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Quantum walk of two interacting bosons
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We study the effect of interactions on the propagation of quantum correlations in the bosonic two-body
quantum walk. The combined effect of interactions and Hanbury Brown–Twiss interference results in unique
spatial correlations which depend on the strength of the interaction, but not on its sign. We experimentally
measure the weak interaction limit of these effects using light propagating in a highly nonlinear photonic lattices.
Finally, we propose an experimental approach to observe the strong interaction limit using few atoms in optical
lattices.
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Introduction. Understanding highly correlated many-body
systems remains both an experimental and theoretical chal-
lenge. While there is a rather good understanding of weakly
interacting systems, problems involving strong interactions are
in general harder to address.

Recently a new approach to the study of quantum dy-
namics became experimentally accessible through the study
of quantum walks (QWs) in lattice potentials [1]. Quantum
walks are the quantum counterparts of classical random
walks on a discrete lattice: A quantum particle is initially
placed at a particular site of a lattice and then tunnels to
neighboring sites with equal probability amplitude (see Fig. 1).
This basic “step” is repeated, but in contrast to the classical
case, quantum mechanical interference leads to distinctively
different dynamics. For example, in periodic lattices the
wave-function width grows ballistically, while in the classical
case the expansion is diffusive.

QWs have received increasing attention due to their relation
to various physical and biophysical processes [1–3], and
their possible use for quantum computation algorithms [4].
Theoretically, QWs were studied for the single-particle case
[1]. Initial experiments studied the physics of single particles
by using either classical waves [5], single photons [6,7], or
single atoms [8,9]. Moving from one to two noninteracting
particles it has recently been shown that indistinguishable
quantum walkers can develop nontrivial correlations due to
Hanbury Brown–Twiss (HBT) interferences [10–13]. Yet, very
little is known of the effect of interactions on the dynamics
of the few-body QW [14]. As new systems emerge that can
accommodate such experiments [8,9], a systematic study of
this problem starting at small particle numbers may offer a
“bottom up” approach in the general strive to unders dynamical
quantum many-body systems.

In this Rapid Communication we study the effect of
interparticle interactions on the two-particle quantum walk and
the resulting spatial correlation. We consider two bosons, each
initially localized on a single lattice site, undergoing a QW
simultaneously (see Fig. 1). We find that the interplay between
interactions and quantum two-particle (HBT) interference
results in a continuous transition from bosonic to fermionlike
spatial correlations between the particles. Interestingly, the
correlations depend on the strength of the interaction but
not on whether it is attractive or repulsive. We explain
the observed correlations by calculating the two-particle

spectrum, and interpret our results in light of the physics
of attractively and repulsively bound pairs [15,16]. We then
present an experimental observation of the weak interaction
limit of these effects in nonlinear photonic lattices, by using
an experimental implementation of the truncated Winger
approximation [17,18]. Finally, we outline an experimental
approach to observe the strong interaction limit using a small
number of atoms carefully positioned in optical lattices.

QW of two interacting particles. We start by calculating
the QW of two interacting particles. We consider the one-
dimensional Bose-Hubbard model

H = −J
∑

〈l,m〉
a
†
l am + U

2

∑

m

n̂m(n̂m − 1), (1)

where a
†
m (am) is the creation (annihilation) operator for a

particle at site m, n̂m = a
†
mam is the corresponding number

operator, J is the tunneling amplitude between nearest neigh-
bors, and U is the on-site interaction energy which can be
attractive (negative) or repulsive (positive). (See Fig. 1.)

We study the QW of two indistinguishable particles, each
initially localized on a single site in a periodic lattice. We
consider two different initial conditions: one in which the
two particles are localized at adjacent lattice sites |ψinitial〉 =
a
†
1a

†
0|0〉, and a second in which the particles are initially

placed at the same site, |ψinitial〉 = (a†
0)2|0〉. Our focus lies

on the particle density nr (t)=〈a†
r ar〉 and on the two-particle

correlation �q,r (t) = 〈a†
qa

†
r araq〉 which are calculated after an

FIG. 1. (Color online) Two-particle quantum walk. (a) An illus-
tration of two identical atoms initially placed on two sites of an
optical lattice, and allowed to tunnel to neighboring sites and interfere.
(b) The evolution of the particle density plotted against position
(in lattice sites) for the case of a single-atom quantum walk.
(c) The evolution of the density for a two-atom quantum walk. This
density is only weakly affected by interactions, while the two-particle
correlations are strongly modified.
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evolution time T for different values of the interaction U . At
all stages the particles are far from the lattice boundaries.

