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Critical rotation of an annular superfluid Bose-Einstein condensate
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We analyze the excitation spectrum of a superfluid Bose-Einstein condensate rotating in a ring trap. We identify
two important branches of the spectrum related to outer and inner edge surface modes that lead to the instability
of the superfluid. Depending on the initial circulation of the annular condensate, either the outer or the inner
modes become first unstable. This instability is crucially related to the superfluid nature of the rotating gas. In
particular, we point out the existence of a maximal circulation above which the superflow decays spontaneously,
which cannot be explained by invoking the average speed of sound.
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After the pioneering work on persistent flow in helium
[1], recent experimental success at producing circulating
superfluid flow of Bose gases in annular traps [2–4] has focused
interest on the issue of dissipation of this macroscopic quantum
state. In a superfluid this question is crucially related to the
existence of a critical velocity vc above which excitations are
generated. The critical velocity is determined by the Landau
criterion [5]. Dissipation occurs for a fluid velocity larger
than vc. Symmetrically a defect moving above vc generates
excitations in a superfluid at rest. This has been evidenced
experimentally in trapped Bose gases [6].

In a homogeneous weakly interacting Bose gas vc is equal
to the speed of sound [7]. This is no longer true if the system
is inhomogeneous. For example, in an infinite cylindrically
symmetric tube with transverse harmonic confinement, the
critical velocity is lower than the speed of sound [8]. In such a
geometry, the first modes excited at the critical velocity have
been shown to be surface modes [9] propagating along the
tube and localized symmetrically all around the edge of the
cylinder.

In order to study superfluidity experimentally, it is natural
to bind this system and investigate the stability of a persistent
flow in a ring geometry. A crucial difference between a tube
and a ring is the presence of a centrifugal force arising from
the non-Galilean nature of rotation. Moreover, the curvature
of the annulus makes the inner and the outer surfaces of the
fluid no longer equivalent [10] (see Fig. 1).

The ring geometry has recently attracted a lot of inter-
est. Many annular traps have been proposed [11–13] and
realized [2–4,14,15]. Studies of the superfluidity include the
observation of a persistent current [2], the effect of a weak link
[3,16,17], and the observation of a stepwise dissipation of the
circulation [4]. The ground state of the system in the presence
of rotation has been determined theoretically [18–20]. Phase
fluctuations in a ring trap have also been investigated [21].
However, the determination of the critical angular velocity in
a ring is still an open question and is highly relevant to recent
experiments [3,4,15].

In this Rapid Communication we determine the critical
angular velocity in the sense of the Landau criterion for a Bose
gas trapped in a ring. We compute the Bogoliubov excitation
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spectrum both for an initially nonrotating gas in the ground
state, and for an initially circulating stationary state. We show
that the critical velocity is governed by surface modes, like in
the case of an infinite tube. However, we find that there are
now two distinct nondegenerate families of surface excitations
propagating either at the inner or at the outer edge. The lowest
of these two branches gives the critical angular velocity. Our
numerical calculations predict the existence of a maximal
circulation, above which the system becomes unstable, any
static perturbation giving rise to dissipation of the flow. We
give a simple interpretation of all these features by extending
the surface mode model [9] to the ring geometry. Our model
is in good agreement with the numerical calculations even for
an initially circulating state.

We consider a condensate confined in a ring-shaped trap
(see Fig. 1) described by the Gross-Pitaevskii equation at zero
temperature. For simplicity, we reduce the problem to two
dimensions in the plane of the ring. The two-dimensional (2D)
ring still allows one to identify the inner and outer edges and
evidence their respective roles. The trapping annular potential
is written as a harmonic potential of frequency ωr centered at
a radius ρ0. In the following, we use the associated scales for
energy (h̄ωr ), time (ω−1

r ), and length ar = √
h̄/(Mωr ), where

M is the atomic mass. The 2D Gross-Pitaevskii equation reads

i∂tψ =
(

−�

2
+ 1

2
(r − r0)2 + g|ψ |2

)
ψ, (1)

