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Optical solitons in PT -symmetric nonlinear couplers with gain and loss
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We study spatial and temporal solitons in the PT symmetric coupler with gain in one waveguide and loss
in the other. Stability properties of the high- and low-frequency solitons are found to be completely determined
by a single combination of the soliton’s amplitude and the gain-loss coefficient of the waveguides. The unstable
perturbations of the high-frequency soliton break the symmetry between its active and lossy components which
results in a blowup of the soliton or a formation of a long-lived breather state. The unstable perturbations of the
low-frequency soliton separate its two components in space, thereby blocking the power drainage of the active
component and cutting the power supply to the lossy one. Eventually this also leads to the blowup or breathing.
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I. INTRODUCTION

Optical solitons are formed when nonlinear effects compen-
sate the diffractive broadening of light beams (spatial solitons)
or dispersive spreading of optical pulses (temporal solitons).
Although these localized structures arise both in conservative
settings and in systems with active and lossy elements,
properties of dissipative optical solitons [1,2] show significant
differences from those of their conservative counterparts
[3]. In particular, the amplitudes of solitons in conservative
systems are free to vary over continuous ranges whereas the
generic dissipative systems can only support solitons at special
amplitude values determined by the balance between gain and
loss.

In an interesting turn of events, it was realized recently that
there is a class of optical systems where dissipative solitons
arise in continuous families. These systems consist of elements
with gain and loss arranged in a particular symmetric way [4].
The symmetry here can be interpreted as an optics equivalent
[5,6] of the PT (parity-time) symmetry in quantum mechanics
[7–10].

The PT -symmetric potentials in quantum mechanics are
essentially complex potentials which however exhibit a purely
real spectrum of energies, with the implication that their
time-dependent eigenfunctions show no decay or growth.
Despite this similarity to the Hermitian quantum mechanics,
the PT -symmetric quantum systems display a variety of
anomalous phenomena stemming from the non-Hermitian
mode interference [11–16].

The first experimental demonstrations of the PT -
symmetric effects in optics were in two-waveguide directional
linear couplers composed of waveguides with gain and loss
[17,18]. Theoretical analyses suggest that such couplers,
operating in the nonlinear regime, can be used for the all-
optical signal control [19–22]. Arrays of the PT -symmetric
couplers were proposed as a feasible means of control of the
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spatial beam dynamics, including the formation and switching
of spatial solitons [23–25].

This paper is concerned with the PT -symmetric couplers
with an extra spatial or temporal degree of freedom. We
consider the situation of stationary light beams in the coupled
planar waveguides [i.e., waveguides extended in the transverse
direction, Fig. 1(a)] and that of the optical pulses in coupled
one-dimensional waveguides [Fig. 1(b)]. The configuration
shown in Fig. 1(a) can also be seen as the strong-coupling
limit of the array of coupled dimers discussed in the recent
Ref. [25].

Our study focuses on spatial and temporal solitons in such
couplers. The reader should be alerted up front that we use
the term “soliton” simply as a synonym for solitary wave or
localized pulse. No a priori stability is implied by the use
of this term. It is the objective of this study to classify the
PT -symmetric solitons into stable and unstable ones.

In addition to the analysis of the solitons’ stability proper-
ties and numerical study of the linearization eigenvalues, we
uncover the instability mechanisms and simulate the nonlinear
evolution of the unstable solitons.

The paper is organized as follows. In the next section
(Sec. II) we formulate the mathematical model and identify
physically meaningful integral characteristics of the associated
evolution. Two families of high- and low-frequency bright
soliton solutions of the model are introduced in Sec. III.
In the following section, Sec. IV, we outline the general
framework for their stability analysis. The stability eigenvalues
of the high-frequency soliton are classified in Sec. V; there,
we also follow the nonlinear evolution of instability when
the soliton is found to be unstable. Section VI contains a
similar study of the low-frequency soliton. Finally, Sec. VII
summarizes conclusions of our work while three appendixes
detail mathematical analyses of the stability eigenvalues.

II. MODEL

To describe the dynamics of stationary light beams and
pulses in coupled waveguides illustrated in Fig. 1, we ex-
tend the equations of the nonlinear PT -symmetric coupler
[19–21]. In the physical setting of Fig. 1(a), our extension takes
into account the diffraction of the beam while in the situation
represented by Fig. 1(b), we extend the system to include the
effect of the pulse dispersion. The resulting equations have the
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FIG. 1. (Color online) A schematic of PT -symmetric coupled
waveguides with gain (top waveguide) and loss (bottom waveguide).
(a) Two waveguides on the plane where t denotes the longitudinal
and x the transversal spatial coordinate. The transverse x-profiles of
the stationary light beams evolve as they extend in the t direction.
(b) A pair of one-dimensional waveguides where light pulses undergo
temporal evolution as they travel along the x axis.

following dimensionless form:

iut + uxx + 2|u|2u = −v + iγ u,
(2.1)

ivt + vxx + 2|v|2v = −u − iγ v.

We note that this model was originally introduced as the con-
tinuous limit for a one-dimensional array of PT -symmetric
coupled waveguides [25].

In Eqs. (2.1), the u and v variables are the normalized
complex mode amplitudes in the top and bottom waveguides
of Fig. 1. Considering stationary beams in the planar geometry
of Fig. 1(a), the t variable is the (spatial) coordinate in the
propagation direction while x is the transversal coordinate. In
the temporal pulse interpretation [Fig. 1(b)], t stands for time
and x for the spatial coordinate in the frame moving with the
pulse group velocity. Here we assume that the group velocities
and second-order dispersions in the waveguides are matched
so as to satisfy the PT -symmetry condition. By scaling the
x variable properly, we have normalized the coefficients in
front of uxx and vxx terms to unity. (These terms account for
the diffraction of spatial beams and dispersion of temporal
pulses.)

We assume that the Kerr nonlinearity coefficients in the
two waveguides (coefficients in front of |u|2u and |v|2v)
have equal values as this is necessary for the existence of
solitons [25]. (These coefficients have been normalized to 2
by scaling the mode amplitudes.) To ensure the existence of
bright solitons, we take the same sign in front of the diffraction
(dispersion) and nonlinear terms. This corresponds to the
self-focusing nonlinearity in the case of beams [Fig. 1(a)], and
to the anomalous dispersion with positive Kerr nonlinearity or
normal dispersion with negative nonlinearity—in the case of
pulses [Fig. 1(b)].

