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We show that a quantum clock can not be teleported without prior synchronization between sender and
receiver: every protocol using a finite amount of entanglement and an arbitrary number of rounds of classical
communication will necessarily introduce an error in the teleported state of the clock. Nevertheless, we show that
entanglement can be used to achieve synchronization with precision higher than any classical correlation allows,
and we give the optimized strategy for this task. The same results hold also for arbitrary continuous quantum
reference frames, which encode general unspeakable information, information that can not be encoded into a
number, but instead requires a specific physical support, such as a clock or a gyroscope, to be conveyed.
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Speakable information (SI) refers to those messages, such
as the content of this paper, for which the means of encoding
is not important and which can be represented as a string of
bits. On the contrary, unspeakable information (UI) refers to
those messages, such as the specification of a direction in
space or a time reference, which require a specific physical
system to be transferred [1–3]. UI can be mapped into SI
in the presence of a shared reference frame (RF): e.g., the
sender of the message (Alice) can specify a direction in space
by transferring to the receiver (Bob) a set of coordinates with
respect to their shared Cartesian frame. In quantum mechanics,
the difference between SI and UI can be highlighted as follows:
Consider a quantum system S, the preparation of which is
described by Alice as the quantum state |ψ〉 = ∑

n αn|n〉,
where {|n〉}dn=1 is Alice’s canonical basis. Assuming that Alice
knows the expansion coefficients {αn}dn=1, we can identify
those quantities as the SI content of the state (this is her
“description” of the system and she can transfer it to Bob
by simply exchanging bits), whereas we can identify Alice’s
basis {|n〉}dn=1 with the UI content of |ψ〉. To transfer |ψ〉,
Alice needs either to send the system itself, or to make sure
that she shares with Bob the same canonical basis, which plays
the role of the shared RF. If Alice has no information on |ψ〉,
but she shares entanglement with Bob, she may use quantum
teleportation [4] to transfer the state to him by only sending
bits. Does this imply that shared entanglement can compensate
for the absence of a shared RF?

In this Rapid Communication, we answer the question with
a general no-go theorem: in the absence of a prior shared RF,
UI can not be reliably teleported, the only exception being
RFs associated to finite symmetry groups. For example, in
the lack of common time reference between Alice and Bob, a
teleported clock can not remain synchronized with the sender’s
clock. Previous work [3,5–7] has shown that the lack of a
shared RF can reduce the amount of usable entanglement that
the parties share, or may prevent to establish an isomorphism
between Alice’s and Bob’s Hilbert spaces [8]. However,
this per se does not imply the impossibility of devising
suitable teleportation protocols, e.g., using invariant entangled
states [9]. Our general no-go theorem establishes that these
protocols can transfer only SI, whereas UI teleportation is
impossible.

Even though perfect UI teleportation is impossible, en-
tanglement is still a useful resource even in the absence
of shared RF. In particular, approximate UI teleportation is
possible with vanishing error in the limit of infinite entangled
resources. This can be achieved by two-step protocols where
some entanglement is used to establish an approximate shared
RF, and then one uses ordinary teleportation to transfer UI
in the same way as one would do for SI. In this scenario,
the crucial step is the optimal extraction of a shared RF
from a bipartite state. Nonoptimal protocols to convert prior
entanglement into shared RF were previously proposed in
Refs. [10,11] and analyzed in Ref. [12]. Here, we present the
optimal protocol, which, in contrast to prior protocols, displays
a quantum-metrology enhancement [13]. Our result allows
us to explicitly quantify the usefulness of a pure bipartite
state for clock synchronization, through a family of “measures
of frameness” [14,15] that are monotone under deterministic
local operations and classical communication (LOCC) in the
lack of a shared RF. Differing from other recent works in the
RF literature [16,17], which focus on the single-party scenario,
this result starts the quantification of the resourcefulness of
quantum RFs in the bipartite setting.

