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Optimal measurement for quantum discord of two-qubit states
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We present a complete treatment for the quantum discord of two-qubit X states, by developing a geometric
picture of a quantum steering ellipsoid. It is shown that either a von Neumann measurement or a three-element
positive-operator-valued measurement is optimal. The condition for the latter is obtained and expressed in
geometric language. We show, by using analytical as well as numerical results, that there is a systematic structure
in the optimal decomposition which exists in a class of states including the X states. More significantly, we establish
the relation to the quantum channel by identifying the steering ellipsoid with the quantum channel ellipsoid. Thus
the quantum discord and classical correlation are closely related to the concept of the entanglement entropy of
the quantum channel.
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Introduction. Quantum discord (QD) is regarded as a
measure of the quantumness of correlation, even in the absence
of quantum entanglement [1]. Many works have been devoted
to the significance and application of QD [2]. However, very
few analytic results for QD are known [3–6]. Although much
effort has been made [7–10], there is no exact expression for
QD for general two-qubit states, even for the X states (i.e.,
states such that the nonzero elements of the density matrix
lie only along the diagonal or antidiagonal in the product
basis). The main obstacle lies in the complicated optimization
procedure involving not only projective but also generalized
measurements.

We present in this work a complete treatment of the QD of
two-qubit X states. We focus on the induced decomposition of
the reduced state of qubit B (say) rather than the measurements
on qubit A. Using the geometric picture of the quantum
steering ellipsoid (QSE) [11,12], we show that the optimal
decomposition contains at most three states, and determine
the conditions under which the optimal decomposition has
two or three components. The QD of two-qubit X states is
then obtained without resorting to any numerical optimization.
However, the condition for the optimal three-state decompo-
sition involves a transcendental equation, which prevents us
from getting an analytical result.

What is interesting is the systematic structure existing in
the optimal decomposition not only for X states but also
for a slightly more general class of states. We introduce the
concept of the invariant set of optimal components (ISOC)
to characterize the fact that the set of optimal components
for a specific state remains optimal for a class of states.
Using analytical as well as numerical results, we demonstrate
the “phase” diagrams illustrating the optimal decomposition.
More importantly, we recognize that the QSE is identical
to the quantum channel ellipsoid. Then the relation to the
entanglement entropy of the quantum channel is established.
This result provides a deeper insight into the nature of the QD
as well as classical correlation.
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Quantum discord and steering ellipsoid. Suppose that a
positive-operator-valued measure (POVM) measurement M
is performed on particle A of a bipartite system in the
state ρ, where M = {Mi} with Mi � 0 and

∑
i Mi = 1. The

measurement M induces the ensemble {pi,ρB|Mi
} for ρB ,

where pi = Tr[(Mi ⊗ 1)ρ], ρB|Mi
= TrA[(Mi ⊗ 1)ρ]/pi , and

ρA(B) = TrB(A) ρ. The QD of ρ is defined as Q = S(ρA) +
minM S(ρB |M) − S(ρ), where S is the von Neumann en-
tropy, S(ρB |M) = ∑

i piS(ρB|Mi
), and the minimization is

performed over all POVMs.
For the two-qubit state ρ, the QSE is a useful tool.

Denoted by E, QSE is the three-dimensional ellipsoidal
region in which the Bloch vectors of ρB|Mi

are distributed.
The ellipsoid E is determined by xT R−1ηR−T x � 0, where
η = diag(1,−1,−1,−1), xT = (1,x,y,z) is a four-vector in
row form (the superscript T denotes matrix transposition), and
R is a matrix with entries Rμν = Tr[ρ(σμ ⊗ σν)] for μ,ν =
0,1,2,3. Here σ0 is the identity matrix and σi (i = 1,2,3) the
Pauli matrices. When M is of rank 1, all states ρB|Mi

lie on the
surface of E, denoted by ∂E [12]. It is shown in Refs. [13,14]
that the optimal M must be of rank 1. So, in geometric
language, the optimal decomposition must be attained on ∂E.