Whether Eqs. (2.1) are employed to describe the stationary
planar beams or temporal pulses, the first terms in the right-
hand sides of (2.1) account for the coupling between the modes
propagating in the two waveguides. The γ terms describe the
gain in one and loss in the other waveguide. Without loss of
generality γ can be taken positive; this choice corresponds
to the gain in the top and loss in the bottom waveguide. The
gain and loss coefficients are taken equal to conform to the
PT -symmetry condition [18].

We close this section by noting several physically meaning-
ful quantities which prove useful in the understanding of the
dynamics described by Eqs. (2.1). The first pair of variables

give the powers associated with the u and v mode, respectively:

Pu =
∫

|u|2dx, Pv =
∫

|v|2dx. (2.2)

Neither individual powers nor their sum are conserved if
γ �= 0; however, the rate of change of the total power has
a simple and insightful expression:

d

dt
(Pu + Pv) = 2γ (Pu − Pv). (2.3)

The momenta carried by the u and v components,

Mu = i

2

∫
(u∗

xu − uxu
∗)dx, Mv = i

2

∫
(v∗

xv − vxv
∗)dx,

(2.4)

are not conserved either. The total momentum satisfies

d

dt
(Mu + Mu) = 2γ (Mu − Mv). (2.5)

Finally we note the rate equation

dH
dt

= 2γ (Ru − Rv), (2.6)

where

H =
∫

[|ux |2 + |vx |2 − (|u|4 + |v|4) − (vu∗ + v∗u)]dx

(2.7)

and

Ru =
∫

(|ux |2 − 2|u|4)dx, Rv =
∫

(|vx |2 − 2|v|4)dx.

(2.8)

The integral H plays the role of the Hamiltonian of Eqs. (2.1)
in the situation where there is no loss or gain (γ = 0). An
immediate consequence of Eqs. (2.3), (2.5), and (2.6) is that all
stationary states in the system (2.1) have to display symmetry
between their two components: Pu = Pv , Mu = Mv , Ru =
Rv .

III. SOLITONS

Proceeding to the analysis of solutions to the system (2.1),
it is convenient to make a change of variables,

u(x,t) = ei(�t−θ)U (x,t), v(x,t) = ei�tV (x,t), (3.1)

where θ is a constant angle satisfying

sin θ = γ, (3.2)

and � is an arbitrary real parameter which will be conveniently
chosen later. The transformation (3.1) casts equations (2.1) in
the form

iUt +Uxx −�U + 2|U |2U = − cos θ V + iγ (U − V ),
(3.3)

iVt +Vxx −�V + 2|V |2V = − cos θ U + iγ (U − V ).

The system (3.3) admits an obvious reduction U = V ≡ φ

to the scalar cubic Schrödinger equation,

iφt + φxx − a2φ + 2|φ|2φ = 0, (3.4)
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where a2 = � − cos θ . The relation (3.2) defines two differ-
ent angles, θ = arcsin γ and θ = π − arcsin γ . Accordingly,
Eq. (3.4) describes two separate invariant manifolds of the
system (2.1). Both invariant manifolds are characterized by
the Hamiltonian evolution.

Equation (3.4) has a family of stationary soliton solutions.
Without loss of generality we can restrict ourselves to time-
independent solutions,

φ(x) = a sech(ax).

These define two coexisting families of stationary solitons of
the original system (2.1), with arbitrary amplitudes a > 0 and
the corresponding frequencies

� = a2 + cos θ.

The two families of solitons are distinguished by the
sign of cos θ . One has cos θ =

√
1 − γ 2 > 0; we will

be denoting the corresponding solitons by �ψ+ = (u+,v+).
The other one [denoted �ψ− = (u−,v−) in what follows] has
cos θ = −

√
1 − γ 2 < 0. Note that for the given amplitude a,

the frequency � corresponding to the soliton �ψ+ is higher than
that for �ψ−. For this reason, we will be referring to the two
solitons as the “high frequency” and “low frequency” solitons.
(It is fitting to note that the previous authors [25] considered
the high-frequency soliton only.)

We note that either family exists only if

γ < 1. (3.5)

At the same time, Eq. (3.5) gives the stability condition for
the background solution u = v = 0. In what follows, we will
assume that (3.5) is always imposed.

IV. STABILITY FRAMEWORK

A. Perturbation decomposition

To classify the stability of the two families of solitons, we
let

U (x,t) = φ(x) + δU (x,t), V (x,t) = φ(x) + δV (x,t)

(4.1)

and linearize Eqs. (3.3) in δU and δV . As we will see, a
special role is played by the symmetric and antisymmetric
combinations

p = δU + δV√
2

, q = δU − δV√
2

. (4.2)

Since the linearized equations are autonomous in time, it is
sufficient to consider separable solutions of the form

p = eνt [(p′
1 + ip′

2) cos ωt + (p′′
1 + ip′′

2 ) sin ωt],
(4.3)

q = eνt [(q ′
1 + iq ′

2) cos ωt + (q ′′
1 + iq ′′

2 ) sin ωt],

where we have introduced real components of four complex
functions p1(x), p2(x), q1(x), and q2(x):

p1 = p′
1 + ip′′

1 , p2 = p′
2 + ip′′

2 ,

q1 = q ′
1 + iq ′′

1 , q2 = q ′
2 + iq ′′

2 .

In (4.3), both ν and ω are assumed to be real.

Substituting (4.3) in the linearized equations yields an
eigenvalue problem,

(L − cos θ ) �p + 2γ J �q = μJ �p, (4.4a)

(L + cos θ ) �q = μJ �q, (4.4b)

for two-component complex vectors

�p =
(

p1

p2

)
, �q =

(
q1

q2

)
.

In (4.4a) and (4.4b) we have defined μ = ν − iω and intro-
duced the operator

L =
(−d2/dx2 + � − 6φ2 0

0 −d2/dx2 + � − 2φ2

)
.

The J in the right-hand sides of (4.4a) and (4.4b) stands for a
skew-symmetric matrix:

J =
(

0 −1
1 0

)
.

