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Probabilistic cloning of coherent states without a phase reference
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We present a probabilistic cloning scheme operating independently of any phase reference. The scheme is based
solely on a phase-randomized displacement and photon counting, omitting the need for nonclassical resources and
nonlinear materials. In an experimental implementation, we employ the scheme to clone coherent states from a
phase covariant alphabet and demonstrate that the cloner is capable of outperforming the hitherto best-performing
deterministic scheme. An analysis of the covariances between the output states shows that uncorrelated clones
can be approached asymptotically. This simultaneously demonstrates how the effect of loss on coherent states
can be compensated via noiseless preamplification.
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In classical physics there are no fundamental limits to the
performance of an amplifier or to the accuracy of copying a
state of the system. The reason is that measurements can, in
principle, gain complete knowledge about the classical state,
from which it is possible to generate arbitrarily many copies
or a perfectly amplified version of the initial state. In general,
this does not hold true in the quantum regime, since the laws
of quantum mechanics forbid us to gain complete information
about all aspects of reality on a single copy of a quantum
state. This is widely known as the no-cloning theorem [1].
However, the no-cloning theorem does not prevent the creation
of imperfect copies of a state [2]. These can, for instance, be
obtained by amplification and subsequent splitting [3]. This
situation also emerges naturally when an amplifier is used
prior to a lossy channel to compensate for energy loss. In this
scenario, one of the clones is lost to the environment [4], while
the other clone is preserved.

In general, the amplification of an unknown coherent state
|α〉 is accompanied by the addition of excess noise [5–7].
This noise is responsible for the fundamental bound for
deterministic cloning, where the average fidelity of clones is
limited to F � 2

3 . Nevertheless, the excess noise of amplifiers
can be drastically reduced by relaxing the constraint of
deterministic operation. An ideal amplify-split cloner for
coherent states is described by the two-step transformation
|α〉 |0〉 → |√2α〉 |0〉 → |α〉 |α〉. In the probabilistic regime,
the amplification can for small amplitudes |α| be achieved
with high accuracy as proposed in Refs. [8–11] and ex-
perimentally shown in Refs. [12–15]. Yet these approaches
require perfect photon number detectors, single-photon an-
cillary states. and/or high-order nonlinear interactions, thus
rendering the physical implementation challenging. Moreover,
these approaches rely on additional key ingredients such as
interferometric stability, perfect coincidences of single-photon
operations, or a phase reference. The physical meaning and
necessity of such a phase reference was discussed in an
extensive debate [16–21]. It has not been clarified what kind
of quantum operations can be realized independently of any
of these ingredients.

In this Rapid Communication, we demonstrate a phase
covariant cloning scheme capable of probabilistically gen-
erating ideal clones of coherent states, without the above-
mentioned resources. We experimentally show that the cloner
outperforms the bound set by the hitherto best-performing
deterministic scheme [22] which is based on an optimal
phase measurement. The cloner is of the amplify-split type
and consists of solely elementary linear optical elements
and a photon number resolving detector. The amplification
is achieved probabilistically by first applying an optimally
tailored displacement to the input state and subsequently
heralding the output depending on the result of a photon
number threshold measurement on a part of the displaced state.
The probabilistic amplifier may be used as a preamplifier prior
to a lossy channel. In contrast to classical amplifiers, the loss
is then compensated without introducing correlations to the
environment.

Our cloning strategy consists of three steps: displacement,
heralding measurement, and splitting, as sketched in Fig. 1(a).
First, the input state is randomly displaced in phase space
[D̂(�)] according to a phase-independent probability distribu-
tion �. This is followed by probabilistic subtraction of photons
via a photon number resolving detector (PNRD). Successful
amplification is heralded whenever the detected number of
photons surpasses a certain threshold value M . This strategy
makes use of the classical correlations among the detected
number of photons and the state’s amplitude arising from the
phase-randomized displacement [15]. The threshold parameter
M offers the possibility to tune the trade-off between output
fidelity and success rate: Increasing M will result in increased
fidelity, however, at the expense of a lower success rate. In
the final step the amplified state is split symmetrically to
obtain the two copies of the input state. In contrast to other
cloning protocols [22,23], our scheme disregards the phase
information, as neither an external phase reference, which
could be sent along with the quantum states, nor an internal
phase reference, e.g., a bright local oscillator, is provided. We
merely need the definition of the input state’s mode. A detailed
demonstration of the cloner’s phase-insensitive performance
can be found in the Supplemental Material [24].
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CHRISTIAN R. MÜLLER et al. PHYSICAL REVIEW A 86, 010305(R) (2012)