I. IMPOSSIBILITY OF UI-TELEPORTATION

We start by considering the case in which Alice and Bob
lack of a common phase reference. This implies that the RFs
of Alice and Bob differ by an unknown (but fixed) element
of the group U(1), corresponding to the phase mismatch ϕ.
Given a generic quantum system S, let us indicate with GS the
generator of the representation of the phase shifts on S (here
GS can be any operator with integer eigenvalues). Define also
|ψA〉 and |ψB〉 to be the states of S associated to the same
SI description produced by Alice and Bob, respectively (i.e.,
states with same expansion coefficients on the eigenvectors of
GS). Due to the lack of a common phase reference between
Alice’s and Bob’s eigenvectors, those two states differ and are
related by the unitary transformation Uϕ = e−iϕGS :

|ψB〉 = Uϕ|ψA〉. (1)

Conversely, denoting by α(A)
n and α(B)

n the expansion co-
efficients of the same state |ψ〉 of S with respect to the
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eigenvectors of GS in Alice’s and Bob’s canonical basis, they
will be related by the transformation α(B)

n = α(A)
n exp[iϕen],

gn ∈ Z being the nth eigenvalue of GS .
Let |ψA

0 〉 be an input state with nontrivial UI content,
that is, a state such that Uϕ|ψA

0 〉 �= |ψA
0 〉, and consider the

state |ψA
θ 〉 := Uθ |ψA

0 〉 where θ is an arbitrary phase shift. The
teleportation of UI is any protocol where Alice transfers |ψA

θ 〉
to Bob using only a prior shared entangled state and classical
communication.

In contrast, the teleportation of SI [9] is any protocol that
produces as output the state |ψB

θ 〉, that is, the state that in Bob’s
RF has the same coefficients of |ψA

θ 〉 in Alice’s. In both cases,
depending on the degrees of freedom involved, establishing
the entangled state for teleportation may or may not require
prior transfer of UI.

We now prove that UI teleportation is impossible for any
finite entangled resource and for arbitrarily many rounds of
classical communication. Some intuition on the impossibility
can be gained by considering the standard teleportation
protocol [4]: here, in order to be able to retrieve Alice’s
state, Bob has to correct the error introduced by Alice’s
Bell measurement. However, if their reference frames differ,
then Bob’s operations will sometimes differ from the required
corrections and thus will not be able to undo the error. Hence,
the standard teleportation protocol can not be used to perfectly
transfer UI. Our no-go theorem extends this impossibility to
arbitrary protocols.

Proof. Define the Hilbert spaces HS for the system to
be teleported, and HA, HB for the entangled state |E〉 ∈
HA ⊗ HB , here expressed in Alice’s description. Adopting
Alice’s description, Bob’s quantum operations B from states
on HB to states on HS will be described as UϕBW†

ϕ , where
Uϕ(ρ) = UϕρU †

ϕ and W†
ϕ(ρ) = W †

ϕρWϕ , Wϕ = e−iϕGB being
the unitary transformation implementing the phase shift ϕ

on HB [see Eq. (1)]. Since teleportation uses only LOCC
resources, it will be described by a separable quantum
channel of the form C = ∑

k Ak ⊗ UϕBkW†
ϕ , where Ak are

the operations performed by Alice (they annihilate states on
HS ⊗ HA), Bk are the operations performed by Bob (they
send states on HB to states on HS), while the index k keeps
track of all the outcomes and of the classical communication
exchanged during the protocol. The condition of perfect UI
teleportation is then∑

k

(Ak ⊗ UϕBkW†
ϕ)

(∣∣ψA
θ

〉〈
ψA

θ

∣∣ ⊗ |E〉〈E|) = ∣∣ψA
θ

〉〈
ψA

θ

∣∣ (2)

for every ϕ and θ . Without loss of generality, we can assume
each Bk to be a covariant quantum operation, satisfying
UϕBkW†

ϕ = Bk for every ϕ [18]. Hence, ϕ disappears from

Eq. (2). Moreover, applying U†
θ on both sides of Eq. (2),

using covariance, and averaging over θ , we obtain |ψA
0 〉〈ψA

0 | =
C(σ ), where

σ :=
∫ 2π

0

dθ

2π
(Uθ ⊗ IA ⊗ W†

θ )
(∣∣ψA

0

〉〈
ψA

0

∣∣ ⊗ |E〉〈E|).
Computing the integral, we then get σ = ∑

l σl ,
where σl := 	l(|ψA

0 〉〈ψA
0 | ⊗ |E〉〈E|)	l and 	l is

the projector on the eigenspace of the operator

G− := GS ⊗ 1A ⊗ 1B − 1S ⊗ 1A ⊗ GB corresponding to the
eigenvalue l. Now, the condition |ψA

0 〉〈ψA
0 | = C(σ ) implies

C(σl) ∝ |ψA
0 〉〈ψA

0 | for every l. Let us denote by Pm

(Qn) the projector on the eigenspace of GS (GB) with
eigenvalue m (n), and by mmax (nmin) the maximum m

(minimum n) such that Pm|ψ (A)
0 〉 �= 0 [(IA ⊗ Qn)|E〉 �= 0].

