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We study the nonlocal properties of two-qubit maximally entangled and N -qubit Greenberger-Horne-Zeilinger
states under local decoherence. We show that the (non)resilience of entanglement under local depolarization
or dephasing is not necessarily equivalent to the (non)resilience of Bell-inequality violations. Apart from
entanglement and Bell-inequality violations, we consider also nonlocality as quantified by the nonlocal
content of correlations and provide several examples of anomalous behaviors, both in the bipartite and
multipartite cases. In addition, we study the practical implications of these anomalies on the usefulness
of noisy Greenberger-Horne-Zeilinger states as resources for nonlocality-based physical protocols given by
communication complexity problems.
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I. INTRODUCTION

Although closely connected, entanglement and nonlocality
constitute two substantially different concepts. Entanglement
refers to whether a state can be decomposed as a convex com-
bination of product quantum states and is therefore inherent
to the Hilbert-space structure of quantum theory [1]. Opera-
tionally, a state is entangled whenever it cannot be prepared
by local quantum operations and classical communication.
Nonlocality on the other hand refers to correlations between
distant measurements—whatever the underlying theory—that
cannot be explained by local hidden-variable models [2].

Correlations describable in terms of local hidden variables
necessarily satisfy a set of linear constraints known as Bell
inequalities [2], which can be tested in the laboratory. Thus,
the violation of any Bell inequality reveals the presence of
nonlocality; whereas its nonviolation does not have any impli-
cation on the local or nonlocal nature of the corresponding
correlations (unless all Bell inequalities are proven to be
satisfied). In turn, every pure quantum state is entangled if, and
only if, it violates some Bell inequality [3]. Additionally, if an
arbitrary quantum state is nonlocal, it is also entangled [4]. The
converse however has long been known not to be true: There
exist mixed entangled states that admit local hidden-variable
descriptions [4,5].

From an applied point of view, entanglement has been
identified over the last two decades as the key resource in a
variety of physical tasks (see Ref. [1] and references therein).
These go from teleportation, dense coding, secure quantum
key distribution (QKD) and quantum communication, to
quantum computing, for instance. In more recent years, it was
nonlocality that was also raised to the status of a physical
resource. An example thereof was given by the advent of
device-independent applications, such as QKD [6] or random-
ness generation [7]. There, correlations violating some Bell
inequality suffice to establish a secret key or a perfectly random
bit, regardless of the physical means by which they are estab-
lished. Another prominent example is distributed-computing
scenarios such as those of communication complexity problems
(CCPs) [8,9]. There, N distant users, assisted by some initial

correlations and a restricted amount of public communication,
must locally calculate the value of a given function f with
some probability of success. It was shown in Ref. [9] that, for
a broad family of N -partite Bell inequalities, one can associate
to every inequality a CCP that can be solved more efficiently
(with higher probability) than by any classical protocol if,
and only if, it is assisted by correlations that violate the
inequality. Furthermore, the authors showed that, for any fixed
N , the quantum gain (in success probability) is proportional to
the amount of violation, thus automatically yielding a direct
operational interpretation for the violation of this type of Bell
inequality.

However, under realistic situations where actual applica-
tions take place, systems are unavoidably subject to noise.
It is therefore important to probe the resilience of physical
resources in the presence of noise. This becomes particularly
necessary for many-particle systems, where the detrimental
effects of the interaction with the environment typically accu-
mulate exponentially with the number of system components.
Nevertheless, while the open-system dynamics of multipar-
tite entanglement has been extensively studied [10–13], the
scaling behavior of the nonlocal properties of quantum states
under decoherence is barely understood. To the best of our
knowledge, some cases of such behavior were systematically
studied in Ref. [14], but focused only on the critical noise
strengths (or, alternatively, the times) for which the violations
of a specific family of multisetting N -partite Bell inequalities
vanish. We know, however, from the study of entanglement,
that such critical values on their own can be very misleading
as figures of merit of any robustness. Situations are known
where correlations take longer to vanish but still, for a given
fixed time, decay exponentially with N [11]. Thus, the full
dynamical evolution of nonlocality must be studied to draw
conclusions on its fragility.

