping
terms proportional to ξ 2 in the integral, Eq. (61). We obtain

WS(t,X,P )

= α(p)δ

(
t − L − x

vp

)
− αα′′ − (α′)2 + vpv′′

p − (v′
p)2

8αv3
p

∂2
t δ

×
(

t − L − x

vp

)
+ · · · , (64)

where the primes denote differentiation with respect to the
momentum p.
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3. Generalization of Kijowski’s POVM

The total integral over time of the probability densities
for the time of arrival corresponds to the total number of
particles detected from a detector at x = L. In general, the
total probability depends on the properties of the initial
state. This implies that the normalized probability density
P̃ (L,t)/

∫
dt P̃ (L,t) is not a linear functional of the initial

state. This is to be expected, since P̃ (L,t)/
∫

dt P̃ (L,t)
corresponds to the probability distribution for the time of
arrival conditioned upon the particle having been detected.

There is, however, a special regime where the probability
density for the time of arrival can be normalized to unity
by dividing with a constant. This regime corresponds to
the domain of validity of Eq. (46) (for all three models of
Sec. III A), in the special case that the absorption coefficient
is a constant. In this case, we obtain the probability density

P̃ (L,t) =
∣∣∣∣
∫

dp

2π

√|vp|ψ̃0(p)eipL−iεpt

∣∣∣∣
2

, (65)

which is normalized to unity for all initial states with support
on positive values of momentum.

For a nonrelativistic particle (εp = p2

2m
), Eq. (65) coin-

cides with Kijowski’s POVM for the time of arrival. Thus,
Kijowski’s POVM is identified as an ideal time-of-arrival
POVM, in which the probability of detection does not depend
on the incoming particles’ momentum. This interpretation is
consistent with the results of Ref. [10], where Kijowski’s
POVM was obtained by modeling the detector as a totally
absorbing surface for particles of all momenta, defined by
Dirichlet boundary conditions at x = L.

Equation (65) provides the generalization of Kijowski’s
POVM, valid for a general dispersion relation. The correspond-
ing current operator is

Ŝ(L) =
√

|v̂|δ(x̂ − L)
√

|v̂|, (66)

where v̂ = (∂ε/∂p)(p̂) is the velocity operator.
For a relativistic particle of mass m, v̂ = p̂(p̂2 + m2)−1/2;

the probability density, Eq. (65), is not invariant under Lorentz
transformations. This is to be expected, since the calculation
explicitly involves the rest frame of the detector, and the
initial state of the detector’s degrees of freedom is not Lorentz
covariant.

C. Time-of-arrival probabilities in high-energy
particle reactions

The simple models studied in Sec. III A allowed us to derive
explicit expressions for the time-of-arrival probability and led
to the generalization of Kijowski’s probability distribution.
Here, we expand the scope of our approach, in order to define
time-of-arrival probabilities for experiments in which the
particle under consideration is detected through high-energy
particle reactions. Our aim is to (1) demonstrate that our
method applies to high-energy processes and that it can
incorporate quantum-field-theoretic interactions; (2) provide
a measurement-theoretic characterization of the particle de-
tection process, which, in principle, can lead to explicit
mathematical modeling of realistic particle detectors; and (3)
demonstrate that Eq. (46) for the time-of-arrival probabilities

is of general validity, and not restricted to the models of
Sec. III A.

To this, we consider a measurement scheme where particles,
denoted as A, are produced from a source around x = 0 and
propagate towards a detector at distance L from the source,
where they are detected by means of the process

A + B1 + · · · BM → D1 · · · + DN, (67)

where Bm,Dn are particles (different from the A particles),
labeled by the indices m = 1, . . . ,M and n = 1, . . . ,N . The
interaction of the A particles with the Bm particles produces
the particles Dn, which are the ones that are being detected.
Relevant observables are the Dn particles’ time of detection,
position, momentum, and so on. These observables are deter-
mined through macroscopic pointer variables in the detector.