The rotation (4.2) did not diagonalize the 2 × 2 block
supermatrix in the left-hand side of (4.4), however it brought
it to the triangular form. The triangular block matrix(

L − cos θ 2γ J

0 L + cos θ

)
(4.5)

has two eigenvectors. One is( �p
0

)
, (4.6)

with �p satisfying

(L − cos θ ) �p = μJ �p. (4.7)

This is nothing but the linearized eigenvalue problem for
the unperturbed cubic Schrödinger equation (the integrable
nonlinear Schrödinger equation). (Thus �p is the component
of the perturbation that lies in the tangent space to the
conservative manifold containing the soliton.) The spectrum
of μ consists of a fourfold zero eigenvalue and the continuous
spectrum which lies on the imaginary axis; there are no
unstable μ’s here.

The second eigenvector,( �p
�q

)
, (4.8)

includes a nonzero �q component. These �q arise as eigen-
functions of the operator (4.4b). When �q �= 0, Eq. (4.4a)
becomes a nonhomogeneous equation with the right-hand side
determined by �q:

N �p = −2γ J �q. (4.9)

Here N is a nonsymmetric operator defined by

N = L − cos θ − μJ.

As discussed in the previous paragraph, the eigenvalue
problem (4.7) does not have nonzero eigenvalues; hence the
adjoint operator

N† = L − cos θ + μJ
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has null eigenvectors only if μ = 0. Therefore, for any μ �= 0,
Eq. (4.9) has a bounded solution.

Thus the stability analysis reduces to solving the eigenvalue
problem (4.4b). It is important to emphasize that, despite the
presence of gain and loss, the eigenvalue problems (4.4b)
and (4.7) are symplectic (that is, pertaining to Hamiltonian
evolutions). The implication is that stable limit cycles are
not the objects that can be expected to bifurcate from
stationary solitons when the latter lose their stability. That
is, the instability should evolve according to scenarios that
are characteristic for conservative systems, e.g., breakup into
long-lived transient structures, singular growth, etc.

It is also worth commenting on the significance of the
triangular representation (4.4) which decomposes small per-
turbations into the part tangent to the conservative invariant
manifold containing the soliton, and the part that is transversal
to this manifold. This decomposition alone explains some nu-
merical observations of the previous authors [25], in particular
the instability of the bond-centered solitons in the discrete case.
Indeed, the instability of the bond-centered soliton solutions
of the discretized Eq. (2.1) is caused by perturbations lying
in the conservative invariant manifold (that is, satisfying the
scalar nonlinear Schrödinger equation). The instability of the
bond-centered vector solitons is simply inherited from the
instability of their scalar counterparts.

B. Integral considerations

It is instructive to consider the effect of the perturbations
on the Hamiltonian, momenta, and the power integrals.
Substituting Eqs. (4.1)–(4.3) in (2.2), (2.4), and (2.8), the
right-hand sides of (2.3), (2.5), and (2.6) are evaluated to be

(Pu − Pv)|t=0 = 2
√

2
∫

q ′
1(x)φ(x)dx, (4.10a)

(Mu − Mv)|t=0 = −2
√

2
∫

q ′
2(x)φxdx, (4.10b)

(Ru − Rv)|t=0 = −2
√

2
∫

q ′
1(x)(a2 + 2φ2)φ dx. (4.10c)

In Eqs. (4.10) we kept terms only up to the linear order in p1,2

and q1,2.
The eigenvector (4.6) has q ′

1 = q ′
2 = 0; the corresponding

rates (4.10) are all zero. The perturbations associated with
eigenvectors of this type do not trigger the growth or decay of
the total power, momentum, and the Hamiltonian. They just
take the soliton to a nearby solution of the scalar Schrödinger
equation (3.4); the PT symmetry (the symmetry between the
u and v components) remains unbroken.

As for the eigenvectors of the second type, Eqs. (4.8) with
nonzero �q and �p satisfying (4.4b) and (4.9), they may set
nonvanishing rates of change of the total power, momentum,
and Hamiltonian. Whether or not the right-hand side of
Eqs. (2.3), (2.5), or (2.6) is zero depends, in particular, on the
parity of the eigenfunction �q(x) of the symplectic operator in
(4.4b). If ( �p,�q)T is an eigenvector associated with an unstable
eigenvalue (Re μ > 0) and such that a particular right-hand
side in Eqs. (2.3), (2.5), or (2.6) is nonzero, the corresponding
integral in the left-hand side will start evolving away from its
soliton value.

In what follows, the perturbations of the integrals pertaining
to the individual u and v components will also prove useful.
Restricting ourselves to perturbations associated with real
eigenvalues μ > 0, and substituting Eqs. (4.1)–(4.3) in (2.3)
and (2.5), we arrive at

δPu =
√

2

(
2γ

μ
+ 1

)
eμt

∫
q ′

1φ dx, (4.11a)

δPv =
√

2

(
2γ

μ
− 1

)
eμt

∫
q ′

1φ dx, (4.11b)

and

Mu = −
√

2

(
2γ

μ
+ 1

)
eμt

∫
q ′

2φxdx, (4.12a)

Mv = −
√

2

(
2γ

μ
− 1

)
eμt

∫
q ′

2φxdx. (4.12b)

C. Symplectic eigenvalue problem

Defining X = ax, λ = μ/a2, and introducing

η = 2
cos θ

a2
, (4.13)

the problem (4.4b) can be written as(
L1 + η 0
0 L0 + η

)(
g

f

)
= λJ

(
g

f

)
. (4.14)

Here L0,1 stand for the scalar Sturm-Liouville operators

L0 = −d2/dX2 + 1 − 2 sech2X,
(4.15)

L1 = −d2/dX2 + 1 − 6 sech2X,

and we have redenoted q1 = g and q2 = f for notational
convenience. The eigenvalues λ and eigenvectors (g,f ) are
generally complex. Positive η correspond to the soliton �ψ+
and negative to �ψ−.

Thus we have reduced a two-parameter stability problem to
an eigenvalue problem involving a single similarity parameter.
Solitons with different amplitudes and in systems with differ-
ent gain-loss coefficients have the same stability properties
as long as they share the value of η. [It is fitting to note
that a self-similarity of this sort was previously encountered
in the parametrically driven damped nonlinear Schrödinger
equation [26,27]. The difference of the parametrically driven
situation from the present setting was that there, the similarity
combination included two control parameters of the equation
whereas Eq. (4.13) combines a control parameter with a free
amplitude of the soliton.]

The scalar operators have familiar spectral properties.
The only discrete eigenvalue of L0 is zero; the associated
eigenfunction is even: L0z0 = 0, z0 = sechX. The operator
does not have other eigenvalues between 0 and 1 (the edge
of the continuous spectrum). The lowest eigenvalue of L1

is −3; the associated eigenfunction is y0 = sech2X. The
only other eigenvalue is 0; the corresponding eigenfunction
y1 = sechX tanh X is odd.