We now turn to the X states. An X state is expressed as
X = 1

4 (1 ⊗ 1 + a σ3 ⊗ 1 + b 1 ⊗ σ3 + ∑3
i=1 ti σi ⊗ σi). Both

reduced states XA and XB take the diagonal form, so all
coherence applies jointly to the two qubits, and not to either
separately. The class of X states is actually not unusual and
arises naturally in a wide variety of physical situations, e.g.,
entanglement sudden death [15], and the relation between
quantum correlations and quantum phase transitions [16].

The QSE of the state X is given by x2/λ2
1 + y2/λ2

2 + (z −
κ)2/λ2

3 = 1, where κ = (b − at3)/(1 − a2), λ1 = t1/
√

1 − a2,
λ2 = −t2/

√
1 − a2, and λ3 = (t3 − ab)/(1 − a2). The center

of E is the point (0,0,κ). Let P and Q denote the upper and
the lower vertices of E. Their z coordinates are zP = κ + |λ3|
and zQ = κ − |λ3|, respectively.

For the sake of convenience of analysis, we let |λ1| � |λ2|,
κ � 0. These conditions can be satisfied by performing local
unitary operations. Henceforth these conditions are assumed.
In this setting, the center of E is on the upper half of the z axis
(containing the origin), and the largest vertical intersection is
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FIG. 1. (Color online) QSE E and the largest vertical intersection
E. (a) is used to prove Lemma 1. See [17] for details. In (b), the chord
EF (in blue) and PQ (in gray) denote, respectively, the horizontal
and vertical decompositions for point Z.

in the x-z plane. Let E denote the boundary of the intersection.
The equation of E is x2/λ2

1 + (z − κ)2/λ2
3 = 1. Let point B =

(0,0,b) denote the reduced state XB = 1
2 (1 + bσ3). Point B is

inside E. See Fig. 1. We are concerned with the decomposition
of the point B into the convex combination of the points Bi ∈
∂E. The following lemma allows us to greatly simplify the
optimization procedure. The proof is given in Ref. [17].

Lemma 1. For any point inside E, the optimal decomposition
is attained on E, and has at most three components.

Properties of E. The ellipse E is then our focus of attention.
We will analyze its properties by contracting E horizontally
while keeping the upper and lower vertices unchanged. That
is, we fix zP and zQ, and decrease |λ1| from the maximal value
λmax to zero [18].

To proceed, we define some functions. Let Z = (0,0,z) be
some point on the z axis and EF the horizontal chord of E
passing through Z [see Fig. 1(b)]. The distance from the origin
O to the point E or F is r(z) = [λ2

1 − (z − κ)2λ2
1/λ

2
3 + z2]1/2

for z ∈ [zQ,zP ]. Define

H (z) = ξ (r(z)), (1)

V (z) = z − zQ

zP − zQ

ξ (zP ) + zP − z

zP − zQ

ξ (zQ), (2)

where ξ (x) = − 1+x
2 log2

1+x
2 − 1−x

2 log2
1−x

2 for x ∈ [−1,1].
The functions H (z) and V (z) are in fact the average entropy
over the horizontal and vertical decompositions of point Z,
i.e., Z → {E,F } and Z → {P,Q}, respectively. When E is
contracted, some specific values of |λ1| are important, which
we define as follows.

When λ2
1 = λ2

P , the second derivative of H (z) with respect
to z vanishes at z = zP . We similarly define λ2

Q at z = zQ.
When λ2

1 = λ2
T , the tangent line of H (z) at z = zQ is just

the line that connects the two end points (zP ,H (zP )) and
(zQ,H (zQ)). The expressions for λ2

P , λ2
Q, and λ2

T are given
at the end of the paper. We also define z
 as the solution of the
equation

dH (z)

dz
= H (z) − H (zP )

z − zP

. (3)

Let E
F 
 denote the horizontal chord of E passing through
the point (0,0,z
).