The results for U = 0 correspond to the results reported in
Refs. [10,11]: When two non-interacting bosons start the QW
at the same site, after propagation each particle can be found on
either side of the site of origin, reflected in the four symmetric
peaks in the correlation matrix inset for Fig. 2(a). When the
particles are initially placed at adjacent sites, HBT interference
results in spatial bunching, and the two particles propagate
together either to the left side of the distribution [peak at
the bottom left corner of the correlation matrix in Fig. 2(g)]
or to the right (top right corner). Other initial conditions, in
which the particles are further separated in space, result in more
complicated correlation patterns [10]. Such initial states and
the results of interactions will be discussed in the Supplemental
Material [19].

Let us now turn to the discussion of interaction effects.
Figures 2(b)–2(e) show the results for increasing repulsive
interaction U for in the case of two bosons initially localized
at the same site. The spatial correlations show that as |U |
increases the two particles tend to propagate as a pair, while
the density distribution becomes localized. Figures 2(g)–2(l)
show the results for the case in which the particles are
initially placed at different sites, |ψinitial〉 = a

†
1a

†
0|0〉. Here,

the particle density depends only weakly on U , but the
two-particle correlation undergoes a fundamental change: The
spatial bunching effects which occur in the noninteracting
case gradually transform to spatial antibunching [Fig. 2(k)].
For large values of the interaction strength |U |, the correlation
between the two bosons becomes very similar to the correlation
exhibited by two noninteracting fermions, prepared in the
same initial configuration [compare Figs. 2(k) and 2(l)]. The
noninteracting fermionic and the interacting bosonic matrices
become identical at the limit of |U | → ∞, while the density
becomes identical to the one for U = 0. An interesting result
is that in both cases the effect of interactions does not depend
on the sign of U ; it is identical for both attractive and repulsive
interactions. We note that for initial conditions in which the
two particles are further separated in space, interactions also
drive the system towards fermionlike correlations, only that
now they have a more complicated spatial structure—see the
Supplemental Material [19] for additional experimental and
theoretical results.

The two-particle spectrum. To understand these results we
consider the two-particle spectrum of the system, as shown
in Fig. 3 for two particles on a lattice with M = 29 sites.
Each of the two-particle eigenfunctions can be written as
�(r1,r2), where r1 and r2 are the positions of the two particles
on the lattice. Introducing the center-of-mass coordinate R =
(r1 + r2)/2 and the relative coordinate r = r1 − r2, we can
solve the Schrödinger equation with the ansatz �(r1,r2) =
exp(iKR)ψK (r), where K is the quasimomentum of the
center-of-mass motion and ψK (r) is the pair wave function
[16].

For finite interaction strengths, the spectrum separates
into two bands. The main part of the spectrum, containing
[M(M − 1)]/2 eigenstates, consists of scattering states having
low probability at r = 0, whose energy is given by the
noninteracting part of the Hamiltonian in Eq. (1). The smaller
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FIG. 2. (Color online) Two-particle correlations for interacting
quantum walkers. Left column: Correlations after propagation time
T = 4 in units of 1/J , where initially the two particles are placed
at the same site, |ψinitial〉 = (a†

0)2|0〉. The correlations are plotted
against the positions of the two particles q and r , in lattice sites
away from the origin. (a) For zero interactions, the particles show
no interference in the correlations [10]. (b)–(f) As the interaction
is increased, the correlations show the formation of bound pairs,
while the density distribution (shown on the right-hand side of
each plot) becomes increasingly localized. Right column: Similar
results for an initial condition in which the two particles are placed
at adjacent sites |ψinitial〉 = a

†
1a

†
0|0〉. (g) At U = 0 the correlation

shows spatial bunching. (h)–(j) The correlations change as the
interaction |U | is increased, while the density is only weakly affected.
(k) At strong interactions the correlation is transformed to spatial
antibunching, similar to the correlation that would be exhibited by
two noninteracting fermions initially placed in the same configu-
ration (l). All results are identical for both attractive and repulsive
interactions.
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FIG. 3. (Color online) Spectrum and two-particle eigenmodes of
Eq. (1) for U = 8. The spectrum is separated into two minibands. The
higher band consists of bound pair states in which the two particles
only occupy the same sites (nonzero values mainly on the diagonal
r = q, top inset), while the lower band consists of states in which
the two particles have small probability to occupy the same site
(lower inset). The gap is proportional to the interaction strength U .
Attractive interactions U < 0 yield an identical yet inverted spectrum.
The position axis in the insets is given in lattice sites.