The Hilbert space Htot associated with the process (67) is
described as a tensor productHtot = HA ⊗ Hr .HA is the Fock
space F(H1) corresponding to the A particles. Explicitly, we
write

F(H1) = C ⊕ H1 ⊕ (H1 ⊗ H1)S,A

⊕(H1 ⊗ H1 ⊗ H1)S,A ⊕ · · · , (68)

where S refers to symmetrization (bosons) and A to antisym-
metrization (fermions), and H1A is the Hilbert space describing
a single A particle. The degrees of freedom of the Bm and Dn

particles are incorporated into the Hilbert spaceHr . In general,
Hr is a tensor product of Fock spaces, one for each field other
than A, participating in the process (67) and of a Hilbert space
describing other degrees of freedom in the detector.

We first identify the subspaces H± that define the transition
under consideration. Since the detection proceeds through the
process (67) and the A particles are not directly observable, the
transition corresponds to subspaces of Hr . The Hilbert space
Hr is decomposed as H0 ⊕ Hprod, where H0 is the subspace
of states prior to the decay A + Bm → Dn, and Hprod is the
subspace corresponding to states of the decay products. This
means that we identify H− with H0 and H+ with Hprod.

We denote as P̂ the projector P̂ : Hr → Hprod and Q̂ =
1 − P̂ its complement. The corresponding projectors on Htot

are 1 ⊗ P̂ and 1 ⊗ Q̂.
Measurements carried out on the product particles corre-

spond to a family of positive operators 1 ⊗ 	̂λ onto Hprod,
where 	̂λ are positive operators on Hr corresponding to
different values λ of the measured observables. They satisfy
the completeness relation

∫
dλ 	̂λ = P̂ .

The Hamiltonian is of the form

Ĥ = ĤA ⊗ 1̂ + 1 ⊗ Ĥr + ĤI , (69)

where ĤA is the Hamiltonian for free A particles, Ĥr is
the Hamiltonian for the Bm and Dn particles, and ĤI is the
interaction term.

We assume that any particles Bm that are present prior
to detection are almost stationary. This condition defines our
reference frame, which in most cases coincides with the
laboratory frame. Assuming that the initial state for the Bm

particles has support to values of momentum much smaller
than their rest mass, the restriction of the operator Ĥr in the
subspace H0 is a constant. We choose this constant so that the
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Hamiltonian ĤA on single-particle states for the A particles is

ĤA =
√

m2 + p̂2 − E0, (70)

where p̂ is the A-particle momentum. For simplicity, we ignore
the A particles’ spin degrees of freedom. The constant E0 is
the threshold of the process (67),

E0 =
∑

n

MDn
−

∑
m

MBm
, (71)

where MBm
and MDn

are the masses of the particles Bm and
Dn, respectively.

In the subspace corresponding to the states after the
detection events, the Hamiltonian is

Ĥr =
∑

n

(√
M2

Dn
+ p̂2

n − MDn
+ V̂ [ξ (t)]

)
, (72)

where p̂n are the momentum operators for the Dn particles. As
in the model of Sec. III A2 we treat any degrees of freedom
of the detector other than the particles involved in the reaction
(67) as an environment, and model their action on the product
particles by a stochastic term V̂ [ξ (t)].

The interaction Hamiltonian is

ĤI =
∑

i

∫
d3x[b̂(x)Ĵ+(x) + b̂†(x)Ĵ−(x)], (73)

where b̂,b̂
†
i are annihilation and creation operators on HA, and

J±(x) are current operators, involving products of annihilation
operators for the B particles and creation operators for the D

particles. Since no A particles are created during the detection
process, the initial state |φ0〉 in Hr must satisfy

Ĵ−
α (x)|φ0〉 = 0. (74)

