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Qubit relaxation from evanescent-wave Johnson noise
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In many quantum computer architectures, the qubits are in close proximity to metallic device elements. Metals
have a high density of photon modes, and the fields spill out of the bulk metal because of the evanescent-wave
component. Thus thermal and quantum electromagnetic Johnson-type noise from metallic device elements
can decohere nearby qubits. In this Rapid Communication we use quantum electrodynamics to compute the
strength of this evanescent-wave Johnson noise as a function of distance z from a metallic half space. Previous
treatments have shown unphysical divergences at z = 0. We remedy this by using a proper nonlocal dielectric
function. Decoherence rates of local qubits are proportional to the magnitude of electric or magnetic correlation
functions evaluated at the qubit position. We present formulas for the decoherence rates. These formulas serve
as an important constraint on future device architectures. Comparison with single-electron spin relaxation
measurements shows that evanescent-wave Johnson noise may constitute the dominant relaxation mechanism in
experiments performed at low magnetic field.
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Qubits with long relaxation times are necessary for quantum
computation. Most such devices are controlled electrically.
This creates a control-isolation dilemma: connections from
the outside world are what make the devices useful, but they
are also sources of decoherence. In particular, one may wish to
place charge or spin qubits close to metallic device elements
used to confine or control the qubits.

The relaxation of a charge or spin qubit can be induced
by the thermal and quantum fluctuations of electromagnetic
fields. The fluctuations of the electromagnetic fields are
greatly enhanced in the vicinity of conductors because of
the evanescent waves [1–6]. This evanescent-wave Johnson
noise (EWJN) has been shown, both theoretically [7] and
experimentally [8], to be an important source of decoherence
for atomic qubits near the metallic walls of a trap. In this
work we investigate the effects of metallic device elements
in solid-state qubit architectures. Similar investigations have
been carried out previously using lumped-circuit calculations
of Johnson noise [9–11]. Here we do the noise calculations
taking into account the detailed spatial dependence of the
fields and the important effects of nonlocal corrections to the
electromagnetic response functions [12,13].

We pause here to mention that the EWJN originates from
properties of the metal near its surface. The expressions for
the electromagnetic-field fluctuations presented in this Rapid
Communication are for a conducting half space. However, our
treatment can be extended to calculate the strength of EWJN
in the vicinity of a conducting slab of finite thickness. In this
case, the electromagnetic fluctuations are independent of the
thickness of the slab as long as this thickness is significantly
larger than the skin depth of the metal. As such, we anticipate
that EWJN may be alternatively interpreted as arising from
overdamped surface plasmon excitations which exist within a
skin depth of the surface of the metal [6].

To describe the decoherence of qubits resulting from the
evanescent electromagnetic fields surrounding a conducting
gate, it is necessary to compute spectral densities of the
electric- and magnetic-field fluctuations. Fermi’s golden rule
and the fluctuation-dissipation theorem imply that the relax-
ation rate 1/T1 of a (charge and spin, respectively) qubit

transition of a particular frequency will be proportional to the
spectral densities at that frequency. Specifically, the relaxation
time T1 of a charge qubit with dipole moment �d pointing in
the ith direction at position �r and level separation ωZ will be
given by

1

T1
= d2

h̄2 χE
ii (�r,�r,ωZ) coth

(
h̄ωZ

2kBT

)
, (1)

and T1 of a spin qubit with magnetic dipole moment �μ in the
ith direction at position �r and level separation ωZ will be given
by

1

T1
= μ2

h̄2 χB
ii (�r,�r,ωZ) coth

(
h̄ωZ

2kBT

)
, (2)

where χ
E,(B)
ii (�r,�r,ωZ) are the electric and magnetic spectral

densities, respectively. We deal first with fields that have been
averaged over distances of the order of a and l, where a

is an interatomic distance and l is the mean free path in
the metal. As a result the dielectric function ε(�r,ω) may be
treated as a local function of space. This approximation breaks
down in the near vicinity of the conducting surface, and the
influence of a nonlocal dielectric response on the correlation
function is addressed below. The conducting electrodes in
semiconductor qubit architectures are commonly constructed
of copper. Therefore, all numerical results presented here use
the electronic properties of copper near 0 K. In this case, a
local dielectric function may be used for distances much larger
than the Fermi wavelength λF =

√
4π2h̄2/mEF ≈ 0.4 nm.

We work in a gauge where the scalar potential φ = 0, so that
for harmonic fields we have �E = iω �A/c.