When η = 0, the eigenvalue problem (4.14) coincides with
the eigenvalue problem for the unperturbed cubic nonlinear
Schrödinger equation. It is important to emphasize, however,
that the choice η = 0 does not correspond to the undamped-
undriven situation. (The undamped-undriven limit γ = 0 does
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not single out any particular η and is not special in any way.)
What the value η = 0 corresponds to is the turning point
γ = 1. As γ reaches 1 from below, the solitons �ψ+ and �ψ−
merge and disappear.

As in the unperturbed nonlinear Schrödinger, there is a
fourfold zero eigenvalue at the point η = 0: λ(1,2,3,4) = 0. As
η deviates from zero, the four eigenvalues move out of the
origin. A perturbation calculation (Appendix A) shows that
two opposite eigenvalues move on to the imaginary axis, and
the other two move on to the positive and negative real axis,
respectively:

λ(1,2) = ±2η1/2 + O(η), λ(3,4) = ± 2√
3

(−η)1/2 + O(η).

(4.16)

The real and imaginary parts of eigenvalues of the problem
(4.14), obtained numerically, are plotted in Fig. 2. The two
pairs of real and imaginary eigenvalues emerging from the
origin are clearly visible.

Before proceeding to the evolution of the eigenvalues as
η grows to large positive, respectively negative, values, it is
appropriate to note the position of the continuous spectrum
of the symplectic operator

J−1

(
L1 + η 0

0 L0 + η

)
(4.17)

in (4.14). There are two branches of continuous spectrum,
both lying on the imaginary axis of λ: λ = ±iω(k), where
ω = 1 + η + k2. [These are indicated by shading in Fig. 2(a).]
When η > −1, the continuous spectrum has a gap, [−i(1 +
η),i(1 + η)].

It is also worth mentioning that the spectrum of symplectic
operators consists of pairs of opposite pure-imaginary values,
real pairs, and complex quadruplets. If λ is a real or pure
imaginary point of the spectrum, then −λ is another one; if a
complex λ is in the spectrum, then so are −λ,λ∗, and −λ∗ [28].

V. HIGH-FREQUENCY SOLITON

In the case of the soliton �ψ+, the eigenvalue problem is
amenable to simple analysis. The lowest eigenvalue of the
operator L0 + η equals η; therefore, when η > 0, the operator
L0 + η is positive definite and admits an inverse. The problem
(4.14) can be written then as a generalized eigenvalue problem
for a scalar function g(X):

(L1 + η)g = −λ2(L0 + η)−1g. (5.1)

The operator on the left in (5.1) is symmetric, and the one on the
right is symmetric and positive definite. The lowest eigenvalue
−λ2 in (5.1) is given by the minimum of the Rayleigh quotient:

−λ2 = min
〈g|L1 + η|g〉

〈g|(L0 + η)−1|g〉 . (5.2)

[Here the bra-ket notation is used for the L2 scalar product:
〈y|z〉 = ∫

y(X)z(X)dX.] The minimum is positive if the
lowest eigenvalue of the operator in the numerator (ν =
−3 + η) is positive: η > 3. Recalling the definition (4.13),
we arrive at the stability condition for the soliton �ψ+:

a � ac, a2
c = 2

3

√
1 − γ 2. (5.3)

−3 −2 −1 0 1 2 3 4
−5

−2.5

0

2.5

5
(a)

−3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b)

η

FIG. 2. (Color online) (a) the imaginary and (b) real part
of the eigenvalue λ of the problem (4.14) as a function of η. (For
the fixed γ , the parameter η is proportional to the inverse amplitude
squared: η = 2 cos θ/a2.) A real pair of eigenvalues moves onto the
imaginary axis while the imaginary pair becomes real as η passes
through zero (either way). In the η > 0 part of the figure, the real
pair subsequently converges and returns to the imaginary axis, so
that for η � 3, all eigenvalues are pure imaginary. In the η < 0 part,
two complex quadruplets are born in two consecutive Hamiltonian
Hopf bifurcations. The imaginary parts of the quadruplets grow
as η → −∞ while the real parts decay. In (a), tinted are the
regions Im λ � η + 1 and Im λ � −(η + 1) filled with the continuous
spectrum.

The numerical study of the eigenvalue problem (4.14)
corroborates these conclusions. As η grows from 0 to positive
values, two pairs of opposite eigenvalues, a real and a pure
imaginary pair, appear from the origin on the (Re λ,Im λ)
plane. The real eigenvalues are associated with even and imag-
inary pair with odd eigenfunctions. The two pure imaginary
eigenvalues diverge to their respective infinities [Fig. 2(a)].
The real pair first grows in absolute value, but then the real
eigenvalues reverse [Fig. 2(b)] and, as η reaches 3, collide at
the origin and move on to the imaginary axis. The emerging
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FIG. 3. (Color online) The evolution of the perturbed soliton �ψ+
with the amplitude a above the threshold ac. Shown is the magnitude
of the field u (a) and field v (b). The control parameter is set to γ = 0.1
(for which ac = 0.814); the soliton’s amplitude is a = 0.820. Note
that the spatial interval has been cut down to (−10,10) for visual
clarity and that only the late stage of evolution is shown. In both
panels the color varies from deep blue (lowest elevation) to deep
red (highest elevation); since the maximum values of |u| and |v|
are not equal, the same color corresponds to different values in the
two panels. The same convention is used in all other double-panel
three-dimensional plots.

second pair of imaginary eigenvalues diverges to the infinities,
like the first pair before [Fig. 2(a)].

The quantity q(X,t) in (4.2) measures the difference
between the two components of the vector (U,V ). If the
eigenvalue problem (4.14) has a positive eigenvalue λ, the dif-
ference grows monotonically: q = (q1 + iq2)eλa2t . Therefore,
the instability associated with real eigenvalues should manifest
itself as a monotonically growing asymmetry between the two
components of the vector field. Quantitatively, this asymmetry
is measured by the difference in the increments of the Pu and
Pv integrals, Eqs. (4.11).