The function H (z) has the following properties. (i) λ2
Q <

λ2
T < λ2

P . (ii) H (z) is concave with respect to z for λ2
1 ∈

[0,λ2
Q], and convex for λ2

1 ∈ [λ2
P ,λ2

max]. (iii) H (z) has a

FIG. 2. (Color online) (a) Schematic plot of the function H (z).
The five curves (from bottom to top) correspond to five different
values of |λ1| in decreasing order. The bottom (blue) curve is convex,
and the top (gray) is concave. Each of the three middle (red) curves
has only one inflection point. The solid line denotes the function
V (z). (b) In E�, the decomposition B → {P,E
,F 
} is optimal for
any point B with b ∈ [z
,zP ], while for b ∈ [zQ,z
] the horizontal
decomposition is optimal.

unique inflection point for λ2
1 ∈ [λ2

Q,λ2
P ]. (iv) H (z) � V (z)

for λ2
1 ∈ [0,λ2

T ]. (v) z
 exists for λ2
1 ∈ [λ2

T ,λ2
P ]. These results

can be verified by directly analyzing H (z) and its derivatives.
But the proof is too technical to be described here. A schematic
plot of H (z) is shown in Fig. 2(a).

Optimal decomposition for X states. We have the following
proposition.

Proposition 1. There are three cases.
(a) If λ2

1 ∈ [λ2
P ,λ2

max], then min S(XB |M) = H (b). Hori-
zontal decomposition is optimal; it is induced by performing
on qubit A the measurement M = {|x+〉〈x+|,|x−〉〈x−|} with
σx |x±〉 = ±|x±〉.

(b) If λ2
1 ∈ [0,λ2

T ], then min S(XB |M) = V (b). Vertical
decomposition is optimal; it comes from the measurement
M = {|0〉〈0|,|1〉〈1|}.

(c1) If λ2
1 ∈ [λ2

T ,λ2
P ] and b ∈ [zQ,z
], the horizontal de-

composition is optimal and min S(XB |M) = H (b).
(c2) If λ2

1 ∈ [λ2
T ,λ2

P ] and b ∈ [z
,zP ], then min S(XB |M) =
p
H (z
) + (1 − p
)H (zP ) with p
 = (zP − b)/(zP − z
).
The optimal decomposition is B → {P,E
,F 
} for which a
three-element POVM is needed.

We denote by E↔, E
, and E� the ellipses corresponding
to cases (a), (b), and (c), respectively. The QD of X states is
obtained by examining the type of E, in particular the type of
E, as well as Eq. (3). Unfortunately Eq. (3) can only be solved
numerically.

Let us prove Proposition 1. Consider the decomposition
B → {pi,Bi} with Bi ∈ E. The average entropy is given by∑

i piH (zi) with zi the z coordinate of point Bi . If H (z)
is convex, we have H (b) �

∑
i piH (zi) for b = ∑

i pizi ,
meaning that the horizontal decomposition is optimal. If H (z)
is larger than V (z), then for any combination

∑
i pizi = b,

we have
∑

i piH (zi) �
∑

i piV (zi) = V (b). Thus the vertical
decomposition is optimal. Cases (a) and (b) are proved.

For case (c), we consider the tangent line of H (z) passing
through the end point (zP ,H (zP )), i.e., the dashed line
in Fig. 2(a). The tangent point is determined by Eq. (3).
According to the property (v), this tangent line exists when
λ2

1 ∈ [λ2
T ,λ2

P ]. In this case, if b ∈ [z
,zP ], the tangent line
determines the vale of min S(XB |M), that is, p
H (z
) +
(1 − p
)H (zP ). The minimum is attained on the three-state
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decomposition B → {P,E
,F 
}. If b ∈ [zQ,z
], the optimal
decomposition of B is still the horizontal one, as the function
H (z) remains convex in the interval [zQ,z
]. Case (c) is proved.
We emphasize that the three-state decomposition is optimal for
any point B with b ∈ (z
,zP ). The set {P,E
,F 
} is the ISOC
for any such point.