part of the spectrum (M eigenstates) consists of states ψbs
K (r)

which have a large probability for two particles to occupy the
same site, i.e., |ψbs

K (0)|2 → 1 (U → ∞) [16] (see the insets
in Fig. 3). This miniband has higher or lower energies than
the main part of the spectrum, depending on the sign of the
interaction; nevertheless, the spatial probability distribution of
the two-particle eigenstates is identical.

Using this picture, it is possible to explain the results in
Fig. 2. An initial state in which the two particles occupy
the same site with strong attractive or repulsive interaction
will mostly contain two-particle states from the smaller
miniband. As a result, the two particles will remain bound, as
described by Winkler et al. in Ref. [15] [see Figs. 2(g)–2(l)].
A complementary process happens if the particles initially
occupy different sites. This initial condition excites mainly
scattering states from the main part of the spectrum. As a result,
the particles have low probability to be found at the same site
throughout the evolution, and will not show bunching.

Let us now turn to the case of strong interactions |U | � J .
Our goal is to understand the “fermionization” as observed in
the correlator �q,r (t) for an initial state in which the particles
are found at different sites. We start by noting that by focusing
on the scattering states we can describe the Hamiltonian
(1) using hard-core bosons, where doubly occupied sites
are eliminated from the Hilbert space. Formally we replace
the bosonic operators with spin-1/2 operators: a

†
m → S+

m,

am → S−
m .

Next, we use a standard mapping from spin-1/2 to
fermionic operators fm,f †

m [20]. Let us review the essential
steps of this mapping to understand the “fermionic” behavior
of �q,r (t). Spin-1/2 and fermionic operators share the local
property (f †

m)2 = f 2
m = (S+

m )2 = (S−
m )2 = 0. However, spins

on different sites commute, whereas fermions pick up a minus
sign. In the sought mapping one corrects for this via the

Jordan-Wigner string exp(iφm):

S−
m = e−iφmfm, S+

m = eiφmf †
m,

with

φm = π

m−1∑

l=1

f
†
l fl .

It is now straightforward to check that for �q,r (t) the Jordan-
Wigner string drops out. Hence, the correlations for hard-core
bosons are identical to the ones obtained for noninteracting
fermions in accordance with our observation in Fig. 2.

Experimental results. In this section we experimentally
observe the semiclassical limit of the effects described above
in a nonlinear optical setup. We do so by experimentally
implementing the truncated Wigner approximation (TWA)
[17,18]. The TWA is an approximate semiclassical method
to calculate the time evolution of an given initial state in an
interacting many-body system. The essence of the TWA is
to use a classical Hamiltonian to evolve a family of initial
conditions which in turn are distributed according to the
Wigner distribution of the chosen initial quantum state.

In the case described here, the initial state describes two
particles localized on different sites. The Wigner distribution
of this initial state resembles a ring in the number-phase plane.
The number is well defined but the phase is wildly fluctuating
[18]. However, its Wigner distribution has both positive and
negative values. This is a common problem in TWA as one has
to interpret it as a probability. Usually this is accounted for by
approximating the exact Wigner distribution with the closest
purely positive function.

The experimental setup that was used to implement the
TWA is the nonlinear waveguide lattice [21]. The dynamics of
light in these systems has been shown to be well described by

H = −J
∑

〈l,m〉
�∗

l �m + γ
∑

m

|�m|4, (2)

which is just the classical version of Eq. (1). Here �i describes
the amplitude of the light field at site i. We approximate
the actual Wigner distribution with two coherent states, each
initially placed on single lattice sites. In each realization, the
phase between the two states was random (to account for a
different position on the Wigner distribution). When averaged
over all the phases this reproduces the best approximation to
the actual Wigner distribution.

In the experiments we have used two laser beams (that
act as our two coherent states), each initially injected into a
single waveguide in the lattice. In each realization, the phase
between the two lasers was randomized (to account for a
different position on the Wigner distribution). We propagated
the two beams through the waveguide lattice, measured the
intensity-intensity correlation function, and averaged over all
the results. The only approximation we make is that we ignore
the cases in which the Wigner distribution is negative.