In this paper we study the evolution of nonlocality, in
comparison to that of entanglement, for two-qubit maximally
entangled and Greenberger-Horne-Zeilinger (GHZ) [15] states
subject to independent depolarization or phase damping [16].
We find that decoherence can lead to unexpected behavior
in the nonlocal properties of states [17]. For instance, in
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the two-qubit case, local decoherence can lead to the natural
appearance of anomalies in the orderings of states, such that
the less-entangled states have more nonlocality. In turn, in
the multipartite case, we identify regimes of noise for which
the violation of the Mermin inequality [18] by decohered
GHZ states grows exponentially with the number of particles
N , despite the fact that both entanglement and nonlocal
content [19] decay exponentially. Remarkably, in some cases,
this exponentially decaying entanglement is even bound [11].
To get a physical insight of the practical consequences of
such anomalous behavior, we study the quantum gains for
CCPs. We find that the gain increase with N for small N but
decreases exponentially for large N . So an exponentially large
visibility coexists with exponentially small entanglement,
nonlocal content and usefulness for solving the associated
physical problem.

II. NOTATION AND DEFINITIONS

In this section we introduce the definitions, concepts, and
tools applied in the derivation of the results.

A. Multiqubit states under noisy channels

The initial states we will consider throughout are the GHZ
states [15]

|�+〉 = 1√
2

(|0〉⊗N + |1〉⊗N ), (1)

which reduce to maximally entangled Bell states for N = 2.
As paradigmatic models of noise we focus on the inde-

pendent depolarizing (D) and phase-damping (PD) channels
[16]. Channel D describes the situation in which a qubit
remains untouched with probability 1 − p or is mapped to
the maximally mixed state (white noise) with probability p:

εD
p (ρ) = (1 − p) ρ + p 1

2 . (2)

Channel PD induces the complete loss of quantum coherence
with probability p, but without any population exchange,

εPD
p (ρ) = (1 − p) ρ + p

∑
i

|i〉〈i|〈i|ρ|i〉, (3)

where i denotes the energy basis. Probability p can also be
interpreted as a convenient parametrization of time, where
p = 0 refers to the initial time t = 0 and p = 1 refers to the
asymptotic limit t → ∞.

The action of these models of noise on states (1) has been
explicitly calculated several times before. Here, we make use
of the expressions derived in Ref. [11] and refer the interested
reader to Refs. [10,11] for more details. For example, states (1)
under independent depolarizing or phase-damping channels
can in both cases be expressed as [11]

ρ(p) = (1 − p)N |�+〉〈�+| + [1 − (1 − p)N ]ρs, (4)

where ρs is a separable state, diagonal in the computational
basis {|0 . . . 0〉,|0 . . . 01〉, . . . ,|1 . . . 1〉}, that depends on the
channel in question.

The simplicity of decomposition (4) allows for exhaus-
tive analytical treatments. For example, the entanglement
E(ρ(p))—as quantified by any convex entanglement mea-
sure E—of decohered states (4) always decays faster than
exponentially with N : E(ρ(p)) � (1 − p)NE(ρ(0)) [11]. In
particular, for small p and large N , it typically saturates the
inequality as E(ρ(p)) ≈ (1 − p)NE(ρ(0)). Exponentially small
physical perturbations are enough to fully disentangle ρ(p).
Furthermore, as also mentioned, for the case of channel D
and for any noise strength, there exists an N above which
the entanglement in states (4) is bound [11]. We will see in
what follows how the above-mentioned symmetry can also be
exploited to understand the nonlocal properties of the states.