Defining lmax := mmax − nmin, we then have σlmax =
(Pmmax ⊗ IA ⊗ Qnmin )σ0(Pmmax ⊗ IA ⊗ Qnmin ). This equation
implies that σlmax is invariant under phase shifts on system
HB . As a consequence, also C(σlmax ) must be invariant
under phase shifts: UϕC(σlmax ) = ∑

k(Ak ⊗ UϕBk)(σlmax ) =∑
k(Ak ⊗ BkWϕ)(σlmax ) = C(σlmax ),∀ϕ ∈ [0,2π ]. Since

C(σlmax ) is invariant and C(σlmax ) ∝ |ψA
0 〉〈ψA

0 |, we proved
that |ψA

0 〉〈ψA
0 | must be invariant, in contradiction with the

hypothesis that |ψA
0 〉 has a nontrivial UI content. �

Our no-go theorem differs from previous results [3,5,8,9]
in two important respects: (i) The result is stronger because it
states the impossibility of teleportation even for a restricted
set of states. (ii) The reason why UI teleportation is impossible
is not that the entangled resource is degraded by the lack of a
shared phase reference between Alice and Bob [5,12]: in our
setting, the state |E〉 could be invariant under global changes
of phase, and the no-go theorem would still hold.

Our proof, derived for RF mismatches associated with
transformations U(1), can be immediately generalized to any
continuous compact Lie group G, as any G contains at least one
subgroup that is isomorphic to U(1). In contrast, our derivation
does not apply to the case in which the lack of shared RF is
associated to finite group transformations (e.g., chirality). In
this case, one can always achieve perfect teleportation with
a two-step protocol where a shared RF is established before
using conventional teleportation [4,19]. To do so, Alice and
Bob can use the state |E〉 ∝ ∑

h∈G |h〉|h〉, where {|h〉,h ∈ G}
are orthonormal vectors transforming as Ug|h〉 = |gh〉: if
Alice and Bob measure on this basis, their outcomes will be h

and gh, respectively, and from this information they can infer
the mismatch g.

A remarkable consequence of our no-go theorem is the
impossibility to teleport a quantum clock without prior syn-
chronization. If Alice and Bob are not synchronized, the times
tA and tB each of them attributes to the same event are related
by tB = tA + δt , where δt is the offset between their clocks. A
quantum clock undergoes a periodic evolution Ut = e−itH/h̄,
where H = ∑N

n=0 nE0|n〉〈n| is the Hamiltonian. The state
of the clock at time tA, given by |ψtA−tA0

〉 = UtA−tA0
|ψ〉 :=

Uτ |ψ〉, carries information about the time τ elapsed since
the initial time tA0 when the evolution started. The goal of
clock teleportation is to allow Bob to measure the time tB0
when the beginning of the oscillations took place according
to his time reference. This means that, if the duration of
the protocol is T , Bob’s output state must be |ψτ+T 〉. The
duration T is unknown (otherwise Alice and Bob could easily
synchronize their clocks), and this translates into a lack of
a shared phase reference: Indeed, consider a single-round
protocol, where T is the time elapsed between Alice’s and
Bob’s actions. During that time, the system at Bob’s side will
evolve according to the unitary WT = e−iHBT/h̄, where HB is
the free Hamiltonian. The condition for perfect teleportation is
then

∑
k (Ak ⊗ BkWT )(|ψτ 〉〈ψτ | ⊗ |E〉〈E|) = UT (|ψτ 〉〈ψτ |),

which must hold for every τ and T . Since this equation
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is equivalent to Eq. (2), the impossibility proof for UI
teleportation carries over and teleportation of the quantum
clock is impossible. The above argument immediately extends
to multiround protocols because only the first interval T is
unknown, while the subsequent ones at which Bob applies
successive transformations can be measured by him locally,
and accounted for with his known Hamiltonian; successive
iterations do not add anything to the protocol.