Indeed, in the experiments described below, we find that
in the limit of weak interactions the measured classical
correlations for nonlinear waves are similar to the predicted
quantum correlations.
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FIG. 4. (Color online) Experimental measurements of the fluc-
tuation in intensity correlations for nonlinear thermal light. (a) The
fluctuations in the intensity correlations in the linear case, when two
thermal beams are injected into two adjacent sites, corresponding to
|ψinitial〉 = a

†
1a

†
0|0〉. The results show spatial bunching [10]. (b) The

predictions of the quantum theory for two noninteracting particles
initially placed at the same locations. (c) Experimental results for
nonlinear thermal waves. (d) The predictions of the quantum theory
for two interacting particles. Note the similarity between the classical
results and the quantum prediction in both cases. Positions are given
in lattice sites.

In Fig. 4 we present experimental measurements of in-
tensity correlations obtained with |ψinitial〉 = a

†
1a

†
0|0〉. Nu-

merical results are presented in Fig. 5. In all figures we
compare the correlation fluctuations �F

q,r (t) = 〈a†
qa

†
r araq〉 −

1
2 〈a†

qaq〉 · 〈a†
r ar〉 = �q,r − 1

2nq · nr , which are a better basis
for comparison between the quantum and classical (thermal)
case. As the results show, for weak interactions the classical
correlations follow the quantum predictions [see Figs. 4 and
5(a)–5(d)]. However, as interactions become stronger, the
two systems diverge—while the quantum system exhibits a
switch to fermionlike correlations, the classical system cannot
follow, and remains with modified, localized correlations, as
in Figs. 5(e)–5(h).

Proposed cold-atom experiment. Experimentally, the strong
interaction limit of the effects discussed above can be ob-
served using techniques that recently became available. The
experimental requirements include the ability to (i) initially
localize exactly two quantum particles at two predetermined
lattice sites, (ii) to allow these particles to freely tunnel and
exhibit a QW, (iii) to control the interaction strength (or
the interaction-to-tunneling ratio), and (iv) to image single
particles in the lattice sites after some evolution time. An
example of a system that can accommodate such experiments
was recently presented in Ref. [9]. In this system, the authors
placed single atoms at selected sites and allowed them to
tunnel, exhibiting, on the ensemble average, the dynamics
of continuous-time QWs [1,5]. Using a similar approach, we
propose starting with an ensemble of two (and in principle N)
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FIG. 5. (Color online) Simulations comparing the fluctuations
for the quantum (top panel) and the classical (bottom) cases, with
increasing |U | or nonlinear coefficient |γ |, correspondingly, for
|ψinitial〉 = a

†
1a

†
0|0〉. The two sets of results look similar for weak

interactions (a)–(d). However, beyond |U | = 1.5 (e)–(h) the two
results diverge—the quantum correlations transform to fermioniclike
correlations, while the classical correlations become increasingly
localized. In all cases the positions are given in lattice sites.

atoms separated by several sites. The density after time T can
be measured in the same manner as in Ref. [9], and the two
(or N) particle correlations can be directly assessed from the
raw data. An important aspect will be the ability to control
interactions, for example, via tuning a Feshbach resonance, or
controlling the ratio U/J . For the two-particle case and at zero
interactions, the results should correspond to those presented
in Ref. [10] and observed in Ref. [11] using photon pairs.
However, when interactions will be introduced we predict the
results presented above: If the particles are placed one on top
of each other, they will tunnel as a pair [15], and the density
will become localized. If they are placed at different, not too
distant sites, the density will show only minor changes as a
function of U , but the two-particle correlation will change
significantly, reaching a fermionlike correlation at the limit of
strong interactions. In the same spirit, this system can be used
to directly measure the dynamic properties and correlations for
large numbers of particles, a problem which quickly becomes
impossible to compute.

Conclusions. The approach presented here offers a path
to study highly correlated quantum systems by considering
the dynamical behavior of an increasing number of particles,
each initially confined to a single site. Such dynamics can
be experimentally explored in systems such as described in
Ref. [9]. As the number of particles increases, the problem
will become uncomputable, but experimentally accessible. It
would be of special interest to study these effects in disordered
potentials.
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