Transient and asymptotic solutions emerging as the pertur-
bation grows should inherit the spatial parity of the eigenvector
(g(X),f (X)) associated with the real eigenvalue—that is,

FIG. 4. (Color online) The evolution of the unstable soliton �ψ+
may result in the formation of a breather. Shown is the magnitude of
the field u (a) and field v (b). Here γ = 0.1 and a = 0.9.

should be even in X. The imaginary eigenvalues correspond
to internal modes of the soliton. In Appendix B, we derive the
asymptotes for both pairs of imaginary eigenvalues as η →
∞: λ = ±i(η + 0.685) + O(1/η) and λ = ±i(η − 1.438) +
O(1/η).

Figures 3 and 4 present results of direct numerical simula-
tions of the �ψ+ soliton. For five values of the control parameter,
γ = 0.1, 0.2, 0.5, 0.7, and 0.95, we simulated solitons with
amplitudes a above the critical one, ac, given by (5.3). In each
of the five cases we have identified two possible scenarios of
instability growth. In one of these, the magnitude of the field u

grows without bound, while v decreases (see Fig. 3). We will
be referring to this type of evolution as the “blowup.” Note
that this asymmetry-growth scenario is in agreement with our
expectations based on the eigenfunction analysis.

In the other scenario, the breakup of the unstable soliton
results in the formation of a long-lived oscillatory state—a kind
of a breather (Fig. 4). Here, the initial stage of the evolution
is also characterized by the growth of asymmetry. Unlike
Fig. 3, it is the v component that is growing this time, and
u is the one that is decreasing (clearly visible in Fig. 4). This
“anomalous” growth cannot continue indefinitely [this would
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FIG. 5. (Color online) Chart of asymptotic regimes emerging
from the unstable soliton �ψ+. The five columns correspond to γ =
0.1, 0.2, 0.5, 0.7, and 0.95. The solid line demarcates the boundary
(5.3); the �ψ+ soliton is unstable above this line. The magenta triangles
mark blowups while green circles indicate the formation of breathers.

contradict Eq. (2.3)] and eventually the evolution is captured
into the breather regime.

Figure 5 sketches the ranges of a which are characterized
by each of these two types of instability growth. Typically,
solitons with amplitudes only slightly exceeding the threshold
(5.3) give rise to breathers whereas the blow-up scenario is
observed for larger a. The exception from this rule occurs for
small γ ∼ 0.1 where the blowup and breather domains seem
to be interlaced in a more complex fashion.

VI. LOW-FREQUENCY SOLITON

When η < 0, neither of the scalar operators in (4.14) is
invertible on the L2 space. Here, the analysis of the eigenvalue
problem (4.14) has to be done mostly by numerical means.
Our numerical study is summarized in the left half of Fig. 2.

As η is decreased through zero, a pair of opposite real
eigenvalues (associated with even eigenfunctions) collides and
moves on to the imaginary axis. Simultaneously (that is, at η =
0) another pair of opposite imaginary eigenvalues (also with
even eigenfunctions) detaches from the continuous spectrum.
When η reaches the value η1,

η1 = −0.0988, (6.1)

the four imaginary eigenvalues collide, pairwise, and leave the
imaginary axis forming a complex quadruplet λ,λ∗,− λ,− λ∗
(with even eigenfunctions). As η grows to larger negative
values, the real parts of the quadruplet first grow but then
start decreasing. At the same time, the imaginary parts grow
without bound.

Another pair of eigenvalues colliding as η is decreased
through zero, is pure imaginary. Unlike the colliding real pair,
the imaginary pair is associated with odd eigenfunctions. The
parity of the eigenfunctions is preserved as this pair reappears
on the real axis for η < 0. As η grows to larger negative

FIG. 6. (Color online) Unstable ψ− solitons with |η| > 1.168
disperse (a) or transform into a long-lived breather (b). In (a), γ = 0.5
and a = 1.075; in (b), γ = 0.1 and a = 1.152. Both combinations of
a and γ correspond to η = −1.5. Only the u component is shown in
both cases; the evolution of the v field is qualitatively similar.

values, the absolute values of the real λ first grow but then
start decreasing.

The existence of the real pair in the interval −1 < η < 0
can be established analytically (see Appendix C). It might
be tempting to expect the pair to converge at the origin as η

reaches −1; however the actual bifurcation diagram turns out
to be more complex (Fig. 2). In fact one can prove that Re λ

remains nonzero at η = −1 (see Appendix C).
In the meantime, as η is approaching −1, the gap in the

continuous spectrum is shrinking. As η reaches −1, the two
edges of the continuous spectrum meet at the origin and the gap
closes. Due to the resonance between the edge eigenfunctions,
a new pair of discrete eigenvalues is born at this point. Like
the coexisting real pair, this pair of opposite real eigenvalues
is associated with odd eigenfunctions. As η drops down to η2,
where

η2 = −1.168, (6.2)

the newly born pair of real eigenvalues and the real pair that has
arrived from the origin collide and emerge into the complex
plane. This is where the second complex quadruplet is born.

063837-7



ALEXEEVA, BARASHENKOV, SUKHORUKOV, AND KIVSHAR PHYSICAL REVIEW A 85, 063837 (2012)

FIG. 7. (Color online) A spontaneous motion of the soliton �ψ−
followed by the blowup of its u component and decay of v. Here
γ = 0.95 and a = 1.767 (η = −0.2).

As the negative η continues to grow in absolute value, the real
parts of the eigenvalues making up the quadruplet decrease,
while the imaginary parts grow.

Thus when η < η2, we have two complex quadruplets. As
η grows in absolute value, the real parts of the eigenvalues
in both quadruplets decrease whereas imaginary parts grow.
In Appendix B we derive the asymptotic behavior of the
imaginary parts analytically: Im λ = ±(η − 1.438) + O(1/η);
Im λ = ±(η + 0.685) + O(1/η). We also show that the de-
crease of the real parts is exponentially fast. Equation (4.13)
implies then that solitons with small amplitude a—even if are
unstable—have exponentially long lifetime,

τ ∼ 1

a2
exp

(
σ
√

1 − γ 2

a2

)
,

with some constant σ > 0.
The nonlinear evolution of the unstable �ψ− soliton is

determined by the competition between the eigenvalues with
positive real parts. According to Fig. 2, there are two ranges
of the soliton amplitude for each γ : the small and the large a.

FIG. 8. (Color online) A dissociation of the soliton �ψ− into a pair
of pulses followed by the blowup of the pulse with large u component.
Shown is the magnitude of the field u (a) and field v (b). Here γ = 0.1
and a = 3.15 (η = −0.2).