where ψ = ψ(r,θ,t) is normalized to unity, � = ∂2
r + ∂r/r +

∂2
θ /r2 is the Laplacian in polar coordinates (r,θ ), r0 = ρ0/ar

r0

Ω

2R

FIG. 1. (Color online) Sketch of the system: A Bose gas flowing
with a circulation � (dashed line) and a Thomas-Fermi width 2R

is held in a ring trap of radius r0. A defect rotating counterflow at
angular velocity 	 above the critical velocity will induce dissipation.
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FIG. 2. (Color online) Excitation spectrum obtained from Eq. (1)
(see text for details), with � = 0, r0 = 12, and g = 9000. Only the
lowest eleven branches are shown. The solid lines are a guide to
the eye to distinguish between the different branches. A symmetric
spectrum also exists for negative values of m. Solid lines: relation
dispersion in the surface mode model for the inner (upper blue line)
and outer (lower red line) modes.

is the dimensionless ring radius, and g is the dimensionless
interaction constant in two dimensions [22].

Using the rotational invariance of Eq. (1), we consider
solutions of the form

ψ(r,θ,t) = e−i(μt−�θ)[ψ�(r) + δψ�
m(r,θ,t)

]
, (2)

where

δψ�
m(r,θ,t) = u�

m(r)e−i(ωt−mθ) + v�
m(r)∗ei(ω∗t−mθ). (3)

The stationary solution ψ�(r) is a state of circulation � and
chemical potential μ, which depends on �, and δψ�

m is a
small perturbation, parametrized by � and m. ψ�(r) is not
necessarily the ground state of the system but can be realized
experimentally using phase imprinting [3,4]. We label as
R = √

2μ the half width of the radial density distribution in
the Thomas-Fermi approximation.

Linearizing Eq. (1), we solve the Bogoliubov–de Gennes
equations for u�

m(r) and v�
m(r) [23]. We get real frequencies

with a dispersion relation ω = ω�(m) for each initial circula-
tion �. The lowest branch of the spectrum allows us to compute
the critical angular velocity 	c(�) = minm[ω�(m)/|m|] for a
given circulation �.

Figure 2 shows a typical spectrum obtained from Eq. (1) for
a non-circulating initial state (� = 0). At small m values, the
lowest branch is linear, ω0(m) = m	s , and can be associated
to rotating soundlike waves with angular velocity 	s . At larger
m values, this branch exhibits a small negative curvature that
makes the critical angular velocity smaller than the angular
speed of sound [	c(0) < 	s]. This is not surprising as it is
already the case in a linear geometry for an inhomogeneous
gas [8,24]. As m increases, the radial profile of the associated
density perturbation δρ0

m(r) of the lowest energy mode, where
δρ�

m(r) = 2 Re[ψ�(r)∗(u�
m(r) + v�

m(r)∗)], is more and more
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FIG. 3. (Color online) Inverse of the critical angular velocity as
a function of the ring radius r0, at fixed chemical potential [25], as
obtained from the full numerical calculation (dots). Inset: critical
angular velocity as a function of μ for r0 = 40. In both graphs, the
solid line is the model of Eq. (4) with re = r0 + R.

localized on the outer radius [see Fig. 4(b)]. We thus
expect that the mode corresponding to the critical angular
velocity will be correctly described by a surface mode
model.

Following the approach of Ref. [9], we find the critical
velocity for a family of modes lying on the edge of a conden-
sate. Locally, the surface can be considered as a plane, and a
surface excitation with wave vector k parallel to this plane gives
a critical linear velocity vc � √

2μ1/6 in our dimensionless
units, for the critical wave vector kc � 0.89 × √

2μ1/6 [9].
In our ring-shaped geometry we identify the critical angular
velocity as 	c = vc/re, where re is the radius at which the
excitation is localized. Within the surface mode model, the
critical angular velocity is then

	c =
√

2μ1/6

re

(4)

and corresponds to a critical excitation mc = kcre, where
re � r0 + R (respectively, r0 − R) for an excitation lying on
the outer (respectively, inner) edge of the condensate. The
dispersion relations of the inner and outer edge surface modes
are plotted as solid lines in Fig. 2. For an initial state � = 0,
the inner mode belongs to a higher branch and thus does not
determine the critical velocity.