Function H (z) has another property: If κ = 0 then H (z)
is either convex (when |λ1| > |λ3|) or concave (when |λ1| <

|λ3|). Then we have the following.
Corollary 1. If the center of E is at the origin, the optimal

decomposition is horizontal for an oblate ellipse (i.e., |λ1| >

|λ3|), and vertical for a prolate ellipse (i.e., |λ1| < |λ3|).
We conclude the discussion of X states with some remarks

regarding case (c2). First, this class of states has a particular
significance in the dynamics of the QD. Suppose that the
initial state is such that the ellipse E is the largest one, i.e.,
|λ1| = λmax. Let both qubits experience the identical local
phase-damping noise. Under the influence of the noise, the
QSE is contracted towards the z axis, while the upper and lower
vertices remain fixed. The ellipse E is of the type E↔ at first
and of the type E
 in the end. If κ = 0, then from Corollary 1 an
ellipse of the type E� does not appear in the whole evolution.
The change from E↔ to E
 occurs abruptly, which leads to a
sudden transition between classical and quantum decoherence
[19]. If κ �= 0, an ellipse of the type E� will appear in
the decoherence process. Consequently, QD and classical
correlation change smoothly and there is no sudden transition.

Second, consider a typical class of states belonging to
case (c2): the X states such that H (b) = V (b). It can be
verified that this class of states appears on the boundary curves
illustrating the relationships between QD and other quantities,
such as classical correlation [20], linear entropy [21], and von
Neumann entropy [22].

Phase diagrams of optimal decomposition. Now we extend
the results for X states to a more general case: Point B

may be moved to any position inside E, in which case the
corresponding state may not take the X form.

Proposition 2. For any point inside E↔, the horizontal
decomposition is optimal. For any point inside E� and below
the chord E
F 
, the horizontal decomposition is optimal. For
any point inside the triangle �PE
F 
 in E�, the optimal
decomposition is {P,E
,F 
}.

This proposition reveals the systematic structure of the
optimal decomposition. To prove it, we first consider an ellipse
of the type E�. Suppose that a point B inside �PE
F 
 is
decomposed into {pi,Bi} with Bi ∈ E. By rotating the points
B and Bi around the z axis by 180◦, we get the symmetric
points B ′ and B ′

i . The following three ensembles yield the
same average entropy: {pi,Bi}, {pi,B

′
i}, and {pi

2 ,Bi ;
pi

2 ,B ′
i}.

Note that the average over the last ensemble gives the midpoint
of the line segment BB ′, for which the optimal decomposition
is {P,E
,F 
} according to Proposition 1. Hence the optimal
decomposition of B is also given by {P,E
,F 
}. Similar
reasoning leads to the other results stated in Proposition 2.

The cases which are not covered by Proposition 2 concern
the points inside the ellipse E
 and the points in the region
above �PE
F 
 in E�. These cases are illustrated by gray
regions in Fig. 3. We cannot provide a rigorous treatment for
such points. By examining numerically about 105 states we
find that for such a point B ′′ the two-component decomposition

FIG. 3. (Color online) Phase diagram of the optimal decomposi-
tion. The triangle �PE
F 
 is in red, the region below �PE
F 
 and
the region inside E↔ are in blue, and the region above �PE
F 
 and
the region inside E
 are in gray. For any point in the red, blue, or
gray regions, the optimal decomposition is, respectively, three-state,
horizontal, or tilted decomposition.

B ′′ → {B ′′
1 ,B ′′

2 }, is optimal. And the set {B ′′
1 ,B ′′

2 } is the ISOC
for any point on the chord B ′′

1 B ′′
2 . Hence we obtain the phase

diagram depicted in Fig. 3.
Relation to quantum channel. We will show below the

fundamental significance of the QSE: It is identical to the
quantum channel ellipsoid. For the details of the quantum
channel the reader is referred to Refs. [23,24].