For small a [more precisely, for a such that |η| > |η2| with
η2 as in (6.2)], the soliton has two complex quadruplets in its
spectrum—one with an even and the other one with an odd
eigenvector. Accordingly, the instability growth of a small-
amplitude �ψ− soliton should be accompanied by oscillations.
The growth rate of the odd perturbation is larger than that of
the even one; therefore the generic evolution of the instability
is expected to be dominated by the odd perturbations.

On the other hand, for very large a—more precisely, for
η1 < η < 0, with η1 as in (6.1)—the spectrum has only one,
real, unstable eigenvalue (with an odd eigenvector). In this
range, the instability growth should be initially monotonic. The
moderately large amplitudes (corresponding to η2 < η < η1)
are characterized by one or two positive real eigenvalues,
with odd eigenvector(s), and a complex quadruplet whose
eigenvector is even in X. The odd eigenfunctions have larger
growth rates than the even ones; hence again, the monoton-
ically growing odd perturbations should be dominating the
evolution.
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FIG. 9. (Color online) A dissociation of the soliton �ψ− into a pair
of breathers. Shown is the magnitude of u (a) and contour plot of |v|
(b). Here γ = 0.1 and a = 1.686 (η = −0.7).

Thus, depending on the soliton’s amplitude, the odd
perturbations are either the only unstable perturbations of
the �ψ− soliton, or its dominant unstable perturbations. For
these, Eqs. (4.11) give δPu = δPv = 0. Therefore, the odd
perturbations do not immediately induce the asymmetry of
the u and v components of the soliton. On the other hand,
the momenta Mu and Mv in Eqs. (4.12) are both nonzero,
with Mu �= Mv . This means that the two components, the
“u pulse” and the “v pulse,” will be set in motion—they will
start moving with unequal velocities gradually separating in
space. As a result, the u pulse will be progressively deprived
of the services of its power-draining partner, while the v pulse
will be cut from the power supply by its active counterpart.
Eventually, this will set off the growth of the asymmetry in the
amplitudes of the pulses—the Pu will start growing and Pv

decreasing.
Equations (4.12) can tell us whether the emerging pulses

will move in the opposite or in the same direction (yet with
different velocities). Indeed, the fragments will move in the
opposite directions if the momenta (4.12) are opposite in sign:

FIG. 10. (Color online) A dissociation of the soliton �ψ− into a
pair of pulses followed by their blowup. Shown is the magnitude of u

(a) and modulus of v (b). Here γ = 0.1 and a = 1.8212 (η = −0.6).

2(γ /μ) − 1 < 0. Recalling that μ = λa2, this condition can
be written as

a2 >
2γ

λ
. (6.3)

In the complementary region, a2 < 2γ /λ, the u and v pulses
will move in the same direction.

To verify these predictions, we carried out numerical
simulations of solitons with a range of amplitudes, for small
and large values of the gain-loss rate (γ = 0.1, 0.2, 0.5, 0.7,
and 0.95).

In agreement with the linear analysis, the small-amplitude
(|η| > |η2|) unstable solitons were detected either to disperse
[a process accompanied by the oscillation of the soliton
profiles, see Fig. 6(a)] or form long-lived oscillatory states
[Fig. 6(b)].

The instability of solitons with large and moderately large
amplitudes (|η| < |η2|) was seen to grow monotonically, at
least at the initial stage. One of the recorded scenarios starts
with a spontaneous motion of the two components of the
soliton in the same direction, with slightly different velocities
(Fig. 7), followed by the blowup of the u component and
decay of its v counterpart. This behavior was detected for the
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FIG. 11. (Color online) Chart of asymptotic regimes emerging
from the unstable soliton �ψ−. The solid curve is given by a2 =
(−2/η2)

√
1 − γ 2. The magenta triangles mark blowups while green

circles indicate the bounded regimes: dispersion of the soliton or
formation of breathers.

amplitudes a lying outside the region (6.3). (In particular, the
unstable soliton shown in Fig. 7 has a2 = 3.12 which is smaller
than the value 2γ /λ = 4.00 corresponding to γ = 0.95 and
η = −0.2.)

The other observed evolution starts with the motion of
the two components in opposite directions. In this case the
dissociation of the �ψ− soliton may be followed by a blowup
of u and decay of v (Fig. 8) or a formation of a pair of
breathers (Fig. 9). Alternatively, the linear instability may
“just miss” the breathers’ basin of attraction in which case
the nuclei of the two breathers will have their u component
blow up (Fig. 10). These types of evolution were recorded for
the amplitudes a satisfying the condition (6.3). (In particular,
Fig. 8 corresponds to a2 = 9.92 and 2γ /λ = 0.42, Fig. 9 to
a2 = 2.84 and 2γ /λ = 0.31, and Fig. 10 to a2 = 3.32 and
2γ /λ = 0.31.)

Our numerical simulations of the unstable regimes are
summarized in Fig. 11. Triangles mark parameter values for
which the unstable soliton or the two fragments of its breakup
were observed to blow up; circles indicate simulations that
ended in the formation of one or two breathers. The solid
curve in the figure is the demarcation line between the small-
and large-amplitude ranges identified in the linear analysis; the
curve is defined by η = η2 with η2 as in (6.2). The chart shows
a clear correlation between the type of the unstable eigenvalues
(real vs complex) and the soliton decay product (blowup vs
breathers).

VII. CONCLUSIONS

We have examined stability of two families of solitons in the
two-dimensional PT symmetric coupler with gain and loss.
The dynamical regimes set off by the instability have also
been explored. The results of our study can be summarized as
follows.

(1) Despite the presence of gain and loss, the bifurca-
tions occurring in the PT -symmetric system (2.1) are of
conservative type. (Linearized eigenvalues either move from
the imaginary to the real axis, or collide, pairwise, on the
imaginary axis and emerge into the complex plane.) As a result,
the soliton instability cannot give rise to spatially localized
limit cycles (which would be a typical outcome of the Hopf
bifurcation in a dissipative system). In the PT -symmetric
system, the soliton instability either triggers its blowup (the
process where the amplitude grows without bound at an
exponential rate) or produces finite-lifetime breathers.

(2) The soliton stability and internal dynamics are deter-
mined by a single self-similar combination (η) of the gain-loss
coefficient γ and the soliton’s amplitude a.