We have seen that teleportation of UI is impossible.
Teleportation of SI is instead possible. The condition of perfect
SI teleportation is∑

k

(Ak ⊗ UϕBkW†
ϕ)

(∣∣ψA
θ

〉〈
ψA

θ

∣∣ ⊗ |E〉〈E|) = ∣∣ψB
θ

〉〈
ψB

θ

∣∣ (3)

for every ϕ and θ . With respect to Eq. (2), the right-hand
side of Eq. (3) acquires an extra rotation Uϕ , which cancels
the one on the left-hand side. Choosing system B to be
invariant under phase shifts, we have Wϕ = IB for every ϕ and
the equation becomes

∑
k(Ak ⊗ Bk)(|ψA

θ 〉〈ψA
θ | ⊗ |E〉〈E|) =

|ψA
θ 〉〈ψA

θ | for every θ . This condition can be achieved by
using an ordinary teleportation protocol: the only constraint
is that system B has to be an invariant degree of freedom. In
the context of synchronization, the basic ideas behind those
schemes is that Alice transfers to the quantum state her clock
to some energy-degenerate degrees of freedom that do not
evolve (this can be done with a local teleportation in her
laboratory). The state of these degrees of freedom can be
teleported to Bob even in the lack of synchronization, using
the protocols presented in Refs. [3,9]. Bob can then locally
transfer the quantum information he received on his quantum
clock (through a local teleportation in his laboratory). This
gives back a ticking clock, which, however, is no longer
synchronized with Alice’s.

II. OPTIMAL REMOTE SYNCHRONIZATION

Although perfect UI teleportation is impossible for any
finite entangled resource, approximate UI teleportation is
achievable with arbitrary precision. For example, one can
use a two-step protocol where Alice and Bob use part of the
entangled resource to establish a shared RF. Here, we focus on
the latter task and give the optimal strategy to find the estimate
of the phase mismatch ϕ using a given entangled state. This
result optimizes quantum clock synchronization based on prior
entanglement [10,11].

Suppose that the resource state |E〉 ∈ HA ⊗ HB is invariant
under global phase shifts Vϕ ⊗ Wϕ and that the generators of
Vϕ and Wϕ can be written as GA ≡ ∑NA−1

n=0 nPn and GB ≡∑NB−1
n=0 nQn. Equivalently, |E〉 is an eigenstate of the sum

GA + GB for some eigenvalue N , namely,

|E〉 ≡
N∑

n=0

en |En〉, |En〉 ≡ (PN−n ⊗ Qn)|E〉
||(PN−n ⊗ Qn)|E〉|| . (4)

The synchronization protocol is described by an LOCC
positive operator valued measure (POVM), the outcome of
which is the estimate ϕ̂. Adopting Alice’s description (1),
the POVM elements can be expressed as M

(ϕ)
ϕ̂ = (1A ⊗

Wϕ)M (0)
ϕ̂ (1A ⊗ W †

ϕ), and obey the normalization condition

∫
dϕ̂

2π
M

(ϕ)
ϕ̂ = 1A ⊗ 1B , for all ϕ. A protocol is optimal if it

minimizes the average cost

〈c〉 =
∫

dϕ

2π

∫
dϕ̂

2π
c(ϕ̂ − ϕ)〈E|M (ϕ)

ϕ̂ |E〉, (5)

where c(ϕ̂ − ϕ) is a cost function dependent on the difference
between the true value ϕ and the estimate ϕ̂. Note that the
optimal M

(ϕ)
ϕ̂ can always be chosen of the form M

(ϕ)
ϕ̂ =

(1A ⊗ Wϕ̂−ϕ) � (1A ⊗ W
†
ϕ̂−ϕ), with � positive operator on

HA ⊗ HB . Indeed, suppose that M
(ϕ)
ϕ̂ is not of this form,

then we can replace it with its average M̃
(ϕ)
ϕ̂ ≡ ∫

dθ
2π

M
(ϕ+θ)
ϕ̂+θ

without modifying the average cost. The new POVM M̃
(ϕ)
ϕ̂

still describes a LOCC protocol: Alice and Bob can achieve
it by randomly shifting Bob’s phase by θ , measuring the old
POVM M

(ϕ)
ϕ̂ , and shifting the estimate ϕ̂ back by θ .

