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Ionization scaling law for ions colliding with elliptical Rydberg hydrogen targets
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The classical trajectory Monte Carlo (CTMC) method has been used to model fully stripped ions of He, C, Ar,
and Kr colliding with aligned elliptic Rydberg hydrogen in various excited initial n states. CTMC cross sections
from target eccentricities of − 0.99 to 0.99 and reduced ion velocities ranging from 5 to 40 were used to develop
an ionization scaling law as a function of reduced velocity v∗, initial n state, projectile charge q, and initial
electron eccentricity ε. The nonelliptic part of our scaling law has been compared to other existing ionization
models and found to be in very good agreement.
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I. INTRODUCTION

Ion-Rydberg atom collisions have been important systems
to study because they provide a good probe of astronom-
ical phenomena as well as ultracold plasmas [1–3]. Radio
astronomers have found highly excited or Rydberg atoms in
nebulae, diffuse interstellar gas, supernova remnants, and the
coronas of comets [4]. Most recently, the interactions between
Rydberg atoms and metal surfaces have been of interest [5,6].
Being able to identify the formation and decay likelihood of
Rydberg atoms can help in the determination of the physics
present in these particular areas. In most of these active areas
of research, electron capture involving the Rydberg atoms has
been the primary focus, while other interactions such as charge
exchange or ionization receive much less attention. In this
report, we wish to look at the ionization of a Rydberg target
by many different fully stripped ions in an attempt to provide
a single function to predict the total ionization cross sections
between an incident ion projectile and a Rydberg target in a
predetermined quantum state at very high collision energies.

II. THEORY

Absolute ionization cross sections have been calculated for
fully stripped ions colliding with hydrogen Rydberg targets
in various initial excited and elliptical states using the well-
known classical trajectory Monte Carlo (CTMC) method [7,8].
The particular CTMC approach used in this Brief Report is
well documented in the literature [9] and will only be briefly
outlined here.

The collision system contains an incident ion and an
electron bound to a hydrogen atom in a predetermined circular
or elliptic Keplerian orbit corresponding to a Rydberg state
with a principle quantum number n. The orbital plane of the
electron, located in the xy geometric plane, is oriented so
that the orbital angular momentum vector of the electron (Lz)
points along the +z axis. As such, the incident ion sees the
entire orbital plane of the electron upon its approach. The
eccentricity of the orbit is defined such that a circular orbit
(ε = 0) is centered on the target nucleus. When the orbit is
stretched elliptically, the target nucleus is located at one focus
while the orbit is elongated along the x axis, with ε > 0
representing a stretching in the +x direction and ε < 0 in the
−x direction. In practice, any arbitrary axis in the xy plane
could have been chosen as the elongation axis since the orbital

angular momentum vector of the electron is always parallel
to the momentum vector of the incident ion regardless of the
alignment axis chosen. Figure 1 shows a view of the target
collision system from the point of view of the incoming ion
beam as it approaches the target perpendicular to the orbital
plane of the electron along with a visual depiction of the
elliptically stretched orbits.

The main collision parameters are the charge of the
projectile ion (q), the eccentricity of the orbit (ε), the principle
quantum number of the bound electron (n), and the velocity
of the incoming ion (vion). Going forward, a reduced velocity
(v∗) will be used for convenience and written in terms of the
projectile velocity and the velocity of the orbital electron as

v∗ = vion

ve

. (1)

This relation can also be written in terms of the orbital
velocity of the Rydberg electron as

v∗ = nvion. (2)

Once all the initial conditions of the system are determined,
the system is propagated classically by numerically solving
Hamilton’s equation of motion for the three-body system.
The absolute ionization cross sections (in cm2) are determined
using

σ =
(

Ni

N

)
πa2

ob
2
max, (3)

where Ni is the total number of ionization events, N is the total
number of trajectories, ao is the Bohr radius, and bmax is the
largest value of the impact parameter for which an ionization
event occurs at a particular reduced velocity. In an effort to
obtain good and consistent results with small statistical errors,
the number of trajectories for each collision type was adjusted
in order to produce ∼1500 ionization events, since the errors
are on the order of

�σ ≈ 1√
Ni

. (4)

III. DATA

Individual ionization cross sections for He++ at a reduced
velocity of v∗ = 5, C6+ at v∗ = 10, Ar18+ at v∗ = 15, and Kr36+
at v∗ = 20 were calculated for target excitations of n = 4, 16,
25, and 50 with eccentricities ranging from − 0.99 to 0.99.

064701-11050-2947/2012/85(6)/064701(6) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.064701


BRIEF REPORTS PHYSICAL REVIEW A 85, 064701 (2012)

FIG. 1. (Color online) The Rydberg target as viewed by the
incident ion with the +z axis extending into the page. The eccentricity
ε = 0 denotes a circular orbit about the hydrogen core and ε > 0 and
ε < 0 represent a stretching of the orbit along the +x and −x axis,
respectively. The arrows indicate the orbital direction of the electron
about the nucleus.