B. Bell-inequality violations by noisy multiqubit states

We consider throughout the same type of Bell inequalities
as considered in Ref. [9]:

IN
.=

1∑
x1,...,xN =0

g (x1, . . . ,xN ) C (x1, . . . ,xN ) � IL
N . (5)

Each part i measures randomly in one of two settings,
xi = 0 or xi = 1, and obtains 1 or −1 as the outcome. Here,
g(x1, . . . ,xN ) is any real-valued function and C(x1, . . . ,xN )
denotes the correlation function for the measurements of N

separated parties. IL
N is in turn the local bound; that is, the

maximum possible value of polynomial IN attainable by any
local-hidden-variable (LHV) model. In the quantum case, xi =
0 or xi = 1 correspond to observables Oi0 or Oi1 , respectively,
each one with eigenvalues ±1. Then, the correlation function is
given by C(x1, . . . ,xN ) = Tr[ρ · O1x1

⊗ . . . ⊗ ONxN
], where

ρ is the state under scrutiny.

C. Nonlocal content of noisy multiqubit states

We will see next that, apart from the entanglement, the
nonlocality of �(p) also decays as the state’s violation grows
exponentially. For this, we consider a measure of nonlocality
based on the Elitzur-Popescu-Rohrlich (EPR2) decomposition
[19]: Any joint-probability distribution P , which characterizes
the correlations of some experiment, can be decomposed
into the convex mixture of purely local and purely nonlocal
parts as

P = (1 − pNL) PL + pNLPNL. (6)

PL and PNL are respectively the corresponding local and
nonsignalling joint-probability distributions in the decom-
position, and 0 � pNL � 1. The minimal weight of the
nonlocal part over all such possible decompositions provides
an unambiguous quantification of the nonlocality in P :

p̃NL
.= min

PL,PNL

pNL. (7)

It is also called the nonlocal content of P and its counterpart
p̃L ≡ 1 − p̃NL gives the local content of P .

The violation of any Bell inequality allows one to
obtain a nontrivial lower bound to the nonlocal content.
Indeed, for any (linear) Bell inequality I � IL, the optimal
decomposition P = (1 − p̃NL)P̃L + p̃NLP̃NL yields I(P ) ≡
(1 − p̃NL)I(P̃L) + p̃NLI(P̃NL). Now, on the one hand, since
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it is local, P̃L cannot violate the inequality: I(P̃L) � IL. On
the other hand I(P̃NL) cannot be larger than the maximal
nonsignalling value, INL, of I. Therefore, it is always I(P ) �
(1 − p̃NL)IL + p̃NLINL, from which follows that

p̃NL � I (P ) − IL

INL − IL
. (8)

Notice that any correlations P that violate a Bell inequality
saturating the maximal nonsignalling value, I(P ) = INL are
automatically fully nonlocal (i.e., with p̃NL = 1). This is
precisely what happens to states (1), which saturate the
algebraic violations of an infinite-setting Bell inequality [20]
for N = 2, and that of the Mermin inequality [18] for an
odd number of parties. This is why states (1) are said to
be maximally nonlocal. Actually, GHZ states are maximally
genuine multipartite nonlocal, as they reach the algebraic
violation of a Bell inequality for this form of nonlocality [21].

III. RESULTS

A. Anomalies in noisy dynamics of
nonlocality versus entanglement

The first example we consider is the familiar Clauser-
Horne-Shimony-Holt (CHSH) inequality [22], I2 ≡ ICHSH,
defined by Eq. (5) (for N = 2) with g(x1,x2) ≡ (−1)x1x2 and
IL

2 ≡ IL
CHSH = 2. Its maximal quantum violation (ICHSH =

2
√

2) is realized by Bell state (1) (for N = 2) with the
observables O10 = −X1, O11 = Z1, O20 = (X2 − Z2)/

√
2

and O21 = (X2 + Z2)/
√

2, where Xi and Zi are respectively
the first and third Pauli operators of qubit i. In the noisy
scenario, the maximal violation for decohered states (4) is
immediately calculated with the criterion of Ref. [23]. In
Fig. 1 we compare the evolution of the maximal value of
ICHSH with that of entanglement, as a function of p, for
the cases of independent phase damping of noise strength
p and independent depolarization of noise strength p/2.
Entanglement is quantified by the negativity [24], which—