The spectral densities can be shown [6,14] to be directly
related to the imaginary part of the equilibrium retarded photon
Green’s function by the relations

χE
ij (�r,�r ′,ω) = ω2

ε0c2
ImDij (�r,�r ′,ω), (3a)

χB
ij (�r,�r ′,ω) = 1

ε0c2
εikmεjnp∂k∂nImDmp(�r,�r ′,ω), (3b)
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where i,j are Cartesian indices that run over x,y,z and Dij

satisfies [
−δij

(
∇2 + ω2ε (�r,ω)

c2

)
+ ∂i∂j

]
Dik(�r,�r ′)

= −4πh̄δ3(�r − �r ′)δjk. (4)

The geometry of a particular problem is expressed through the
function ε (�r,ω). Equations (1) and (2) assume the charge or
spin qubit can be adequately approximated as a point dipole.
The effect of a qubit with an extended spatial distribution will
be considered in future work. The task of computing Dij in
a particular geometry is, in general, a complicated problem
in electrodynamics. In this Rapid Communication we shall
limit ourselves to the situation where the separation of the
qubit from the metal surface is much less than any radius of
curvature of the surface so that the surface can be thought of
as flat.

Let z be the distance from the surface. The result for the
spectral density of the electric field for local electrodynamics
has been obtained by Henkel et al. [7]:

χE
xx(z,z,ω) = h̄

2ε0
Re

∫ ∞

0

pdp

q
e2iqz

×
(

ω2

c2
rs(p) − q2rp(p)

)
, (5a)

χE
zz(z,z,ω) = h̄

ε0
Re

∫ ∞

0

p3

q
dpe2iqzrp(p) , (5b)

where q =
√

ω2/c2 − p2 for p2 � ω2/c2 and q =
i
√

p2 − ω2/c2 for p2 > ω2/c2 is the z component of
the wavevector and p is the transverse component. Our
notation follows that of Ford and Weber [12].

rs(p) = q −
√

ω2ε/c2 − p2

q +
√

ω2ε/c2 − p2
(6a)

and

rp(p) = εq −
√

ω2ε/c2 − p2

εq +
√

ω2ε/c2 − p2
(6b)

are the Fresnel reflection coefficients. The corresponding
expressions for the spectral densities of the magnetic field
are identical to Eqs. (5) if we multiply by 1/c2 and make the
replacement rs ↔ rp.

We are interested in separations that are sufficiently small
so that retardation and hence radiation of the electromagnetic
field may be neglected. This is known as the quasistatic
approximation, and it is formally employed by taking the limit
c → ∞. This results in the greatly simplified expressions

χE
zz(z,z,ω) = 2χE

xx(z,z,ω) = h̄

8ε0z3
Im

ε − 1

ε + 1
, (7a)

χB
zz(z,z,ω) = 2χB

xx(z,z,ω) = h̄ω2

8ε0c4z
Im(ε − 1) . (7b)

Employing this approximation has eliminated the func-
tional difference between the transverse and longitudinal com-
ponents of the field fluctuations. The quasistatic expressions
differ from the exact values by less than 1% when z < δ/10,
where δ is the skin depth of the metal. For copper near

absolute zero, δ ∼ 3 μm. Equations (7) diverge as z → 0,
but this divergence is not physical: it is an artifact of treating
the dielectric function as local at distances comparable to
the interatomic spacing. In any differential equation satisfied
by the spatial Fourier components of Dij , a local dielectric
function will be independent of the wavevector, while a
nonlocal one will have a nontrivial wavevector dependence.
It is conventional to represent the spatial Fourier components
of the nonlocal dielectric function as a tensor quantity in the
form

εij (�k,ω) = εl(k,ω)
kikj

k2
+ εt (k,ω)

(
δij − kikj

k2

)
, (8)

where we have separated the function into its longitudinal εl

and transverse εt components.
Nonlocality in the dielectric function changes the reflection

coefficients. In the quasistatic approximation rp is [12]

rp =
1 − ε0

2p

π

∫ ∞
0 dκ 1

k2εl (k,ω)

1 + ε0
2p

π

∫ ∞
0 dκ 1

k2εl (k,ω)

, (9a)

and rs becomes

rs = ω2

4p2c2

(
4p3

πε0

∫ ∞

0

εt (k,ω)

k4
dκ − 1

)
(9b)

to leading nonvanishing order in the quasistatic approximation.
Here k2 = p2 + κ2,

εl(k,ω) = 1 + 3ω2
p

k2v2
F

(ω + iν)fl((ω + iν)/kvF )
ω + iνfl((ω + iν)/kvF )

, (10a)

εt (k,ω) = 1 − ω2
p

ω(ω + iν)
ft ((ω + iν)/kvF ), (10b)

fl(x) = 1 − x

2
ln(x + 1)/(x − 1), (11a)

ft (x) = 3

2
x2 − 3

4
x(x2 − 1) ln(x + 1)/(x − 1), (11b)

ν is the electron collision frequency, ωp = (4πne2/m)1/2 is the
plasma frequency, and vF is the Fermi velocity. Although Eqs.
(5) are derived assuming locality, it is a convenient fact [12]
that these equations are also valid in the nonlocal regime as
long as the nonlocal form of the Fresnel coefficients (9) are
used.