X

P

|

1

XX

PP
P

X

2
P

X

�R 1

M

1

2

D(  )

PNRD

SplitGate

D

(a)

(b)

FIG. 1. (Color online) (a) Schematic of the cloning scheme. Two
identical clones ρ̂1,2 are created by probabilistic amplification and
subsequent symmetric splitting. (b) Evolution of a coherent state in
phase space during the cloning process.

The phase-insensitive annihilation â and creation â† op-
erators constitute the fundamental building blocks of any
quantum operation [25]. A specific class of operations that
can be realized without a phase reference is described as
ρ̂ → ∑

n Ânρ̂Â
†
n, where the operators Ân are proportional to

an arbitrary product of â and â†. An elementary probabilistic
amplification can be achieved without a phase reference
for Ân = âmâ†m δmn [10], which amounts to adding and
subtracting a specific number of photons m. However, a perfect
coincidence between the additions and the subtractions is
required for this operation. This constitutes a requirement
in the particle picture, which is similar to providing a phase
reference in the wave picture. In our scheme, this constraint
is dropped by replacing the single-photon addition by the
phase-randomized displacement.

In the following, we discuss the phase covariant cloner for
an alphabet with a fixed amplitude and continuous phase. In
Ref. [22], it has been shown that for such alphabets fidelities
of at least F ≈ 0.85 can be achieved deterministically, where
the prerequisites are unit detection efficiencies, optimal phase
measurements, and feed forward. An optimal scheme is not
known, but this scheme is to the best of our knowledge
the hitherto best-performing deterministic approach. We have
specifically tailored the optimal displacement for the cloning
of this alphabet. Due to the phase covariance of the alphabet,
the task to find the optimal displacement distribution is
essentially a one-dimensional problem and we only need to
optimize the radial distribution of the displacement. Since
the fidelity is linear in the density matrix, the optimal
displacement distribution reduces to a fixed amplitude and
a random phase. A detailed proof of the optimality of the
displacement distribution can be found in the Supplemental
Material [24]. Insight into the cloning procedure can be gained
by considering a weak coherent state |α〉 ∝ |0〉 + α|1〉, with
|α| � 1. The state after the phase-randomized displacement
can be expressed as

ρ̂ ∝ 1

2π

∫ 2π

0
D̂(|α|eiφx)|α〉〈α|D̂†(|α|eiφx)dφ, (1)

where x is the ratio between the amplitude of the displacement
and the original state’s amplitude. Subtracting a single photon
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FIG. 2. (Color online) Experimental realization of the cloning
scheme.

transforms this state to

ρ̂a ∝ |α|2[|0〉〈0| + x2(|0〉 + 2α|1〉)(〈0| + 2α∗〈1|)], (2)

which is a mixture of the vacuum state and the original state
approximately amplified with an amplitude gain of two (i.e.,
four times the original power). A detailed derivation of Eq. (2)
can be found in the Supplemental Material [24]. From this
state, four clones looking as

ρ̂clone ∝ |α|2[|0〉〈0| + x2|α〉〈α|] (3)

can be generated, and if the parameters are chosen such that
|α|2 � |xα|2 � 1, perfect clones are obtained. However, the
usability of the cloner is by no means limited only to the
extreme values required by the approximation; with the proper
choice of x and a multiphoton subtraction, we can achieve a
respectable range of gains even for |α| ≈ 1. Interestingly, for a
fixed gain, the required value of x is quasiconstant for several
numbers of subtracted photons, which allows for a delayed
choice of M and the trade-off between the success rate and the
fidelity of the clones.