FIG. 1. (Color online) Entanglement (lower dashed curves) and
maximal value of the CHSH polynomial ICHSH (upper solid curves),
for maximally entangled two-qubit states under independent phase
damping of noise strength p (in red, upper solid and lower dashed
curves) and independent depolarization of noise strength p/2 (in
blue, middle two curves), as a function of p. The horizontal black
dashed line represents the local bound IL

CHSH = 2, below which there
is no more CHSH violation. Decoherence naturally drives the system
to dephased states that possess less entanglement than depolarized
states but that, at the same time, violate the CHSH inequality more.

since the considered states are Bell diagonal—coincides with
the concurrence [25] and can be taken as an unambiguous
entanglement quantifier. A curious effect is observed: While
the depolarized states display more entanglement than the
dephased ones (except for large p), the violation of the CHSH
inequality given by the dephased states is always above that of
the depolarized states. In fact, as p increases from zero to the
point where the depolarized states stop violating the inequality,
the gap between the entanglement and the violation grows.

Result 0. Local phase damping can naturally drive two-
qubit systems to states with less entanglement but more CHSH
violation than those driven by local depolarization.

As N increases this type of anomaly becomes stronger.
For N > 2 we consider the Mermin inequality [18], defined
by inequality (5) with g(x1, . . . ,xN ) ≡ cos[π

2 (x1 + · · · + xN )]
and IL

N = 2N/2, for N even, and IL
N = 2(N−1)/2, for N odd.

Its maximal quantum violation is IN = 2N−1 and is attained
by GHZ states (1) (for N > 2) with observables Oi0 = Xi and
Oi1 = Yi , where Xi and Yi are, respectively, the first and second
Pauli operators acting on qubit i. Since the local bound IL

N is
also an exponentially growing function of N , instead of IN one
usually quantifies the violation with the ratioVN = IN/IL

N .VN

is sometimes called the visibility of the inequality and, in terms
of it, inequality (5) reads VN � 1. It is immediate to see that
the maximal violation of the Mermin inequality for noisy GHZ
states (4) takes place with the same observables as for p = 0.
Thus, their maximal visibility is immediately calculated to be

VN= (1 − p)N 2(N−1)/2, (9)

where for simplicity we have taken N odd. Another curious
effect appears here. The entanglement in ρ(p) decays always
smoothly (exponentially) with N (except for channel D and
when p � 0.49) [11]. Nevertheless, its visibility displays an
abrupt transition from exponentially growing to exponentially
decreasing at the relatively small value pt = 1 − 1/

√
2 ≈

0.29, for the two channels considered. In turn, the critical noise
strength beyond which the inequality is not violated any further

is pc = 1 − 1/
√

2
(N−1)/N

< pt. This leads to the following
effect: For p < pc, and as N increases, ρ(p) gets exponentially
close to the separable states while at the same time yielding an
exponentially large violation of Eq. (5). Furthermore, we know
that, for channel D, the little entanglement remaining in �(p)

very rapidly becomes bound [11]. The situation is illustrated in
Fig. 2, where the regions with the different regimes are plotted.

Result 1. States with exponentially small and bound en-
tanglement can provide an exponentially large Bell inequality
violation.

In addition, from Eqs. (9) and (8), we obtain

p̃NL � (1 − p)N 2(N−1)/2 − 1

2(N−1)/2 − 1
, (10)

where again for simplicity we have taken N odd. Additionally,
decomposition (4) of ρ(p) immediately yields an upper bound
to its local content. This is because the correlations P (|�+〉)
in |�+〉 are purely nonlocal whereas correlations P (ρs) of
ρs are purely local (because ρs is separable). Therefore,
P (ρ(p)) = (1 − p)NP (|�+〉) + [1 − (1 − p)N ]P (ρs) realizes
a particular EPR2 decomposition of the correlations P (ρ(p))
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FIG. 2. (Color online) Critical probabilities for full separability
(in red), distillability (in blue), and violation of the Mermin inequality
(pc, in black), for N -qubit GHZ states under independent depolariza-
tion of strength p. Below the red curve the states are entangled; they
are distillable though only below the blue curve [11]. Between the
red and the blue curves the states are thus bound entangled. The total
entanglement (not plotted) decreases exponentially with N . Below
the black curve in turn the states violate the Mermin inequality—and
they do it exponentially with N . Hence, for N > 11, and between the
black and the blue curves, decoherence naturally drives the system
to states with exponentially small and bound entanglement that yet
violate the inequality exponentially.