With the definitions above, the time-of-arrival probability,
restricted to one dimension, is given by Eqs. (28) and (29). We
consider a pointer variable corresponds to the position X1 of
the D1 particle. Thus, the positive operators 	̂L of Eq. (30)
become√

	̂L = 1√
πδ2

∑
a

∫
dX1 · · · dXne

−(L−X1)2/2δ2

× |X1, . . . ,Xn〉〈X1, . . . ,Xn|, (75)

Substituting Eq. (75) into Eq. (29), we obtain terms of
the form 〈X1, . . . Xn|Ĵ+(x)|0〉. The positions of all particles
must be close to the value x of the interaction locus, within the
accuracy δ of Eq. (32) corresponding to the localization of the
D1 particle. Hence, we set X1 = X2 = · · ·Xn and we express

〈X1, . . . Xn|Ĵ+(x)|0〉
= δ(X1 − X2) · · · δ(X1 − Xn)u(X1 − x), (76)

in terms of a function u(x). Then, Eq. (29) becomes

〈p′|Ŝ(L)|p〉
= e−δ2(p−p′)2/4ũ(p)ũ∗(p′)ei(pL−ip′L

∫
dτ e−i(εp+εp′ )τ/2

×
∫

dZ e−Z2/4δ2
ei(p+p′)Z/2G(Z,τ ), (77)

where

G(X − X′,s ′ − s) = M
[

N∏
n=1

〈X′|Ûn(s ′)Û †
n(s)|X〉

]
. (78)

In Eq. (78), Ûn(s) = T e−i
∫ s

0 (
√

p̂2
n+M2

n+V̂n[ξ (s)]) stands for the
evolution operator for the particle Dn, and M denotes average
over the stochastic process ξ (·) corresponding to the influence
of the environment.

Equation (77) gives the time-of-arrival probabilities asso-
ciated with a general particle reaction (67). The derivation
of an explicit formula for a particular detection requires the
specification of the field-theoretic interaction [as encoded in
the function u(p)] and a modeling of the term V̂ [ξ (t)] that
corresponds to the stochastic action of the detector’s degrees
of freedom on the product particles.

Since the diagonal elements of Ŝ(L) in Eq. (77) are
independent of L, we define an absorption coefficient of the
apparatus as

α(p) = |ũ(p)|2
∫

dτ e−iεpτ

∫
dZ e−Z2/4δ2

eipZG(Z,τ ). (79)

Following the same arguments and approximations as in
Sec. III A we show that for initial states narrowly concentrated
in momentum,

P̃ (L,t) =
∣∣∣∣
∫

dp

2π

√
α(p)|vp|ψ̃0(p)eipL−iεpt

∣∣∣∣
2

; (80)

that is, we show that Eq. (46) for the time-of-arrival proba-
bilities has a broad degree of applicability and its derivation
requires no special modeling assumptions.

IV. AN APPLICATION: PARTICLE OSCILLATIONS

We conclude this paper with a nontrivial application
of our formalism in the study of particle oscillations. We
give a rigorous measurement-theoretic derivation of the
time-integrated probability associated to particle-oscillation
experiments. We derive the standard oscillation formula in
a regime corresponding to very short decoherence time in
the detector, and intriguingly, we identify a different regime
(corresponding to larger decoherence times) that leads to a
nonstandard oscillation formula.

Particle oscillations characterize systems in which the
single-particle Hilbert space H1 is split into subspaces Hi as
H1 = ⊕Hi , such that the dispersion relation εi

p is different in
each subspace Hi . In high-energy physics, particle oscillations
appear in neutral bosons and in (massive) neutrinos; the
different dispersion relations are due to the different values of
the mass mi in the eigenspaces Hi . Particle oscillations arise
because the creation processes for neutral bosons and neutrinos
couple to the particle’s flavor, and thus produce superpositions
of states with different mass.