(3) The high-frequency solitons with amplitudes smaller
than ac, where ac is as in (5.3), are stable, and with amplitudes
greater than ac, unstable. All low-frequency solitons are
unstable; however the lifetimes of the solitons with small
amplitudes are exponentially long so for all practical purposes
they can be regarded as stable.

(4) The mechanisms of instability of the high- and low-
frequency soliton are different. The unstable perturbation of
the high-frequency soliton triggers the growth of asymmetry
between the active (u) and lossy (v) components of the soliton,
destroying the gain-loss balance in the system. The unstable
perturbation of the low-frequency soliton also upsets the
energy balance; however this time it is done by splitting the u

and v components off from their common axis. The difference
in the instability mechanisms is reflected in the difference in
the products of the high- and low-frequency soliton breakup.
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APPENDIX A: REAL-IMAGINARY EIGENVALUE
TRANSITIONS

The aim of this Appendix is to describe the transitions
of the pair of eigenvalues of the operator (4.14) from the
real to imaginary axis and vice versa, as the parameter η

crosses through zero in either direction. The numerical analysis
indicates that when η approaches 0, the eigenvalue scales as
η1/2. This suggests an expansion of the form

λ = η1/2λ1 + ηλ2 + · · · ;

g = g0 + η1/2g1 + ηg2 + · · · , (A1)

f = f0 + η1/2f1 + ηf2 + · · · .
This expansion will be validated if all coefficient functions are
found to be bounded and decaying to zero as X → ±∞.

The expansion (A1) is similar to the one appearing in the
parametrically driven damped nonlinear Schrödinger equation
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[26,27]. The difference of Eq. (4.14) from the eigenvalue
problem in [26,27] is that the parametric driving breaks only
one of the invariances of the nonlinear Schrödinger (only the
operator L0 is perturbed). On the other hand, in Eq. (4.14),
both L0 and L1 acquire perturbations. The consequence of
this will be the motion of two pairs of eigenvalues through
the origin on the λ plane. While one pair is moving from the
real to the imaginary axis, the other pair will be moving in the
opposite direction.

Substituting (A1) in (4.14) and equating coefficients of like
powers of η, we obtain a chain of equations for λn, gn, and fn.
The order η0 gives

L0f0 = 0, L1g0 = 0.

These two equations coincide with equations for the U(1)
and translational zero modes of the scalar cubic nonlinear
Schrödinger soliton. The bounded solutions are

f0 = C1 sechX, g0 = C2 sechX tanh X,

where C1 and C2 are arbitrary constants.
At the next, η1/2, order, we get a pair of nonhomogeneous

equations

L0f1 = λ1g0, L1g1 = −λ1f0,

whose solutions are

f1 = C2

2
λ1X sechX, g1 = C1

2
λ1 sechX(1 − X tanh X).

In the context of stability of the scalar cubic nonlinear
Schrödinger soliton, the generalized eigenvectors (0,f1)T and
(g1,0)T would correspond to the Galilean invariance of that
equation and its soliton frequency variations.

Finally, the order η1 gives

L0f2 = −f0 + λ1g1 + λ2g0, (A2)

L1g2 = −g0 − λ1f1 − λ2f0. (A3)

The solvability condition for Eq. (A2) is

−〈z0|f0〉 + λ1〈z0|g1〉 = 0, (A4)

and the one for (A3) is

−〈y1|g0〉 − λ1〈y1|f1〉 = 0. (A5)

In (A4) and (A5), z0 = sechX and y1 = sechX tanh X are the
null eigenvectors of the operator L0 and L1, respectively. The
bra-ket notation is used for the L2 scalar product:

〈y|z〉 =
∫

y(X)z(X)dX.

Substituting for f0,1 and g0,1 in (A4) and (A5), the
solvability conditions reduce to

C1

(
λ2

1

2
− 2

)
= 0,

C2

(
λ2

1

2
+ 2

3

)
= 0,

whence either λ1 = ±2 and C2 = 0, or λ1 = ±2i/
√

3 and
C1 = 0.

This gives us the the leading-order expressions for the two
pairs of eigenvalues and eigenvectors of the operator (4.14)

with small η. One pair of eigenvalues is λ = ±2
√

η + O(η);
it is associated with even eigenfunctions:(

g

f

)
=

(±√
η sechX(1 − X tanh X)

sechX

)
+ O(η).

This pair moves from the real to imaginary axis as η decreases
from positive to negative values.

The other pair of eigenvalues is λ = ±2
√−η/3 + O(η).

The corresponding eigenfunctions are odd:
(

g

f

)
=

( sechX tanh X

±i
√

η

3 X sechX

)
+ O(η).

As η moves from positive to negative, this pair of eigenvalues
translates from the imaginary to the real axis.

APPENDIX B: ASYMPTOTIC EIGENVALUES AS |η| → ∞
In this Appendix, we determine the asymptotic behavior

of eigenvalues of the operator (4.14) as η tends to ±∞. We
expand

f = f0 + f1

η
+ f2

η2
+ · · · ,

g = g0 + g1

η
+ g2

η2
+ · · · ;

λ = i

(
λ−1η + λ0 + λ1

η
+ λ2

η2
+ · · ·

)
.

It is convenient to introduce coefficient functions An(X) and
Bn(X),

An = fn − ign, Bn = −(fn + ign).

Substituting in (4.14), and equating coefficients of η−n, gives

λ2
−1 = 1, A0 = 0 (B1)

at the order η1, and

(L1/2 − λ0)Bn = 2 sech2XAn +
n∑

m=1

λmBn−m, (B2)

2An+1 = 2 sech2XBn − (L1/2 + λ0)An −
n∑

m=1

λmAn−m (B3)

for all n � 0. Here we have introduced an operator

L1/2 = −d2/dX2 + 1 − 4 sech2X.

In Eq. (B1) we can choose, without loss of generality, λ−1 =
1. [The other root, λ−1 = −1, defines the opposite eigenvalue,
−λ, with the eigenvector (g, − f )T .] Equation (B2) with n =
0 is an eigenvalue problem for the operator L1/2:

L1/2B0(X) = λ0B0(X).

The potential −4 sech2X is of the Pöschl-Teller variety so
the eigenvalues can be found exactly. There are two discrete
eigenvalues, ρA and ρB :

ρA = α − 3 ≈ −1.438, ρB = 3α − 4 ≈ 0.685, (B4)

where α = 1
2 (

√
17 − 1). (The corresponding eigenfunctions

are yA = sechαX and yB = sechα−1X tanh X, respectively.)
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Thus the correction λ0 may take either of these two real values,
ρA or ρB ; depending on the choice, the function B0(X) is even
or odd. In either case, B0 can be chosen real.

