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Hybrid quantum-classical models as constrained quantum systems
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Constrained Hamiltonian description of the classical limit is utilized in order to derive consistent dynamical
equations for hybrid quantum-classical systems. Starting with a compound quantum system in the Hamiltonian
formulation, conditions for classical behavior are imposed on one of its subsystems and the corresponding hybrid
dynamical equations are derived. The presented formalism suggests that the hybrid systems have properties that
are not exhausted by those of quantum and classical systems.
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I. INTRODUCTION

The fundamental assumption of quantum mechanics is that
the evolution of an isolated quantum system is given by the lin-
ear Schrödinger equation. On the other hand, all macroscopic
systems usually obey nonlinear evolution equations of classical
mechanics to an excellent approximation. The classical and
the quantum theory have developed different formalisms to
successfully describe interactions between systems belonging
to their respective domains. Correlations between quantum
objects are mathematically captured by the direct product
structure of the Hilbert spaces. On the other hand, compound
classical systems are described on the Cartesian product
of the component’s phase spaces. Attempts to formulate a
consistent dynamical theory of interacting quantum-classical,
commonly called hybrid, systems are numerous as is illustrated
by the following rather partial list of references [1–8]. Current
technologies are sufficiently developed to enable experimental
studies of the interaction between typically quantum and
typically classical objects [9,10], but such experiments require
detailed preliminary theoretical models.

In this work the framework of the theory of Hamiltonian dy-
namical systems is used to treat the hybrid quantum-classical
systems and to develop a description of the interactions within
such systems which is consistent with the main physically
justified requirements. In fact, it is well known [6,11–17]
that quantum mechanics can be formalized as a Hamiltonian
dynamical system with the corresponding phase space and
with the quantum observables described by functions which
are quadratic forms of the canonical variables. More general
functions on the quantum phase space do not have any
physical interpretation. This formalism is used in [8] to develop
a description of the hybrid classical-quantum systems by
treating both, quantum and classical, formally as Hamiltonian
systems described in the Hamiltonian language. The coupling
between the systems is introduced somewhat ad hoc as if both
systems were classical, just because they are both described
in the framework of the Hamiltonian dynamical systems. This
assumption about the treatment of compound systems is not
trivially obvious. For example, such treatment of coupling
between two quantum systems, both separately described in
the Hamiltonian framework, would be incorrect. In this Brief
Report we start with the total compound quantum system in
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the geometric Hamiltonian framework. The next step is to
consider a classical limit of one of the component systems.
To this purpose we utilize our recently developed theory of
general quantum constraints within the Hamiltonian approach
[15], and the corresponding description of the classical limit
[16,17]. The classical behavior of one of the components
is accomplished by constraining the Hamiltonian evolution
so that the quantum fluctuations of the would-be classical
degrees of freedom remain minimal for all times. This in effect
constrains the evolution onto a manifold which is the Cartesian
product of the quantum phase space of the quantum subsystem
and the manifold corresponding to the coherent states of
the would-be classical one. The evolution equations for the
interacting hybrid systems are obtained in the macro limit
applied on the coarse-grained subsystem and the constrained
Hamiltonian equations. The Hamiltonian form of the derived
evolution equations of the hybrid system turns out to be the
same as the one postulated in Ref. [8] and therefore satisfies
a list of standard requirements collected and tested in [8]. We
also provide a discussion of a puzzling fact, pointed out also
in [8], regarding the physical interpretation of functions of
both the classical and the quantum degrees of freedom.

II. SELECTIVE COARSE-GRAINING AND
HYBRID DYNAMICS

The framework of constrained Hamiltonian description for
the treatment of quantum systems with nonlinear constraints
and its application on the problem of classical limit was
developed and discussed in [16,17] and shall not be repeated
here. Here we apply the general theory in order to derive con-
sistent dynamical equations for the hybrid systems. Consider
a quantum system composed of two quantum subsystems, for
convenience fancifully called the first and the second. The
Hilbert space of the composite is H = H1 ⊗ H2 and the quan-
tum phase space of the composite is denoted M. An arbitrary
vector from H is denoted |ψ〉〉 and the corresponding point
from M has complex canonical coordinates (ψ(x),ψ∗(x)),
which are expansion coefficients in a basis {|x〉〉} of |ψ〉〉 and
its dual vector. The Poisson bracket of two functions on M is
given by

{f1,f2}M = 1

ih̄

∫
dx

(
δf1

δψ(x)

δf2

δψ∗(x)
− δf2

δψ(x)

δf2

δψ∗(x)

)
.