To describe particle oscillations, we adapt the formalism
of Sec. III C. We denote the oscillating particles by A, and
we consider their detection through the channel (67) that
corresponds to the flavor α. The Hamiltonian on the single-
particle Hilbert space H1 is of the form

Ĥm = ⊕i

(√
p̂2 + m2

i − E0
)
, (81)
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where E0 is the threshold of the detection process.
The interaction Hamiltonian is

ĤI =
∑

i

∫
d3x[b̂i(x)UαiĴ

+
α (x) + b̂

†
i (x)U ∗

αi Ĵ
−
α (x)], (82)

where b̂i ,b̂
†
i are annihilation and creation operators on the Fock

space HA, i labels the mass eigenspaces, J±
α (x) are current

operators of flavor α defined on Hr , and Uαi is the mixing
matrix.3

The current operator Ĵ±
α in Eq. (82) involves products

of annihilation operators for the B particles and creation
operators for the D particles. Since no A particles are created
during the detection process, the initial state |φ0〉 in Hr must
satisfy

Ĵ−
α (x)|φ0〉 = 0. (83)

We consider a general single-particle state for the A

particles,

|ψ0〉 =
∑

i

U ∗
βi

∫
d3x b̂

†
i (x)ψi0(x)|0〉, (84)

where |0〉A is the vacuum of the Fock space HA. The
dependence the state (84) on the mixing matrix U ∗

βi is a
consequence of the creation of the A particles through a
β-flavor current.

In particle oscillation experiments, the time of arrival of
individual neutrinos is not determined. Thus, the relevant
quantity is the time-integrated probability density Pβα(L) for
the detection along the α-flavor channel of A particles created
through the β-flavor channel. Integrating Eq. (21) over time
t ∈ [0,∞), we obtain

Pβα(L) =
∑
ij

∫ ∞

0
ds

∫ ∞

0
ds ′

∫
d3x d3x ′ ψ∗

i (x′,s ′)ψj (x,s)

×U ∗
αiUαjU

∗
βiUβi〈0|Ĵ−

α (x′)
√

	̂L

×M[Û (s ′)Û †(s)]
√

	̂LĴ+
α (x)|0〉, (85)

where ψi(x,t) is the Schrödinger time evolution of the wave
functions ψi0(x), 	̂L is given by Eq. (32), Û (s) is the
evolution operator for the D particles of Eq. (67) including
stochastic terms from interaction with the environment, and
M denotes stochastic averaging. Reducing the system to one
spatial dimension and following the procedure that led to the
derivation of Eq. (77) in Sec. III A, we find

Pβα(L) =
∑
ij

U ∗
αiUαjU

∗
βiUβi

∫ ∞

0
ds

∫ ∞

0
ds ′

∫
dp dp′ψ̃j0(p)

× ψ̃∗
i0(p′)ei(p−p′)L−i(εj

ps−εi
p′ s ′)

F (p,p′,s ′ − s) (86)

3A more general treatment (relevant to bosons) would involve a
kernel instead of a constant for the mixing matrix Uαi , reflecting
the fact that the mixing coefficients may depend on momentum.
Here, however, we shall consider initial states sharply concentrated
in momentum, for which a constant value of Uαi provides a good
leading-order approximation.

in terms of the kernel

F (p,p′,τ ) = e−δ2(p−p′)2/4ũ(p)ũ∗(p′)

×
∫

dZ e−Z2/4δ2
ei(p+p′)Z/2G(Z,τ ), (87)

where G(Z,τ ) is given by Eq. (78). In Eq. (86), εi
p =√

p2 + m2
i − E0.

Next, we consider a broad class of initial states

ψi0(x) = φ0(x)eip̄ix , (88)

where φ0 is some real-valued wave function centered around
x = 0 with position spread σx and p̄i is the mean momentum
of the state in the ith mass eigenspace. We assume that |p̄i −
p̄j | � |p̄i | for all i and j .