In Fig. 1, we present the zero-temperature results for the
relaxation time T1 from EWJN for a qubit with an electric
dipole moment of magnitude |e|aB , where aB is the Bohr
radius. Both the local and nonlocal results are shown. It is
seen that the correct nonlocal dielectric function eliminates
the unphysical divergence of 1/T1 at z = 0. For separations
z ∼ λF , the differences are very significant, while for z � 10λF ,
the local and nonlocal results nearly coincide. The Fermi
wavelength is less than a nanometer, so the transition from
local to nonlocal behavior occurs well within the quasistatic
regime. It is interesting to note that for the electric-field
fluctuations there is a crossover region where the nonlocal
result becomes slightly larger than the local result in the range
30λF < z < 3000λF (see Fig. 1), in alignment with the results
of Volokitin and Persson [5], who showed an enhancement
of the nonlocal result above the local result. We see that at
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FIG. 1. (Color online) Plot of the T1 time of a charge qubit
computed from Eq. (1) using the local approximation (dashed blue
line) and the full nonlocal theory (solid red line). We used the values
EF = 7 eV, ω = 6π × 108 s−1, ν = 6π × 1012 s−1, ωp = 1.6 × 1016

s−1, and ε = 7.2 × 109i, appropriate for a copper surface and a device
operating in the GHz range. The dipole moment is taken as d = |e|aB ,
where |e| is minus the charge on the electron and aB is the Bohr radius.
These results are for zero temperature. The dashed horizontal line in
the left plot represents the strength of the electric-field fluctuations
inside the bulk of a uniform metal.

T = 0 and GHz operations, T1 from spontaneous emission is
of the order of seconds at separations z ∼ 30λF . These results
are directly applicable to atomic qubits, but the rate 1/T1 is
proportional to the square of the dipole moment, so rates for
other charge qubits are easily deduced.

Figure 2 shows that T1 falls off slowly at higher frequencies.
The divergence of T1 as ω → 0 is removed by including a
small finite temperature. Figure 2 is plotted using the local
expression, but the nonlocal treatment will give qualitatively
similar results.

Figure 3 gives the analogous results for magnetic EWJN
on a spin qubit with a magnetic dipole moment of 1 Bohr
magneton. Nonlocal corrections are somewhat stronger for
this case and persist to larger distances. Interestingly, the
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FIG. 2. (Color online) Plot of the T1 time vs frequency ω of a
charge qubit computed from Eq. (1) at different temperatures (solid
red line at 0 K and dashed red line at 2 K) at fixed z = 10λF .
EF = 7 eV, ν = 6π × 1012 s−1, ωp = 1.6 × 1016 s−1, ε = 7.2 × 109i,
and d = |e|aB , as in Fig. 1.

10
2

10
3

10
410

−1

10
0

10
1

10
2

10
3

T
1 (

s)

0 10 20

10
−2

10
−1

10
0

T
1 (

s)

z/λ
F

z/λ
F

FIG. 3. (Color online) Plot of T1 time for a spin qubit at zero
temperature computed from Eq. (2) in the local approximation
(dashed blue line) and the full nonlocal theory (solid red line).
EF =7 eV, ω = 6π × 108 s−1, ν = 6π × 1012 s−1, ωp = 1.6 × 1016s−1,
and ε = 7.2 × 109i, appropriate for a copper surface and a device
operating in the GHz range. We have taken μ = μB , appropriate for
a single electron. The rate 1/T1 is proportional to the square of μ,
so rates for other local magnetic qubits can be easily deduced. The
dashed horizontal line in the left plot represents the strength of the
magnetic-field fluctuations inside the bulk of a uniform metal.

falloff with distance of T1 is slower for magnetic EWJN than
for electric EWJN. However, magnetic relaxation times are
typically somewhat larger than electric relaxation times. The
crossover of the local and nonlocal results is not present in
the magnetic case. Figure 4 shows that the frequency and
temperature dependence of magnetic EWJN is similar to
the electric EWJN shown in Fig. 2. Brief mention should
be made of the dip that is observed as ω → 0 in Fig. 4.
The reflection coefficients rs and rp both contribute to the
magnetic-field fluctuations to the same order in ω/c in the
quasistatic approximation. This contrasts with the electric
case, where only rp contributes to leading order in ω/c. The
dip is a result of competition between the contributions of rs

and rp to the field fluctuations. The rs term in χB
ii is linear
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FIG. 4. (Color online) Plot of the T1 time vs frequency of the
spin qubit computed at different temperatures (solid red line at 0 K
and dashed red line at 2 K) at fixed z = 10λF . EF = 7 eV,
ν = 6π × 1012 s−1, ωp = 1.6 × 1016 s−1, and ε = 7.2 × 109i,
appropriate for a copper surface. μ = μB as in Fig. 3.
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in ω as ω → 0 and negative, while the rp term is cubic in
ω as ω → 0 and positive. We should also mention that for
extremely small ω the factor of coth(h̄ω/2kBT ) cancels out
the linear ω dependence and the dip flattens out as ω → 0 (not
observable in the resolution of Fig. 4).