From the results plotted in Fig. 2, a few initial observations can
be made. First, the cross sections form nice symmetric bands
at each principle quantum n value due to the symmetry of the

collision. Second, the total cross sections increase with n for
all projectiles as the energy of the ion can more easily remove
the weaker bound electrons in the larger orbits. Lastly, the
cross sections also increase as the charge of the ion increases
due to the additional attractive Coulomb strength of the ion.

A more detailed look at Fig. 2 reveals that the ionization
cross sections at large eccentricities (|ε| � 0.9) begin to
decrease slightly as the electron orbit becomes more elongated.
For these highly elliptic orbits, the atom behaves like an electric
dipole and classical ionization becomes strongly suppressed
for large collision speeds and large impact parameters as it
is increasingly more difficult for the ion to impart enough
momentum to the electron in the forward direction to liberate
it from the host nucleus [9]. This is a known limitation of the
CTMC in calculating ionization cross sections with dipolelike
transitions driven by soft collisions with small momentum
transfers [10].

IV. RESULTS

To better organize the ionization data, a scaling law of the
form

σreduced = σion

qa(v∗)bnd
(5)

was used to reduce all the ionization cross sections in Fig. 2.
Initially, the cross sections were reduced independently of n

and it was found empirically that the values of 2 and − 1.98,
for the parameters a and b, respectively, provided the best

FIG. 2. (Color online) Total
ionization cross sections are
shown for He++ at a reduced ve-
locity of v∗ = 5, C6+ at v∗ =
10, Ar18+ at v∗ = 15, and Kr36+

at v∗ = 20 for initial target excita-
tions of n = 4, 16, 25, and 50. Each
projectile’s cross sections are plot-
ted as a function of eccentricity (ε)
ranging from − 0.99 to 0.99.
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(a)

(b)

FIG. 3. (Color online) (a) Reduced total ionization cross sections
for all projectiles without n dependence [Eq. (6)]. (b) Same cross
sections as in (a) but now including n dependence [Eq. (7)]. The solid
(blue) line fitted to the data is σfit [Eq. (9)].

results. Plots of the data under the reduction

σreduced = σion

q2(v∗)−1.98
(6)

are shown in Fig. 3(a). The scaling law produces very
nice reduced curves across all eccentricities, each collapsing
along corresponding n values. When including the cross
sections’ dependence on n, the optimal value for the exponent
d was found to be 4, which is consistent with other ion-
Rydberg collision scaling laws using reduced velocities [11].
Using

σreduced = σion

q2(v∗)−1.98n4
, (7)

all of the scaled independent n data curves in Fig. 3(a) reduced
down to a single unified curve [Fig. 3(b)].

A total cross-section function involving all the parameters
of the collision system of the form

σfit = Cq2(v∗)−1.98n4(1 − A|ε|f )g (8)

was used to model the reduced universal data curve in Fig. 3(b).
Analysis that produced the best empirical fit involving the
remaining unknown coefficients and exponents in (8) led to a
final cross-section function given by

σfit = 6.85 × 10−16q2(v∗)−1.98n4(1 − 0.48|ε|2.7)0.58. (9)

This function is plotted as the solid (blue) curve in Fig. 3(b).
This expression provides an outstanding reproduction of the
reduced ionization cross sections. It is possible and perhaps
even preferable to rewrite this function in terms of the initial
velocity of the incident ion and not the reduced velocity for
quicker analysis. In that case, v∗ is replaced with the expression
in Eq. (2) and the total cross-section function in Eq. (9)
becomes

σfit = 6.85 × 10−16q2v−1.98
ion n2.02(1 − 0.48|ε|2.7)0.58. (10)

It should be pointed out that while only data as low as
n = 4 have been used in the determination of our scaling law,
various sample calculations of cross sections at lower initial
states of n = 1 to 3 were performed and were still found to be
correctly and accurately modeled by Eq. (9).

Equation (9) can be compared to other existing scaling laws,
in part, if it is rewritten as

σfit = σo(v∗,n,q)F (ε), (11)

with

σo(v∗,n,q) = 6.85 × 10−16q2(v∗)−1.98n4, (12)

representing the ε = 0 (circular orbit) cross-section component
for all collisions and

F (ε) = (1 − 0.48|ε|2.7)0.58, (13)

which contains all the elliptical influence on the total cross
section. In this separate form, it can be seen that the first
part of σfit, Eq. (12), has nearly the same exact form as the
Bohr formula for ionization cross sections originally derived
by Thomas [12]:

σBohr(v
∗,n,q) = 3.519 × 10−16q2(v∗)−2n4. (14)

When you take into account that an electron with nonzero
orbital velocity requires less energy transfer for ionization,
the total ionization cross section becomes approximately 5/3
larger for a hydrogen target [13]. This yields a modified Bohr
formula cross-section function of