In the momentum representation,

ψ̃i0(p) = φ̃0(p − p̄i), (89)

where φ̃0(p) is the Fourier transform of φ0(x).
In order to perform the integration over p and p′ in Eq. (86),

we expand

εp = ε̄i + v̄i(p − p̄i), (90)

where ε̄i = εp̄i
, and v̄i = (∂εi

p/∂p)p=p̄i
. We further assume

that the variation of the kernel F (p,p′,τ ) in the range of
values of momenta where ψ̃i0 is supported is negligible; hence,
F (p,p′,τ ) can be treated as a constant in the integration over
p and p′ in Eq. (86). Then, we obtain

Pβα(L) =
∑
ij

U ∗
αiUαjU

∗
βiUβie

i(p̄j −p̄i )L
∫ ∞

0
ds

∫ ∞

0
ds ′ φ0(L − vj s)

×φ0(L − vis
′)e−i(ε̄j s−ε̄i s

′)f (s ′ − s). (91)

In Eq. (91), we denoted f (τ ) = F (p̄,p̄,τ ), where p̄ is the
mean momentum of the state |ψ0〉.

(a) The standard oscillation formula. The integrand in
Eq. (91) is peaked around s = L/v̄ and s ′ = L/v̄i , namely,
around the classical values of the time of arrival corresponding
to the dispersion relation in the subspace Hi . The probability
density (91) is strongly sensitive on the form of the function
f (τ ), which determines whether the amplitudes associated
with different times of detection contribute coherently in the
total probability. In general, the function f (τ ) depends on the
internal dynamics of the detector and on the particles’ energy
scale. It is expected to vanish for sufficiently large values
of τ . For example, if one includes the coarse-graining time
scale σ in the derivation, according to Eq. (20), f (τ ) would
include a multiplicative Gaussian term exp(−τ 2/σ 2) and it
would tend to zero for τ � σ . In general, the presence of
incoherent interactions (as in the model of Sec. II A2) implies
that fτ is characterized by some time scale τdec < σ , such that
f (τ ) 
 0 for τ � τdec.

The decoherence time scale τdec depends on the physics
of the detector and it cannot be specified without a precise
modeling of the associated interactions, including the effects
of the environment. It plays a crucial role in the form of the
probability density (91). If τdec � |L/v̄i − L/v̄j |, amplitudes
peaked at different values of the time of arrival do not
contribute coherently to the total probability. In that case, the
function f (s ′ − s) in Eq. (91) is effectively proportional to a

012111-13



CHARIS ANASTOPOULOS AND NTINA SAVVIDOU PHYSICAL REVIEW A 86, 012111 (2012)

delta function. It follows that the probability density Pβα of
Eq. (91), is proportional to

∫ ∞
0 ds|ψ(L,s)|2, as assumed in

the so-called wave-packet description of particle oscillations
[48,49].

In this regime, the evaluation of the probability (91)
involves the integral∫ ∞

−∞
ds φ0(L − v̄is)φ0(L − v̄j s)e−i(ε̄j −ε̄i )s , (92)

where we extended the limits of integration to (−∞,∞), since
for L � σx the integrand is strongly suppressed for values
s < 0.

The integral (92) is to be estimated subject to the condition
|v̄i − v̄| � v̄i , for all i and j . To this end, we change the
integration variable to r = −s + L

v̄
, where v̄ is a mean velocity

in the initial state |ψ0〉.4 The integral (92), then becomes

e−i(ε̄j −ε̄i )L/v̄

∫ ∞

−∞
dr φ0

(
−δvi

v̄
L + v̄ir

)
φ0

×
(

−δvi

v̄
L + v̄j r

)
ei(ε̄j −ε̄i )r , (93)

where δvi = v̄i − v̄. By Fourier transforming the functions φ0

in Eq. (93), we can estimate the leading-order contribution to
the integral as φ1( v̄i−v̄j

v̄
L), where φ1(x) is the inverse Fourier

transform of |φ̃(p)|2. The spread of φ1(x) is of the same order
as σx . Therefore, if

L � Lloc := σxv̄/(v̄i − v̄j ), (94)

the term φ1( v̄i−v̄j

v̄
L) is approximately a constant. The param-

eter Lloc is known as the localization length; if L � Lloc, the
detection probability is strongly suppressed [48,50].