(1)
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The notation for the basis {|x〉〉} and the integral in (1) should
be understood symbolically and could denote a denumerable
or finite basis and summation, respectively. The Schrödinger,
i.e., the Hamiltonian evolution, is generated by the function
H (ψ,ψ∗) = 〈〈ψ |Ĥ1 + Ĥ2 + Ĥ12|ψ〉〉, where the meaning of
the notation is obvious.

For the sake of simpler presentation we shall consider the
system such that the first of the subsystems is in fact given
by the k-fold product of the Heisenberg algebras; that is, by
the basic operators (q̂1, . . . ,q̂k , p̂1, . . . ,p̂k) ≡ (q̂,p̂). We shall
consider a hybrid classical-quantum system as a system such
that the total quantum fluctuations of the first subsystem; that
is, the sum of dispersions of the basic observables (q̂,p̂),

F (Xψ ) =
k∑

i=1

[
(�q̂i)

2
ψ + (�p̂i)

2
ψ

] − min = 0, (2)

is preserved minimal during the evolution. This condition
represents a nonlinear constraint on the admissible states of
the total system. The evolution of the fully quantum composite
system must be modified in such a way that the constraint
is respected, and to this end we use the method developed
in [15,16]. The manifold �̄ of the constraint (2) is a nonlinear
symplectic submanifold of M locally isomorphic with the
Cartesian product �1 × M2, where �1 is the manifold of
the standard Heisenberg algebra minimal uncertainty coherent
states (MUCS) of the first subsystem, denoted by |α〉 or |q,p〉,
and M2 ∼ H2 is the quantum phase space of the second
subsystem. Therefore, at each point |C〉〉 of �̄ given by

|C〉〉 = |α〉|ω2〉 ≡ |q,p〉|ω2〉, (3)

there are local symplectic coordinates (q,p,ω2(x2), ω∗
2(x2))

expressed in terms of |C〉〉 as q = 〈〈C|q̂|C〉〉, p = 〈〈C|p̂|C〉〉,
and ω2(x2) = 〈x2|〈q,p|C〉〉. The vectors {|x2〉} symbolize a
basis in H2 not necessarily the generalized eigenbasis of
some multiplication operator as the notation might suggest.
Notice that the requirement of minimal quantum fluctuations
set only on the first subsystem automatically implies that the
first subsystem is always in a coherent state and there is no
entanglement between the two subsystems. Also, there can
be no entanglement between the degrees of freedom of the
first subsystem. No restriction on the type of states of the
second subsystem is set by the constraint (2), so the quantum
subsystem can be in an entangled state.

The fundamental assumption concerning the dynamics of
the putative hybrid system is that the nonlinear constraint
(2) is preserved during such evolution. This ensures that the
first subsystem is minimally quantum (as close as possible
to classical), while the second subsystem is quantum in
nature. Thus, our proposal for the dynamical equations of
these coupled subsystems are the Hamiltonian equations given
by the original Hamiltonian plus the additional terms that
guarantee the preservation of the constraint (2). The resulting
equations will by construction preserve the minimally quantum
nature of the first subsystem.

The constrained manifold �̄ is symplectic and in this case,
as was explained in detail in [16,17], the constrained system is
Hamiltonian with the Hamilton function given by the original
Hamilton function 〈〈ψ |Ĥ |ψ〉〉 evaluated on the constrained
manifold. Therefore, the dynamics is generated by the Poisson

bracket on M and the Hamiltonian

Ht = 〈〈C(ψ)|Ĥ |C(ψ)〉〉 = 〈〈ψ |q,p〉〈q,p|Ĥ |q,p〉〈q,p|ψ〉〉
≡ 〈〈ψ |Ĥα(q,p)|ψ〉〉, (4)

where Ĥα(q,p) ≡ |q,p〉〈q,p| ⊗ 〈q,p|Ĥ |q,p〉. In fact the con-
strained evolution of an arbitrary function-observable A(ψ) =
〈〈ψ |Â|ψ〉〉 on the constrained manifold is obtained by reducing
the following equation:

Ȧ(ψ) = {A(ψ),Ht }M
= 1

ih̄

∫
dx

(
δA(ψ)

δψ(x)

δHt

δψ∗(x)
− δHt

δψ(x)

δA(ψ)

δψ∗(x)

)
(5)

on the constrained manifold �̄.
For example, before reduction on �̄ the dynamical equa-

tions for q = 〈〈ψ |q̂|ψ〉〉 and p = 〈〈ψ |p̂|ψ〉〉 are given by

q̇ = 1

ih̄
〈〈ψ |[q̂,Ĥα]|ψ〉〉 + ∂Ht

∂p
, (6a)

ṗ = 1

ih̄
〈〈ψ |[p̂,Ĥα]|ψ〉〉 − ∂Ht

∂q
. (6b)

Short computation shows that the first terms in these equations
are in fact equal to zero on the constrained manifold �̄. In
fact, for an arbitrary operator Â1 acting only in H1 one has
〈〈ψ |[Â1,Ĥα]|ψ〉〉|�̄ = 0. Therefore, the dynamical equations
for the first system’s coordinates and momenta are

q̇ = ∂Ht

∂p
, ṗ = −∂Ht

∂q
. (7)

Let us now compute the dynamical equations for the
functions of the form

ω2(x2) ≡ 〈x2|ω2(ψ)〉 = 〈x2|〈q,p|ψ〉〉. (8)

Starting again with the equation

ω̇2(x2) = 1

ih̄

∫
dx

(
δω2

δψ(x)

δHt

δψ∗(x)
− δHt

δψ(x)

δω2

δψ∗(x)

)
(9)

and after somewhat lengthy calculation one obtains, before the
reduction on �̄,

ih̄ ω̇2(x2)=〈x2|〈q,p|Ĥ |q,p〉|ω2〉
+

(
q

2

∂Ht

∂q
+ p

2

∂Ht

∂p

)
ω2(x2)

+ i

h̄
〈x2|〈q,p|(p̂ − p/2)|ψ〉〉〈〈ψ |[q̂,Ĥα]|ψ〉〉

− i

h̄
〈x2|〈q,p|(q̂ − q/2)|ψ〉〉〈〈ψ |[p̂,Ĥα]|ψ〉〉. (10)

Upon reduction on the constrained manifold �̄ the last two
terms are annulled and the relevant dynamical equations can
be written in the form

ih̄ ω̇2(x2) = 〈x2|〈α|Ĥ |α〉|ω2〉 +
(

q

2

∂Ht

∂q
+ p

2

∂Ht

∂p

)
ω2(x2).

(11)
The last term of this equation implies pure phase change and
can be gauged away resulting with

ih̄ ω̇2(x2; ψ) = 〈x2|〈α(ψ)|Ĥ |α(ψ)〉|ω2(ψ)〉. (12)
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Equation (12) has the form of a Schrödinger equation for the
state vector ω2(x2; ψ) = 〈x2|〈q,p|ψ〉〉 ∈ H2, with the Hamil-
tonian operator 〈α(ψ)|Ĥ |α(ψ)〉 acting on H2 and depending
on q = 〈〈ψ |q̂|ψ〉〉 and p = 〈〈ψ |p̂|ψ〉〉.

The dynamical equations (7) and (12) can be written as
Hamiltonian dynamical equations in local coordinates on the
constrained manifold �̄ by introducing the Poisson bracket
on �̄ for arbitrary functions on �̄ represented in the local
coordinates (q,p,ω2,ω

∗
2) as

{f1,f2}�̄ =
k∑

i=1

(
∂f1

∂qi

∂f2

∂pi

− ∂f2

∂qi

∂f1

∂pi

)

+ 1

ih̄

∫
dx2

(
δf1

δω2(x2)

δf2

δω∗
2(x2)

− δf2

δω2(x2)

δf1

δω∗
2(x2)

)
.