in ρ(p), and the optimal one must thus necessarily satisfy

p̃NL � (1 − p)N , (11)

in a way reminiscent to GHZ entanglement decay [11].
Result 2. The nonlocal content in locally depolarized, or

dephased, states (4) cannot decay slower than exponentially
with N .

Notice further that, for p < pt = 1 − 1/
√

2, lower bound
(10) converges, as N grows, to the upper bound (11). Then,
in the limit N → ∞, the exact value for the nonlocal content
of ρ(p) is p̃NL = (1 − p)N . So, exponentially large Mermin
visibility (9) coexists not only with an exponentially small
(and in some cases bound) entanglement but also with an
exponentially small nonlocal content. This indicates that the
visibility of a Bell inequality may not always constitute an
unambiguous quantitative figure of merit for the nonlocal
resources of quantum states.

B. Efficiency gain in communication complexity problems
with noisy multiqubit states

As discussed, the previous results may be a manifestation
of the fact that the visibility of a Bell test does not neces-
sarily quantify a state’s usefulness for a practical (nonlocal)
problem. In particular, in view of both the entanglement and
nonlocal content of ρ(p) decaying at slowest exponentially
with N , it is interesting to explore what implication the
observed exponentially growing Mermin-inequality visibility
has on some concrete physical task. Here, we focus on the
gain in efficiency—with respect to all protocols assisted by
classical correlations—for solving probabilistic distributed
computations given by communication complexity problems
(CCPs) [8]. In the pure-state case of p = 0, an exponentially
growing Mermin visibility is responsible for an exponentially
growing quantum gain [9]. However, for p > 0, we find that

FIG. 3. (Color online) Distributed computing scenario [8]. N

distant users receive each a two-bit input string {xi,yi}, with
1 � i � N . Distributed bits yi are chosen randomly between 1
and −1, and each xi is chosen as 0 or 1 depending on a
joint probability distribution Q(x1, . . . ,xN ). The users are en-
dowed with some preestablished shared correlations, but they can
only exchange a restricted amount of public communication. The
problem is, for each and all of them, to compute the value
f (x1, . . . ,xn,y1, . . . ,yn) of a given function f with some probability.
The minimum number of bits that they must broadcast to do so
defines the communicational complexity of the problem. We consider
here a specific subclass of such problems with Q(x1, . . . ,xN ) ≡
|g(x1, . . . ,xN )|/∑1

x1,...,xN =0 |g(x1, . . . ,xN )|, for g(x1, . . . ,xN ) some
real-valued function, f a boolean function of the form f =
y1 · · · ynS[g(x1, . . . ,xn)], with f = ±1 and S [g] ≡ g/ |g| = ±1
being the sign function, and where each user is allowed to broadcast
only a single bit. For this subclass, it was shown in Ref. [9], for a
broad family of protocols, that if the shared correlations violate the
associated Bell inequality (5) the users can solve the problem with a
higher probability than with any classical protocol (assisted by LHV
correlations).

the visibility in question yields a gain that, after a short
transient period of growth with N , converges to the universal
exponential-decay law of (1 − p)N .