In the regime where L � Lloc, Eq. (91) becomes

Pβα(L) =
∑
ij

C1
ijU

∗
αiUαjU

∗
βiUβie

i(p̄j −p̄i )L−i(ε̄j −ε̄i )L/v̄, (95)

where C1
ij are positive constants.

The probability density (95) is a periodic function of the
distance L of the detector from the source with oscillation
wave numbers

kji = (p̄j − p̄i) − 1

v̄
(ε̄j − ε̄i). (96)

In general, the value of kij in Eq. (96) depends on the mean
values of the momenta p̄i on the subspaces Hi . Since the
interactions that produce the oscillations couple to the flavor
basis, there is no reason for the value of momentum in a
given subspace to be consistently larger than the momentum
in another subspace; hence, we expect that when averaging
over the ensemble p̄i = p̄j = p̄. Different assumptions about
the initial state have been employed in the literature [49,50];
for example, that the energies ε̄i are equal. In the context of the
present formalism, such assumptions do not affect the resulting
probability distributions.

4For example, v̄ may be defined as the arithmetic mean or as the
geometric mean of v̄i and v̄j . As long as |v̄i − v̄j | � v̄, the results
are not affected by the way we choose to define the mean velocity.

Substituting for all p̄i the mean momentum p̄ of the initial
state, we obtain

kji = m2
i − m2

j

2p̄
, (97)

and we recover the standard expression for the oscillation
wave number that applies both to neutral-boson and neutrino
oscillations.

(b) A nonstandard oscillation formula. The standard oscil-
lation formula, Eq. (97), was obtained from the assumption
that τdec � |L/v̄i − L/v̄j |. In the opposite regime, where
the decoherence time is sufficiently large so that τdec �
|L/v̄i − L/v̄j |, amplitudes peaked at different values of the
time of arrival contribute coherently in Eq. (91). In this regime,
the function f (s ′ − s) is essentially constant and equal to f (0).
Hence,

Pβα(L) =
∑
ij

C2
ijU

∗
αiUαjU

∗
βiUβie

i(p̄j −p̄i )L−i[(ε̄j /v̄j )−(ε̄i /v̄i )]L,

(98)

where C2
ij are positive constants. In this regime, there is no

coherence length Lcoh.
The probability density, Eq. (98), is a periodic function of

the distance L of the detector from the source with oscillation
wave numbers

kji = (p̄j − p̄i) −
(

ε̄j

v̄j

− ε̄i

v̄i

)

= m2
i

p̄i

− m2
j

p̄j

+ E0

(
1

v̄i

− 1

v̄j

)
. (99)

Equation (99) does not depend on the precise choice of
the mean momenta p̄i . Again, setting p̄i = p̄j = p̄, Eq. (99)
becomes

kji = m2
i − m2

j

p̄
− E0

p̄

[√
m2

i + p̄2 −
√

m2
j + p̄2

]
. (100)

Equation (100) is a nonstandard oscillation formula. Its
dependence on the threshold energy E0 is particularly notable,
because it implies a different oscillation wavelength for
different channels of detection.

For E0 = 0, Eq. (100) becomes

kij = (
m2

i − m2
j

)
/p̄, (101)

i.e., it predicts an oscillation wave number twice as large
as the standard expression. For neutrinos, this nonstandard
oscillation formula has been derived through other methods—
see Ref. [51] and Refs. [49,52] for critique. In the absence
of independent measurements of the mass differences mi −
mj , the nonstandard oscillation formula is indistinguishable
experimentally from the standard one.