(13)

Thus, the Hamiltonian form of the hybrid dynamics on the
constrained manifold �̄ as the phase space reads

q̇ = {q,Ht }�̄, ṗ = {p,Ht }�̄, (14)

ω̇2 = {ω2,Ht }�̄, ω̇∗
2 = {ω∗

2,Ht }�̄, (15)

where the Hamilton function Ht (q,p,ω2(x2),ω∗
2(x2)) in local

coordinates on �̄ is given by (4).
At this point we may briefly discuss the case of general,

i.e., mixed quantum states. Such a state is given by a positive
normalized function on M which has quadratic dependence
on the canonical coordinates (ψ,ψ∗). Restriction of such
a function on the nonlinear submanifold �̄ results with a
function ρ(q,p,ω2(x2),ω∗

2(x2)) which depends quadratically
on (ω2(x2),ω∗

2(x2)). On the other hand, ρ(q,p,ω2(x2),ω∗
2(x2))

for fixed (ω2(x2),ω∗
2(x2)) can be an arbitrary positive function

of (q,p) with a unit integral over �, since (q,p) is not a
subset of the canonical coordinates on M, but are physical
observables q = 〈〈ψ |q̂|ψ〉〉, p = 〈〈ψ |p̂|ψ〉〉. In fact they are a
subset of the canonical coordinates on the nonlinear submani-
fold �̄. In terms of the Poisson bracket on �̄ the dynamics of
ρ(q,p,ω2(x2),ω∗

2(x2)) is given by the corresponding Liouville
equation

ρ̇(q,p,ω2,ω
∗
2) = {Ht (q,p,ω2,ω

∗
2),ρ(q,p,ω2,ω

∗
2)}�̄ . (16)

The constrained dynamics which preserves minimal value
of the quantum fluctuations of one of the subsystems is only
the first step. The second step is the relevant macrolimit
so that the minimal quantum fluctuations still present in
the corresponding coherent states can be neglected when
compared with actual values of the dynamical variables.
Therefore the macrolimit should be applied on Eqs. (14)
relevant for the first subsystem. This is illustrated in the
following example.

III. AN EXAMPLE: TWO 1/2 SPINS AND A CLASSICAL
NONLINEAR OSCILLATOR

Consider a system of interacting equal qubits each coupled
to the same nonlinear oscillator. The quantum Hamiltonian of

the total system is

Ĥ = εσ̂ z
1 + εσ̂ z

2 +μσ̂ x
1 σ̂ x

2 + p̂2

2m
+ V (q̂) + q̂

(
λ1σ̂

z
1 + λ2σ̂

z
2

)
,

(17)

where V (q̂) is a polynomial expression in terms of q̂ such that
d2V (q)/dq2|q=0 = m
2. The constraining and the macrolimit
will be applied on the nonlinear oscillator subsystem.

The total Hamilton function of the constrained system is
Ht = 〈〈C(ψ)|Ĥ |C(ψ)〉〉, where |C(ψ)〉〉 = |q,p〉|ω〉. The com-
plex coefficients of an arbitrary ω ∈ C4 in the computational
basis are denoted by c1, c2, c3, and c4 and their real and
imaginary components are the canonical coordinates given
by (xi,yi) = √

2(Re(ci),Im(ci)), i = 1,2,3,4. The expectation
of the spin part of the Hamiltonian (17) in the vector |C〉〉 is

Hs = ε
(
y2

1 + x2
1 − y2

4 − x2
4

) + μ(y2y3 + y1y4 + x2x3 + x1x4).
(18)

The expectation in a vector |C〉〉 of the interaction part is

Hint = λ1q
(
y2

1 + y2
2 − y2

3 − y2
4 + x2

1 + x2
2 − x2

3 − x2
4

)/
2

+ λ2q
(
y2

1 − y2
2 + y2

3 − y2
4 + x2

1 − x2
2 + x2

3 − x2
4

)/
2,

(19)

where q = 〈q,p|q̂|q,p〉 is the coherent state expectation of
the oscillator’s coordinate. Finally, the |C〉〉 expectation of the
oscillator’s Hamiltonian is

Hosc = p2

2m
+ V (q) +

∞∑
k=1

1

2kk!

h̄kV (2k)(q)

(2m
)k
, (20)

where we used the explicit expression of 〈q,p|V (q̂)|q,p〉
derived in [16]. In the macrolimit the term containing h̄ → 0
is zero, leading to the Hamiltonian of the classical nonlinear
oscillator.