The family of CCPs we consider is described in Fig. 3.
For these, the maximal probability of success, ps , achievable
through a broad class of protocols [9] with preestablished
correlations P as the resource is

ps = 1

2

(
1 + IN (P )∑1

x1,...,xN =0 |g (x1, . . . ,xN )|

)
. (12)

Therefore, no such strategy can do as well when using classical
resources as when based on correlations that violate inequality
(5). For the Mermin inequality one has IL

N = 2N/2 for N even,
IL

N = 2(N−1)/2 for N odd, and
∑1

x1,...,xN =0 |g(x1, . . . ,xN )| =
2N−1. Therefore, the best such protocol with classical cor-
relations solves the associated CCP with a probability ps

L =
1
2 (1 + 1/

√
2N−1) for N odd, and ps

L = 1
2 (1 + 1/

√
2N−2) for

N even. If states (4) are used as the resource in contrast the
protocol succeeds with ps

Q = 1
2 [1 + (1 − p)N ].

The quantum gain in the protocol is defined as GQ
.= ps

Q −
ps

L. For N odd, for instance, it reads

GQ ≡ GQ(p,N ) = 1
2 ((1 − p)N − 1/

√
2N−1). (13)

From this, we can see that, for p = 0, GQ grows monotonically
and exponentially with N , converging to the maximal value
1/2 in the limit of N → ∞. For p > 0, however, both terms
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FIG. 4. (Color online) Quantum gain GQ(p,N )—for odd N—
(blue circles) in the efficiency to solve CCPs with �(p), lower and
upper bounds—also for odd N—to the nonlocal content p̃NL in
�(p) (black crosses) and negativity (solid red) in the most robust
bipartitions of �(p), for p = 0.1 and as a function of N . For
3 � N � 7 the quantum gain displays a region of growth. However,
for large N , it very rapidly converges to the universal upper bound
(1 − p)N , and so do all other curves.

in Eq. (13) decay exponentially and their difference displays
a nonmonotonic behavior, with a transition from growing to
decaying with N at

N ≈ log2[
√

2 ln(1/
√

2)/ ln(1 − p)]

log2[
√

2(1 − p)]
. (14)

Quantum gain (13) is plotted in Fig. 4 as a function of N for
p = 0.1. Together with it, in the figure, also the lower [26] and
upper bounds—for N odd—to the nonlocal content in �(p),
as well as the negativity in its half-versus-half bipartitions, are
plotted. These bipartitions are the most robust ones and the
disappearance (red upper curve of Fig. 2) of their negativity
characterizes the full separability of �(p) [11]. Therefore, the
plotted negativity can be taken as a valid quantitative figure of
merit for the total entanglement of �(p). In the figure, we can
see how, after a short region of growth, from N = 3 to N = 7,
GQ becomes a decreasing function of N . Furthermore, we
can see how it rapidly converges to the universal upper bound
(1 − p)N , as well as all other curves in the figure for large N .
This constitutes our final result.

Result 3. The usefulness for the nonlocal task associ-
ated with the Mermin inequality of locally depolarized,

or dephased, states (4) decays, for large N , exponentially
with N .

So an exponentially large visibility renders, apart from
coexisting already with small entanglement and nonlocal
content, an exponentially small usefulness for solving the
associated physical problem. We emphasize that this re-
markable anomaly can happen only in a noisy scenario, as
for pure states a monotonically growing visibility implies a
monotonically growing gain. Nevertheless, it constitutes a
further confirmation of the fact that, as discussed below Result
2, at present day we still do not possess fully satisfactory tools
for the unambiguous quantification of the entanglement or
nonlocal resources of quantum states.

IV. CONCLUSION

In this work we have analyzed how local noisy envi-
ronments affect the nonlocal properties of N -qubit states.
Interestingly, the derived picture is more complex than initially
expected, as there are regimes where, although entanglement
and nonlocal content show an exponential decay with the
number of parties, the violation of some Bell inequalities
exponentially increase with N . This improvement in the Bell
violation may in fact be the reason for the existence of a regime
of N in which decaying entanglement and nonlocal content
coexists with an increasing efficiency to solve probabilistic
distributed computing tasks. Our results, then, provide a
manifestation of the subtle relation between entanglement
and nonlocality in quantum states. We hope that our work
opens new perspectives in the study of nonlocality decay
under decoherence. In particular, it would be interesting
to study how the recent proposals for robust encoding of
N -qubit entanglement introduced in Refs. [27,28] apply to
nonlocality.
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