For E0 > 0, we consider separately the nonrelativistic
regime (relevant to neutral bosons) and the ultrarelativistic
regime relevant to neutrinos. In the nonrelativistic regime,
where |mi − mj | � mi , we define a “mean mass” m :=
mi+mj

2 , to obtain

kji = mi − mj

p̄
(2m − E0). (102)
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Equation (102) has the same dependence on momentum as
the standard expression for the oscillation wavelength, and
thus, it is indistinguishable in the absence of an independent
measurement of the mass differences mi − mj .

In the ultrarelativistic regime,

kji = m2
i − m2

j

2p̄

(
1 − E0

2p̄

)
. (103)

The momentum dependence of kji in Eq. (103) differs
from that in the standard oscillation formula. The differ-
ence is more pronounced as p̄ approaches the threshold
energy E0.

To summarize, the derivation of the standard expression
for particle oscillations requires the assumption that “interfer-
ences” in the time of arrival are decohered at the detector.
In the absence of a strong decoherence effect, the virtual
processes, peaked around different values for the time of
arrival, contribute coherently to the total probability. They
result in a different expression of the oscillation wavelength.
For a given detection process, the standard oscillation formula
applies for sufficiently large values of L, and the nonstandard
oscillation formula applies for sufficiently small values of
L. In typical neutrino oscillations the baseline L is of the
order of 102 m and the neutrino energies are of the order
of hundreds of MeVs; then |L/v̄i − L/v̄j | is of the order
of 10−22 s. The validity of the standard oscillation formula
requires that the decoherence time scale be much smaller than
10−22 s. This time scale is very small, and at the moment,
there exists no first-principles modeling of actual detectors
to establish whether this value is physically realistic or not.
For this reason, we believe that there is a good prima facie
possibility that the nonstandard oscillation formulas could be
physically relevant [53].

V. CONCLUSIONS

The main contribution of this paper is the development of a
method for determining the time-of-arrival probabilities, valid
for any experimental setup. Our method is algorithmic, in the
sense that for any modeling of the detector that determines the

particle, a unique expression for the time-of-arrival probability
follows. The method is also general, because it can incorporate
any interaction between microscopic system and detector,
including ones described in terms of relativistic quantum field
theory. This achieved this result by (i) reducing the problem
of defining quantum temporal observables to a mathematical
model where time is associated to a transition from a subspace
of the Hilbert space of the system to its complementary
subspace, and (ii) combining a quasiclassical description of
the measurement records with a fully quantum modeling of
the detector’s interaction with the microscopic system.

We constructed time-of-arrival probabilities for three dif-
ferent detector models. We showed that there exists a special
regime in which all information about the detector is encoded
in a single function of momentum, the absorption coefficient
α(p). From these models, we obtain a generalization of
Kijowski’s probability distribution, valid for any dispersion
relation for the microscopic particle. We also adapted our for-
malism for the description of the time of arrival in high-energy
physics, where the detection process involves the creation
of several product particles on the detector. As a nontrivial
application of the method, we constructed rigorously the
time-integrated probability associated to particle-oscillation
experiments.

The applicability of the method is not restricted to the
time-of-arrival problem. It can be employed in order to define
probabilities associated to any physical transition (for example,
decay of unstable systems), provided that such a transition
is accompanied by a macroscopic record of observation.
Furthermore, it applies to setups involving more than one
detector [21]. Thus, it can be employed for the construction of
temporal correlation functions between different detectors, or
in order to construct temporal entanglement witnesses asso-
ciated to measurements in multipartite systems. Furthermore,
since the method is compatible with relativistic quantum field
theory, it can also be employed towards the construction of
quantitatively precise models of relativistic quantum measure-
ments [54], in which the space-time coordinates of an event
are random variables rather than externally predetermined
parameters.
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6, 1 (2005); M. Penz, G. Grübl, S. Kreidl, and P. Wagner,
J. Phys. A 39, 423 (2006).