The limit of the nonlocal quasistatic field fluctuations as
z → 0 should be of the same order of magnitude as the value of
these fluctuations inside the metal. To check this, we calculate
the electromagnetic Green’s function inside the bulk of a
uniform metal using a nonlocal dielectric function. The result is

Dij (�k,ω) = 4πh̄

ω2εt/c2 − k2

×
(

δij − c2kikj

ω2εl

+ kikj

k2εl

(εt − εl)

)
, (12)

Dij (�r − �r ′,ω) = 1

(2π )3

∫
d3�kei�k·(�r−�r ′)Dij (�k,ω). (13)

Numerical evaluation of (13) when �r = �r ′ gives Dxx =
Dzz ∼ 3.2 × 10−15 J s/m. An evaluation of the Green’s
function outside the metal in the nonlocal quasistatic regime
for z → 0 gives Dxx ∼ 1.32 × 10−15 J s/m and Dzz ∼ 2.6 ×
10−15 J s/m, slightly less than in the bulk of a uniform metal,
as expected.

We see that there are three relevant distance regimes. For
z < 30λF , a quasistatic approximation to Henkel’s results (5)
using the nonlocal expressions for rs and rp will accurately
describe the field fluctuations. For intermediate distances
30λF < z < δ/10 there is a slight enhancement in the electric-
field fluctuations of the nonlocal expression compared to the
local expression, but in this distance regime the strengths
of both electric- and magnetic-field fluctuations are given to
reasonable accuracy by their local, quasistatic expressions.
For distances z > δ/10, local forms including retardation of
the electromagnetic field (5) will accurately describe the field
fluctuations.

Comparison of our results with experimental measurements
of T1 times for spin relaxation in single-electron quantum
dots supports the notion that relaxation from EWJN may
sometimes constitute the dominant relaxation mechanism in
present semiconductor qubit architectures. In particular, we
reference the low B saturation of T1 for a single electron
in Fig. 4(d) of [15]. In their measurements, T1 saturates to
∼40 ms. Plugging their values of z = 50 nm and h̄ωZ = 0.4
meV into (7b) gives a value of T1 ∼ 4 ms. That our expression

gives a shorter relaxation time than what was measured
can be understood because we assume the gates constitute
a conducting half space, rather than the more sparse gate
geometry used in [15]. It is also instructive to compare our
results with the measurements of Elzerman et al. [16]. They
measured a T1 of 0.55 ms at a magnetic field of 10 T. Using
their values of z = 90 nm and h̄ωZ = 0.2 meV, our results
predict T1 ∼ 15 ms. While our result is comparable to the
measured result, EWJN is clearly not the dominant relaxation
mechanism in this situation. Through a perusal of the literature,
we have found generally that EWJN is insufficient to describe
the spin relaxation rate in experiments with a high external
magnetic field.

The density of photon states in a metal is very high
owing to the large polarizability. For blackbody radiation,
this high density of states does not matter since total internal
reflection reduces the outgoing radiation flux to its universal
Stefan-Boltzmann value. In contrast, the evanescent waves are
strongly enhanced, and the resultant electromagnetic noise
just outside the surface can be intense. This is a concern
for quantum devices operating close to metallic objects. This
Rapid Communication has concentrated on the frequency,
temperature, and distance dependence of the noise and on the
effects of assuming a local dielectric function. We conclude
that the effect is significant for charge qubits with large dipole
moments such as double quantum dots. The EWJN relaxation
may be the limiting decoherence effect in designs which
involve close proximity to bulk metals. For magnetic qubits
the effects are smaller, but as can be seen by comparison
to [15], they can still be significant. We found that nonlocal
effects are very important at short distances; indeed, local
calculations can produce spurious divergences. At distances
that are large compared to the Fermi wavelength of the metal,
local approximations work well.

We have not considered extended qubits for which the off-
diagonal function Dii(�r,�r ′) at �r 
= �r ′ is required. This would
be the case, for example, in superconducting qubits, for which
lossy surface layers can also play a role. We have treated only
relaxational decoherence and have ignored the possibility of
dephasing. These effects are important for many real devices
and can be calculated using similar methods.
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