Figure 3 shows a comparison of the full numerical calcu-
lation of the critical velocity with the surface mode model.
The model of Eq. (4) is in good agreement with the numerical
calculation and can thus be used to get an estimation of the
critical velocity. We note that the agreement with the numerical
calculation is better for larger μ, as shown in the inset of Fig. 3,
since the excitation is sufficiently localized on the surface [9].

We now turn to the more complex situation of an initial
state with given circulation �, as obtained experimentally in
recent experiments [3,4]. Figure 4(a) shows the lower branch
of the excitation spectrum for initial states with increasing
circulation. As expected, for � > 0, the spectrum becomes
asymmetric, excitations with m < 0 propagating against the
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FIG. 4. (Color online) (a) Lower branch of the excitation spec-
trum for m < 0, r0 = 12, g = 9000, and initial states with increasing
circulation, � = 0,6,11,12,13,15. Inset: full spectrum for � = 11
(black solid line) and surface mode model relation dispersion for
outer mode (red dashed line) or inner mode (blue dotted line).
(b) Radial density profiles of the condensate (black solid line),
soundlike mode (� = 0, m = −1, green dash-dotted line, scaled ×3
for clarity), inner edge surface mode (� = 15, m = −14, blue dotted
line), and outer edge surface mode (� = 0, m = −34, red dashed line).
(c),(d) Corresponding plot of the atomic density with a population
of 10% in the inner mode (c) and the outer mode (d). The size of
both images is 40 × 40 in units of ar . At the periphery of the gas, 14
vortices appear in (c) and 34 antivortices appear in (d).

superflow having lower energies than those with m > 0 [see
Fig. 4(a), inset]. One striking feature of this spectrum is that
for a sufficiently large �, the critical velocity is associated with
a branch that crosses the outer edge surface mode branch. The
radial profile δρm

� (r) shows that these modes are located at
the inner edge of the ring [see Fig. 4(b)]. Hence, depending
on the initial circulation, the most probable mechanism for
dissipation implies either outer or inner modes. Interestingly,
the phase profile of the perturbation displays antivortex
patterns on the outer edge for outer modes and vortex patterns
on the inner edge for inner modes. This supports the idea that
these modes are precursors of (anti)vortex nucleation. The
total density |ψ |2 with a fraction of 10% in the excited mode

is displayed in Fig. 4(c) for the inner mode, and Fig. 4(d)
for the outer mode. In both cases, vortices (antivortices) are
located on the inner (outer) edge of the gas where the density
vanishes.

This result can be understood by extending the surface
mode model to an initial state with circulation. It is important
to remark that due to the superfluid nature of the condensate
flow, the local velocity at the inner edge is larger than the
one at the outer edge. In the frame corotating with one of
these edges, where the condensate surface is at rest, the result of
the surface mode model still holds. In the laboratory frame, the
critical angular velocity is then shifted by the angular velocity
of the corotating frame: 	r = �/r2

e , which depends on the
edge considered, and may be written

	c(�) =
√

2μ1/6

re

− �

r2
e

. (5)

The result of Eq. (5) is the sum of two contributions: the first
one arises from the surface mode model, whereas the second
one is due to the superfluid rotation of the condensate itself.
These two terms depend with different power laws on the
excited mode radius re and this feature explains the transition
between inner and outer edge surface excitations observed in
Fig. 4(a) (see inset).