[12] C. J. Isham, GIFT Seminar 1992, 0157-288, gr-qc/9210011;
K. Kuchar, Time and Interpretations of Quantum Gravity,

012111-15

http://dx.doi.org/10.1016/S0370-1573(00)00047-8
http://dx.doi.org/10.1103/PhysRevD.47.3345
http://dx.doi.org/10.1103/PhysRevD.40.2598
http://dx.doi.org/10.1063/1.2399085
http://dx.doi.org/10.1063/1.2399085
http://dx.doi.org/10.1088/0305-4470/27/6/040
http://dx.doi.org/10.1007/s00023-005-0197-9
http://dx.doi.org/10.1007/s00023-005-0197-9
http://dx.doi.org/10.1088/0305-4470/39/2/012


CHARIS ANASTOPOULOS AND NTINA SAVVIDOU PHYSICAL REVIEW A 86, 012111 (2012)

Winnipeg, 1991, Proceedings, General Relativity and Relativis-
tic Astrophysics (World Scientific, Singapore, 1992), p. 211.

[13] J. J. Halliwell, Phys. Rev. D 80, 124032 (2009).
[14] K. Savvidou and C. Anastopoulos, Class. Quantum Grav. 17,

2463 (2000); C. Anastopoulos and N. Savvidou, ibid. 22, 1841
(2005).

[15] E. H. Hauge and J. A. Stonveng, Rev. Mod. Phys. 61, 917 (1989);
V. S. Olkhovsky and E. Recami, Phys. Rep. 214, 339 (1992);
R. Landauer and T. Martin, Rev. Mod. Phys. 66, 17 (1994);
G. Privitera, G. Salesi, V. S. Olkhovsky, and E. Recami, Riv.
Nuovo Cimento 26 (2003); H. G. Winful, Phys. Rep. 436, 1
(2006).

[16] C. Anastopoulos and N. Savvidou, J. Math. Phys. 49, 022101
(2008).

[17] L. Fonda, G. C. Ghirardi, and A. Rimini, Rep. Prog. Phys. 41,
587 (1978); C. B. Chiu, E. C. G. Sudarshan, and B. Misra, Phys.
Rev. D 16, 520 (1977); A. Peres, Ann. Phys. 129, 33 (1980);
K. J. F. Gaemers and T. D. Visser, Physica A 153, 234 (1988).

[18] C. Anastopoulos, J. Math. Phys. 49, 022103 (2008).
[19] R. J. Glauber, Phys. Rev. 130, 2529 (1963); D. F. Walls and

G. J. Milburn, Quantum Optics (Springer, Berlin,
2010).

[20] M. D. Srinivas and E. B. Davies, J. Mod. Opt. 28, 981 (1981);
29, 235 (1982).

[21] C. Anastopoulos and N. Savvidou, J. Math. Phys. 53, 012107
(2012).

[22] J. A. Damborenea, I. L. Egusquiza, G. C. Hegerfeldt, and
J. G. Muga, Phys. Rev. A 66, 052104 (2002); G. C. Hegerfeldt,
D. Seidel, and J. G. Muga, ibid. 68, 022111 (2003).

[23] The OPERA collaboration, T. Adam et al., arXiv:1109.4897.
[24] The ICARUS experiment, M. Antonello et al., arXiv:1203.3433.
[25] M. Gell-Mann and A. Pais, Phys. Rev. 97, 1387 (1955); A. Pais

and O. Piccioni, ibid. 100, 1487 (1955).
[26] B. Pontecorvo, Zh. Eksp. Teor. Fiz. 33, 549 (1957); 34, 247

(1957).
[27] M. Zralek, Acta Phys. Pol. B 29, 3925 (1998).
[28] J. Kijowski, Rep. Math. Phys. 6, 361 (1974).
[29] N. Grot, C. Rovelli, and R. S. Tate, Phys. Rev. A 54, 4676
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