Given a two-qubit state ρ, the reduced state ρA is in
general invertible. Let ρ̃ = [(2ρA)−1/2 ⊗ 1]ρ[(2ρA)−1/2 ⊗ 1].
There is an isomorphism between ρ̃ and a one-qubit quantum
channel �, i.e., ρ̃ = (id ⊗�)β, where id denotes the identity
transformation and β = |β〉〈β| with |β〉 = 1√

2
(|00〉 + |11〉). In

terms of the Bloch vectors, the effect of � can be expressed
as a 4 × 4 matrix L� [25]. We have shown in Ref. [5] that
the QSE can be expressed equivalently as xT L−T

� ηL−1
� x � 0.

On the other hand, the channel � transforms the Bloch ball to
an ellipsoid, which we call the quantum channel ellipsoid. In
terms of L�, a point on the Bloch sphere, denoted by the unit
vector �u, is mapped to the point �x such that x = L�u with x =
(1,�x) and u = (1,�u). The surface of the channel ellipsoid is de-
termined by 1 − �u · �u = uT ηu = 0, that is, xT L−T

� ηL−1
� x =

0. Thus we see that the QSE is identical to the channel
ellipsoid.

Define the entanglement entropy of a one-qubit quan-
tum channel � with the input state 
 as E�(
) =
min

∑
pjS(�(πj )), where the minimum is taken over all

convex decompositions of the state 
 into pure states, i.e.,

 = ∑

pjπj with πj pure [26]. We have the following.
Proposition 3. Given a two-qubit state ρ, let � be the quan-

tum channel isomorphic to ρ̃. We have that minM S(ρB |M) =
E�(ρT

A ).
We first note that �(ρT

A ) = ρB , which can be
proved by direct calculation. Also note that E�(ρT

A ) =
min

∑
pjS(�(πT

j ))= min
∑

pjS(ρBj
), where

∑
pjπj = ρA,

ρBj
= �(πT

j ), and
∑

pjρBj
= ρB . All ρBj

lie on the surface
of the channel ellipsoid (or QSE). Then the minimum of∑

pjS(ρBj
) is equal to the minimum of S(ρB |M), and the

proof is completed.
The results obtained about the optimal decomposition can

be directly applied to find the entanglement entropy of the
quantum channel. Considering the axially symmetric channel
discussed in Ref. [26], a more rigorous treatment is available
in our approach: The optimal output ensemble is determined
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by the properties of E, which we have characterized in
Proposition 1 by an analytical rather than a numerical method.

Summary. We provide a complete treatment of the QD of
two-qubit X states. The results are generalized to a slightly
more general class of two-qubit states. Using analytical
and numerical methods, we find the systematic structure of
the optimal decomposition, i.e., the existence of the ISOC.

Moreover, we identify the QSE with the quantum channel
ellipsoid, and show that the entanglement entropy of the
quantum channel is the core of the QD.

Expressions for λ2
P , λ2

Q, and λ2
T . By solving the equa-

tions d2H (z)/dz2
∣∣
z=zP

= 0 and dH (z)/dz
∣∣
z=zQ

= [H (zP ) −
H (zQ)]/(zP − zQ) with respect to λ2

1, we have, respectively,

λ2
P = zP

2
[
zP + (

z2
P − 1

)
arctanh(zP )

] [
z2
P − zP zQ + (

1 − z2
P

)
zQ arctanh(zP )

−
√(

1 − z2
P

)
arctanh(zP )

[
z3
P − zP z2

Q + (
1 − z2

P

)
z2
Q arctanh(zP )

] ]
, (4)

λ2
T = zQ

(1 + zP ) log2(1 + zP ) + (1 − zP ) log2(1 − zP ) − (1 + zP ) log2(1 + zQ) − (1 − zP ) log2(1 − zQ)

2[log2(1 + zQ) − log2(1 − zQ)]
. (5)

The expression for λ2
Q can be obtained by interchanging zP and zQ in Eq. (4). Also note that (4) and (5) were derived in Ref. [26]

in an alternative way.
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