σ ∗
Bohr(v

∗,n,q) = 5.865 × 10−16q2(v∗)−2n4. (15)

Two additional ionization cross-section models that prove
more accurate at very high-energy collisions, one developed
by Bethe and the other by Gryzinski [13], are given by:

σBethe(v∗,n,q) = 1.99×10−16q2(v∗)−2n4[2.2279 + ln(v∗)],

(16)
and

σGryz(v∗,n,q) = 3.519 × 10−16q2(v∗)−2n4

× [1 + 0.667 ln(2.7 + v∗)]. (17)

When compared to our model and the Bohr ionization
model, other than the additional logarithmic terms, they all
have the same exact form, but with differing coefficients. The
logarithmic terms are limiting forms of more complex func-
tions involving v∗ and are a result of large impact parameter
ionizations to the total cross section at very high energies.
Classically, ionization under these conditions is forbidden
because the energy transferred by the projectile to the electron

064701-3



BRIEF REPORTS PHYSICAL REVIEW A 85, 064701 (2012)

FIG. 4. (Color online) Total ionization data for all four incident ions of various eccentricities as a function of reduced velocity for a Rydberg
target in an excitation state of n = 4 only. The solid (blue) curves through the data are produced by Eq. (9) using initial parameters unique to
each respective collision system. The solid vertical lines in the upper left frame (ε = 0) act as a reference to indicate the original collision speeds
used to calculate the initial ionization cross sections shown in Fig. 2. The vertical dotted line represents the location where an application of
the current cross-section fitting function [Eq. (9)] becomes valid as determined by Eq. (18).

is less than the ionization potential. However, ionization is
still possible from the standpoint of quantum mechanics due
to diffraction [14]. As a result, quantum mechanical cross
sections are larger than classically determined cross sections
at high energies [13]. For these high-energy collisions, it would
seem plausible to combine either Eq. (16) or (17) with F (ε)
from Eq. (13) to provide a first-order, elliptical ionization
cross-section model.

For another test of the validity of Eq. (9), additional
ionization cross sections were calculated as a function of
reduced velocities for eccentricities of 0.0, 0.3, 0.6, and 0.9 for
n= 4 and 25 for each projectile ion. Since the cross sections are
symmetric about ε = 0, only positive eccentricities were used.
As seen in Figs. 4 and 5, the cross-section model (σfit) predicts
the CTMC elliptical ionization cross sections with very good
agreement after reaching a specific reduced velocity (marked
with a dashed vertical line), which is a value unique to each
ion. Only at the highest eccentricities does the fit begin to
show some difficulty (as seen for |ε| = 0.9). Warning signs

for this potential difficultly were noted earlier in Fig. 2 and
are more apparent in the reduced universal curve in Fig. 3(b)
as the cross sections at large ε were not as tightly grouped
as at other eccentricities. As the orbit becomes increasingly
elongated (|ε| > 0.9), the calculated cross sections not only
begin to decrease rapidly, but no longer appear to scale in the
same manner as the less-elliptical orbits.

Investigations were performed into that point mentioned
earlier at which the cross-section model (σfit) begins to
correctly reflect the calculated CTMC cross sections for every
projectile and initial n value (dashed vertical line). It was found
that the reduced velocities where the calculated cross sections
and the empirical curve fit start to coincide was independent
of n and only a function of projectile charge (q) and the initial
orbital eccentricity (ε). For each collision system, the starting
reduced velocity when the ionization data can be correctly
reproduced by σfit was found to be determined by

v∗(q,ε) = 1.614q0.631(1 + |ε|1.1)0.4. (18)
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FIG. 5. (Color online) Same as Fig. 4 except for n = 25.

For illustration purposes, the circular case (ε = 0) in Figs. 4
and 5 have the initial velocities used to determine the original
scaling law marked (solid vertical lines) along with the starting
velocities where Eq. (11) indicates it is valid to start applying
Eq. (9) (dashed vertical line). Analysis of Eq. (11) showed it
correctly predicted the starting v∗ values for all eccentricities
from − 0.8 to 0.8. For |ε| � 0.9, it becomes difficult to
determine an initial point where the curve fit model and the
data begin to converge since the two are not well unified and
look more like a crossing than a merging.

V. CONCLUSION

In this paper, CTMC ionization data for various fully
stripped ions colliding with Rydberg targets has been pre-
sented. It has been shown that the cross sections for all the
systems can be scaled down to a single universal curve, which

compares very well to other theoretically developed models.
The final reduced data curve was then fitted with an empirical
function based on the initial collision parameters with great
success, but only for collision speeds beyond a minimum
threshold based on ion charge and eccentricity. While the
presented model works extremely well for most collision
combinations, it did show some discrepancy with the data
for extremely eccentric orbits (|ε| � 0.9), which was not too
surprising since it is in a region of known difficulty for classical
approaches.
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