Figure 5 shows the critical angular velocity as a function of
the initial state circulation �. The curves exhibit a piecewise lin-
ear dependence on the circulation. The two slopes correspond,
respectively, to modes lying on the outer or inner edge. The
critical angular velocity and these slopes are compared to the
surface mode model. The agreement is good except for small
radii where the centrifugal term 1/r in the Laplacian plays
an important role, especially in the case of the inner mode. At
large values of r0 the difference between inner and outer modes
becomes less pronounced as the system resembles more and
more an infinite tube, where these modes are degenerate.
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FIG. 5. (Color online) Critical angular velocity versus initial state
circulation, as obtained from the numerical solution (dots), for r0 =
20 and g = 15 000. Inset: slope of the critical velocity for inner (blue
squares) and outer (red dots) modes versus the ring radius, at fixed
chemical potential [25]. For both graphs, the lines are the predictions
of Eq. (5), for re = r0 + R (solid line) and re = r0 − R (dashed line).
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To interpret the data we define two thresholds. The first
threshold �1 = μ1/6(r2

0 − R2)/(
√

2r0) is obtained when Eq. (5)
gives the same value for re = r0 ± R. It corresponds to
the frontier between the domains where either the inner or
the outer modes govern dissipation. We find that above a
second threshold �2 = √

2μ1/6(r0 − R), for which the critical
angular velocity vanishes, the system is unstable, in the sense
that the computed spectra contain negative energies. Any
static perturbation of the system thus triggers dissipation and
circulation becomes highly unstable. It is important to point
out that the value of �2 is related to the velocity of the surface
mode, not to the speed of sound.

From a practical point of view, this sets an upper limit on
the circulation that can be imprinted for a given ring radius
and chemical potential. Therefore, even if the ring geometry is
adapted to study the persistent flow of a superfluid, it can bear
only a limited amount of circulation.

Within this model we can make predictions for the super-
flow stability in recent experiments. In the presence of static
defects, the superflow will be unstable for � > �2. We compute
this maximum allowed circulation for a stable flow with the
experimental parameters of Ref. [3], namely, r0 = 10 and
μ = 10.9, and find �2 � 11. We may wonder if our 2D model
applies to three-dimensional (3D) experiments. The surface
mode model depends only on the force at the surface [9]. For
a harmonically trapped BEC, this force is fully determined
by the Thomas-Fermi radius and the oscillation frequency.
A 2D model is thus expected to compare well to a 3D
experiment with the same Thomas-Fermi radius (or chemical
potential).

Our results enlighten the recent work of Ref. [16] where a
dynamical simulation of a circulating annular Bose-Einstein
condensate in the presence of a static weak link shows a
dissipation mechanism based on two critical barrier heights,
associated to a vortex-antivortex annihilation. Our work shows
that indeed a static defect can induce dissipation by first
coupling to an inner edge surface mode, allowing a vortex
to nucleate, as shown in Fig. 4(c). The excitation of the outer

edge surface mode, implying antivortices located all around
the outer edge [see Fig. 4(d)], requires a stronger excitation.

In conclusion we have computed the Bogoliubov spectrum
of circulating annular Bose gases and obtained analytical
expressions for the critical angular velocity based on a surface
mode model. We have pointed out the role of inner and outer
modes in the determination of the critical angular velocity.
We have discussed the implications of these results to explain
the dissipation of a persistent flow and have shown that the
circulation is unstable above a given threshold. In fact, the
Landau argument [5] is quite subtle in a ring geometry. Indeed,
as shown in this paper, we find different results for the motion
of a defect in a superfluid at rest or for a circulating superfluid
flowing through a static defect. In the former case outer edge
surface modes are always excited first, while in the latter case
the inner edge surface modes dominate. This suggests that
in an annular geometry the notion of local speed of sound,
associated with modes centered at the peak density, is not the
most relevant to discuss superfluidity.

Further work will include a numerical study of the dynamics
of an annular Bose gas in the presence of static and rotating
defects to further investigate the critical velocity. In particular,
we expect that engineering the shape of a perturbation may
help to selectively excite only the critical mode and thus more
precisely control the system. An interesting point would be to
examine the possibility of inducing a circulation by selectively
exciting this mode. Symmetrically, while it is clear from our
results that dissipation of a flow with an initial circulation
� > �2 first occurs through the appearance of vortices at
the inner edge, the subsequent evolution is an interesting
open question which will require the simulation of the full
dynamics.
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