The experimental setup is sketched in Fig. 2. Our source is
a grating-stabilized cw diode laser at 809 nm with a linewidth
of 1 MHz. After passing a fiber mode cleaner, the beam is
asymmetrically split into two parts, an auxiliary beam for
the signal preparation and a local oscillator (LO) used only
in the verification stage. The signal states are generated in
time windows of 800 ns at a repetition rate of 100 kHz. A
combination of two electro-optical modulators (EOMs) and
a half-wave plate (HWP) is used to generate and randomly
displace a coherent state by transferring photons from the
polarization mode of the auxiliary beam to the orthogonal
signal polarization mode. A small portion (≈17%) of the
state is tapped off via an asymmetric beam splitter and sent
to an avalanche photodiode (APD) operated in an actively
gated mode. The dead time (50 ns) is much shorter than the
pulse duration, allowing to employ the APD as a PNRD [26].
The heralded and effectively amplified state is finally split
on a symmetric beam splitter to obtain the two clones. To
quantify the fidelity between the input state and the clones, we
perform full tomographies of both outputs. For this purpose,
the amplified state is spatially mode matched with the LO
on a polarizing beam splitter (PBS) but before the state is
split into the clones. Up to this stage signal and LO are
still residing in orthogonal polarization modes. The outputs
of the beam splitter are directed to balanced homodyne
detectors embedded in a Stokes measurement setup [27]. The
combination of a HWP and a quarter-wave plate (QWP) allows
for the adjustment of the relative phase between the clone
and the LO and therefore for simultaneous measurements of
arbitrary quadratures at each output. To enable tomography,
the LO’s phase is varied harmonically via a piezoelectric
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transducer to provide quadrature measurements of all phase
angles. An accurate inference of the measured quadrature
is provided by bright phase calibration pulses that are sent
in between the signal states. The homodyne data and the
number of detected photons are acquired simultaneously by a
computer. Finally, we reconstruct the clones’ density matrices
employing a maximum likelihood algorithm [28,29]. The
homodyne detectors are only implemented to determine the
performance of the scheme. In order to reconstruct the density
matrix—unaffected by any imperfection of the verifying
detection system—we assume unit quantum efficiency for the
homodyne detectors and determine the performance not using
the actual input amplitude but the following inferred value
using ηHD1,2 = 1: |α|2 = |αHD1 |2 + |αHD2 |2 + 1

ηPNRD
|αPNRD|2,

with ηPNRD = 63 ± 3%. |αHD1,2 |2 and |αPNRD|2 correspond to
the actually measured mean photon numbers in the homodyne
detectors and the PNRD, respectively (see the Supplemental
Material for details [24]).

The limited fidelity predicted by the no-cloning theorem is,
in the case of an amplify-split cloner, due to the addition of
excess noise in the amplification step. In our scheme, the excess
noise is a remainder of the random displacement. This noise
leads to classical correlations among the two clones which
can be characterized by measuring the two-mode covariance
matrix. Deterministic Gaussian strategies, for instance, add
one unit of vacuum noise to the clones, resulting in a
uniform covariance of 0.5. Probabilistic strategies are capable
of generating ideal clones, having a vanishing covariance,
asymptotically. However, in a realistic implementation a
certain amount of excess noise is unavoidable.

We measure the covariances for various threshold param-
eters and compare the results to the theoretical predictions.
The results for a coherent state with amplitude |α| = 1.36
excited along the X quadrature are presented in Fig. 3. In
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FIG. 3. (Color online) Covariance matrix elements for the clones
of a coherent state with initial amplitude α = 1.36 for the randomly
displaced state (M = 0) and threshold parameters from one to five
photon subtractions. The displacement parameter was chosen for all
M to be x = 0.5.

the experiment, we lock the LO’s phase via a feedback loop
and adjust the HWP and QWP at the detector stages to
measure four different configurations to attain the in-phase
terms Cov(X1,X2), Cov(P1,P2) as well as the out-of-phase
terms Cov(X1,P2), Cov(P1,X2). The symmetric copies exit
the cloner with identical phases, such that no out-of phase
correlations are expected from the theory. This is confirmed by
the experiment, apart from statistical fluctuations, which can
become more pronounced with increasing threshold parame-
ters and decreasing success rate. Without heralding (M = 0),
the outputs have equal in-phase covariances. Heralding purifies
the mixture by adding a bias to the high-amplitude parts
of the mixture. Consequently, both in-phase covariances
decrease with rising threshold. We find that the covariance
along the direction of the state’s excitation in phase space (for
the state considered here: the X quadrature) Cov(X1,X2) de-
creases faster than for the orthogonal quadrature Cov(P1,P2).
In a simplified picture, the heralding process cuts off the
low-amplitude part of the displaced state, leaving only a
segment of the initial ring-shaped displacement, which mainly
spreads in the direction orthogonal to the excitation of the
input state [see Fig. 1(b)]. We also find this behavior in
the full theoretical model, which is in good agreement with
the results.