The total Hamiltonian generating the dynamics of the five
degrees of freedom (q,p) and (xi,yi), i = 1,2,3,4 via the
Hamiltonian dynamical equations (14) and (15) is the sum
of the three functions (18), (19), and (20).

The dynamics of the two qubits in the form of the
Schrödinger equation (12) is given by the Hamilton operator
on H2 = C4, which depends also on the oscillator coordinate
q = 〈q,p|q̂|q,p〉,
〈q,p|Ĥ |q,p〉 = εσ̂ 1

z + εσ̂ 2
z + μσ̂ 1

x σ̂ 2
x + λ1qσ̂ 1

z + λ2qσ̂ 1
z .

(21)

IV. DISCUSSION AND SUMMARY

In summary, we have derived from the first principles the
Hamiltonian dynamical model corresponding to the hybrid
quantum-classical systems that has been postulated in [8].
In the derivation we have started from a quantum system
composed of two quantum subsystems and then we have
assumed that one of the subsystems has and preserves the
classical properties during the interaction with the quantum
subsystem. This is implemented by the corresponding con-
strained Hamiltonian dynamics. In this way the approach
adopted in [8] is justified from the first principles, which is
our main result.
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The main properties of the hybrid dynamical equations
in their Hamiltonian forms (14) and (15) have been studied
in detail in [8] and therefore need not be repeated here.
However, we would like to comment on the following peculiar
property of the hybrid Hamiltonian dynamical system already
analyzed in [8]. Consider the Liouville equation (16) in the
case that the hybrid Hamiltonian Ht (q,p,ω2,ω

∗
2) and the

density ρ(q,p,ω2,ω
∗
2) both depend on the same canonical

pair of the classical subsystem. If the density ρ(q,p,ω2,ω
∗
2)

generates a mixed state on the quantum subsystem, then it
must be a quadratic function of the canonical coordinates
(ω2(x2),ω∗

2(x2)) corresponding to the quantum subsystem. The
Hamiltonian is also a quadratic function of the canonical
coordinates of the quantum subsystem. However, the set of
such quadratic functions of the quantum canonical coordinates
which also depend on the classical coordinates is not closed
under the Poisson bracket (13) on �̄. This is in sharp contrast
with the purely quantum case. Therefore, the Hamiltonian
dynamical model that corresponds to the hybrid system
must include functions of the quantum canonical variables,
which do not have the physical interpretation of quantum
observables. In fact, the hybrid Hamiltonian dynamical system
does not preserve the metrical properties of the hybrid phase
space �̄. This is akin to the purely classical case where the
corresponding dynamics preserves the symplectic structure,
i.e., the system is Hamiltonian, but does not preserve the
metrical properties, which are therefore not considered as part
of the classical system’s structure. Analogously, hybrid mixed

states, i.e., probability densities on �̄, must be assumed to
be of a more general form than in the purely quantum case.
Quantum mechanical average of an observable F̂ in the state
ρ̂: F̄ = Tr[ρ̂F̂ ] is reproduced with F̄ = ∫

M F (X)μ(X)dX

using any of the probability densities μ(X) with the same
first moment that is fixed by the requirement that the quantum
expectation is equal to F̄ . The fact that the quantum mixed
state ρ̂ determines only an equivalence class of densities
μ(X), those with the appropriate first moment, is equivalent
to the nonuniqueness of the expansion of the mixed state in
terms of convex combinations of pure states and is crucially
quantum property of the Hamiltonian system on M. We see
that in the hybrid systems even if the initial state ρ(q,p,ω2,ω

∗
2)

generates a quantum mixed state on the quantum subsystem,
i.e., is quadratic in terms of the canonical variables of the
quantum subsystem, such a state will evolve into a probability
density of a more general form. This fact suggests that
the truly hybrid systems, if existent, must be considered
as a conceptually independent class and not as such whose
properties are exhausted by the properties of quantum and of
classical systems.
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