With this observation, the problem is reduced to the
estimation of the local phase shift (1A ⊗ Wϕ) on the input state
|E〉. The optimal solution of this problem is known [20,21]
for cost functions of the form c(ϕ) = ∑∞

q=1 cq cos(qϕ) with
cq � 0 for q �= 0: the minimum cost over all joint POVMs
is given by 〈c〉joint

min = ∑
q cq

∑
n |enen+q |, where {en} are the

expansion coefficients in Eq. (4). Now, we show that the
minimum cost is achieved by a one-way LOCC protocol. For
simplicity, let us start from the case of nondegenerate energy
levels, for which Pn = |n〉A〈n| and Qn = |n〉B〈n|. In this case,
Alice can measure on the Fourier basis |ak〉A ∝ ∑

n ωkn|n〉A,
where ω := exp(2πi/NA). For outcome k, the state of Bob’s
system is Wϕ|ψk〉, with |ψk〉 = ∑N

n=0 enω
kn|n〉B . Then, Bob

can perform the optimal phase estimation on this state,
achieving the minimum cost. In general, Alice and Bob’s
nth energy levels have degeneration dn,A and dn,B . The
state |En〉 can then be entangled, with Schmidt form |En〉 =∑rn

ln=1 λn,ln |N − n,ln〉A|n,ln〉B . Then, Alice can measure the
Fourier basis:

|ak,{jn}〉A = 1√
NA

NA−1∑
n=0

ωkn

⎛⎝ 1√
dn,A

dn,A∑
ln=1

υjnln |N − n,ln〉A
⎞⎠

where ω := exp(2πi/NA) and υ := exp(2πi/dn,A), thus col-
lapsing the state on Bob’s side to

Wϕ|ψk,{jn}〉 = Wϕ

(
N∑

n=0

enω
kn|bn,{jn}〉B

)

with |bn,{jn}〉B := ∑dn,A

ln=1 λn,lnυ
−jnln |n,ln〉B . Upon knowing the

outcome of Alice’s measurement, Bob can achieve the mini-
mum cost 〈c〉joint

min by performing the optimal phase estimation
on his state |ψk,{jn}〉.

Our result gives a direct way to measure the amount
of RF resource contained in a pure bipartite state. Since
we have optimized over all LOCC protocols, the minimum
cost 〈c〉joint

min defines a function Fc = −〈c〉joint
min on bipartite

states |E〉 which is nonincreasing under LOCC operations.
Moreover, Fc(|E〉〈E|) is also nonincreasing under arbitrary
operations that commute with local phase shifts [22]. In
other words, all these cost functions define a family of
monotone measures Fc of bipartite frameness [14,15], so
that the state with greatest frameness is the one with
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smallest cost. Note that different cost functions induce
inequivalent measures since they correspond to different ways
of gauging the quality of a reference frame. For example,
using the cost cvar(ϕ) = 4 sin2(ϕ/2), the state with maximum
frameness is the two-mode extension of the optimal clock

state [23], namely, |Evar〉 = ∑N
n=0 sin[ π(n+1/2)

N+1 ]/
√

N+1
2 |N −

n〉A|n〉B (which has an optimal cost with “Heisenberg bound”
scaling 1/N2). In contrast, using the maximum likelihood cost
function clik(ϕ) = −δ(ϕ), the state with maximum frameness
is |Elik〉 ∝ ∑S

n=0 |N − n〉|n〉, the two-mode extension of the
maximum likelihood state [24]. In all these different cases, our
result shows that the performances one can achieve by remote
state preparation using an entangled state of N entangled qubits
of UI and N classical bits are equivalent to the performances
one can achieve by exchanging N qubits of UI and an unlimited
amount of SI in an arbitrary amount of rounds of communica-
tion between Alice and Bob. Indeed, in the latter scenario, the
best protocol consists in Alice preparing the N UI qubits in the
optimal state and in sending them to Bob [25], thus achieving
the same performance of our optimal LOCC protocol.

III. CONCLUSIONS

We have shown that perfect teleportation of UI is impossi-
ble. In the lack of a shared RF, teleportation is not equivalent
to direct quantum communication, not even for a restricted
set of input states: teleportation can only transfer the quantum
state relative to the sender’s reference, but can not transfer
the reference itself. This, however, does not prevent us from
employing shared entanglement effectively: we have given the
optimal protocol for remote preparation of optimal reference
states, achieving a quantum-metrology enhancement. This
protocol can be used to establish an approximate shared RF
and then to approximately transfer UI by transmitting only SI.
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