The primary figure of merit for a cloning device is the fi-
delity. We measure the average fidelity F = 1

2 〈α|(ρ1 + ρ2)|α〉
of both clones, to avoid a bias stemming from a possible
imbalance of the two outputs. The results for amplitudes in
the range of |α| ∈ [0.4,2.1] and threshold parameters of up
to five photons are shown in Fig. 4 and are compared to
our theoretical model for the implementation with realistic
parameters. Additionally, the fidelities achievable with the
deterministic scheme from Ref. [22] serve as a threshold.
For amplitudes of up to |α| ≈ 1.4 the performance of our
probabilistic cloner is comparable to the deterministic scheme
at a heralding threshold of M = 2 and is superior for M =
3 and above. At higher amplitudes, the fidelities of the
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FIG. 4. (Color online) Experimental cloning fidelities and success
rates for various input amplitudes and different threshold parameters.
The fidelity is maximized in each point over a suitable set of
displacement parameters x.
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FIG. 5. (Color online) Contour plots of the reconstructed Wigner
functions of a single clone for the nonheralded displaced state
and for heralding thresholds of up to five detected photons. The
coherent input state with |α| = 1.93 is indicated by the white contour
line, corresponding to the height at the standard deviation. The
displacement parameter for all M is x ≈ 0.52.

deterministic scheme can be surpassed using higher heralding
thresholds. We find that the highest fidelities are achieved at
effective amplitude gains slightly below unity, where the deficit
in amplitude is overcompensated by the reduced residual
displacement noise. The error bars represent the statistical
fluctuations over repeated realizations of the experiment. The
measurements were conducted over a period of several weeks,
in which variations of up to ±2% from the average tapping
ratio (17%) occurred due to drifts in the setup.

The success probabilities corresponding to the measure-
ments of the presented fidelities are also shown in Fig. 4 and
compared to the theoretical predictions. A higher threshold
parameter and hence an increased fidelity comes at the price
of a lower rate of success. However, with rising amplitude
the probability to detect a certain number of photons also

increases. An example for the experimentally generated clones
according to different heralding thresholds is presented as
reconstructed Wigner functions in Fig. 5 for an input state with
|α| = 1.93. In this representation the heralding-induced tran-
sition from the randomly displaced state (M = 0) to a heralded
high-fidelity clone (M = 5) can clearly be seen. The analysis
of a single clone reveals the effect of probabilistic preamplifi-
cation prior to a 3-dB lossy channel for coherent states. This
form of loss compensation, similar in philosophy to Ref. [30],
can completely suppress the loss-induced decoherence on a
coherent state. In the deterministic regime, the amplification
process is necessarily noise afflicted. In the amplification of
coherent states this means that classical correlations arise as
a consequence of the splitting of the wave. This situation is
different from the splitting of a single-photon state, which
results in strong particlelike anticorrelation among the output
fields [31]. Interestingly, the probabilistic preamplification of
coherent states will in principle not introduce any correlations
to the environment.

In conclusion, we have proposed and experimentally real-
ized a cloner based on a probabilistic amplifier with minimal
resources. In doing so, we have shown that quantum cloning
without phase resources is feasible. In good agreement with the
theory, we were able to generate high-fidelity clones, beating
the hitherto best-performing deterministic approach. We dis-
cussed that our scheme allows for a delayed choice between the
fidelity and the success rate. Furthermore, the clones exhibit
reduced correlations, pointing towards the noiseless nature of
the amplification step, which is important if the amplifier is
used for loss compensation. After completing our experiment,
another form of loss compensation was tested experimentally
for very nonclassical particlelike states in Ref. [32].
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