Once λ−1, λ0, and B0 have been chosen, all higher-order
coefficients An,Bn, and λn are determined uniquely. Further-
more, one can prove by induction that all these coefficients are
real. The proof proceeds in three steps.

First, we assume that B0,B1, . . . ,B�, A0,A1, . . . ,A�, and
λ0,λ1, . . . ,λ� with some � � 0 have been found and are all
real. Then equation (B3) gives us A�+1, which does not have
an imaginary component either.

Next we turn to the equation (B2) with n = � + 1. The
solvability condition for Bn is

λ�+1〈B0|B0〉 = −
�∑

m=1

λm〈B0|B�+1−m〉

− 2
∫

B0 sech2XA�+1dX. (B5)

This equation expresses λ�+1 through A�+1, B1,B2, . . . ,B�,
and λ1,λ2, . . . ,λ�. By our assumption, all these coefficients
are real, hence λ�+1 does not have an imaginary part either.
Now that the solvability condition has been satisfied, the
nonhomogeneous equation (B2) can be solved for B�+1. The
right-hand side in (B2) includes real A�+1, B0,B1, . . . ,B�, and
λ1,λ2, . . . ,λ�+1. Therefore, the solution B�+1(X) is real as
well. This completes the proof.

Note that if we choose λ0 = ρA, all the coefficient functions
Bn(X) and An(X) are even, whereas if we set λ0 = ρB ,
all functions are odd. Thus we conclude that in the limit
|η| → ∞, the real part of the eigenvalue in the problem
(4.14) is zero to all orders in η−n. This means that the
real part is either exactly zero or exponentially small in
|η|: Re λ ∼ e−α|η|, α > 0. The imaginary part may assume
one of the two pairs of values, Im λA = ±[η + ρA + O(η−1)]
or Im λB = ±[η + ρB + O(η−1)], where ρA < 0 and ρB > 0
are given by Eq. (B4). The eigenfunctions f (X) and g(X)
associated with the former are even and those pertaining to the
latter are odd.

APPENDIX C: REAL EIGENVALUE IN −1 < η < 0

In this Appendix, we prove the existence of real eigenvalues
of the symplectic operator (4.17) with negative η, and discuss
their behavior as η → −1. If η < 0, neither of the scalar op-
erators in (4.14) is invertible on the full L2 space. Fortunately,
the symplectic operator (4.17) is parity preserving and so all
its eigenfunctions fall into one of the two broad classes: even
and odd ones. Therefore, when considering eigenvalues λ with
even eigenfunctions, we can restrict the scalar operators to the
subspace of L2 consisting of even functions. When examining
the odd eigenfunctions, these operators can be restricted to the
odd subspace.

The advantage of the separate treatment of eigenfunctions
with different parity becomes clear when we note that the
operator L0 + η with −1 � η � 0 is positive definite (hence
invertible) on the subspace of odd functions. Therefore, if
we confine ourselves to the eigenvalues associated with odd
eigenfunctions, the symplectic eigenvalue problem (4.14) can
be cast in the form (5.1). The lowest of the eigenvalues −λ2 of

the scalar eigenvalue problem (5.1) associated with odd g(X),
is given by the minimum of the Rayleigh quotient:

−λ2 = min
g∈S

〈g|L1 + η|g〉
〈g|(L0 + η)−1|g〉 . (C1)

Here S denotes the subspace of odd functions.
The eigenfunction y1 = sechX tanh X associated with the

negative eigenvalue η of the operator L1 + η is odd. Hence
the quotient in (C1) can assume negative values in S, and its
minimum −λ2 is negative. We conclude that in the parameter
region −1 < η � 0, operator (4.17) has a pair of opposite real
eigenvalues ±λ (with odd eigenfunctions).

Contrary to what one might have expected, this pair of
eigenvalues does not converge at the origin as η reaches −1.
The following argument shows that the eigenvalues should
remain finite as η → −1 + 0.

First, we note that any function g(X) from S can be
expanded over the complete set of odd eigenfunctions of the
operator L0:

g(X) =
∫ ∞

0
G(k)zk(X)dk. (C2)

Here

zk = tanh X cos(kX) + k sin(kX)√
π (1 + k2)

is a continuous spectrum eigenfunction pertaining to the
eigenvalue E(k) = 1 + 2k2. The expansion (C2) does not
include a sum over discrete eigenvalues because L0 has only
one such eigenvalue and the corresponding eigenfunction is
even.

Letting η = −1 + ε, ε > 0, and substituting (C2) in (C1),
the denominator can be written as

〈g|(L0 + η)−1|g〉 =
∫ ∞

−∞
|G(k)|2(2k2 + ε)−1dk. (C3)

Now consider a subspace S′ of S consisting of functions g

satisfying two conditions. The first requirement is that the
function g(X) should decay to zero, as X → ±∞, faster
than |X|−n with any n > 0. This condition ensures that the
coefficient function G(k) has derivatives of all orders at k = 0
and hence can be expanded in a Taylor series centered on that
point.

The second condition is that g(X) should satisfy∫
g(X) zk=0(X) dX = 0, (C4)

where zk=0 = 1√
π

tanh X is the eigenfunction pertaining to
the edge of the continuous spectrum of L0. Owing to the
constraint (C4), the function G(k) has a zero at k = 0, therefore
its Taylor expansion has the form G(k) = G1k + G2k

2 + · · ·.
Consequently, |G(k)|2k−2 does not have a singularity at k = 0,
the integral

∫ |G(k)|2k−2dk is convergent, and the denominator
(C3) remains finite as ε → 0.

If we find a function g in S′ which renders the numerator in
(C1) negative, we will obtain a simple bound for the eigenvalue
λ at the point η = −1:

−λ2 <
〈g|L1 − 1|g〉∫ |G(k)|2k−2dk

< 0. (C5)
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To verify that functions with these properties do exist, take,
for instance,

g(X) = sechX tanh X − 1
2X sechX.

This odd function decays faster than any power of X and
satisfies the constraint (C4); hence it is in S′. A simple
integration gives

〈g|L1 − 1|g〉 = 3
2 − 11

72π2,

which is negative (approximately −7.9 × 10−3).

This completes our argument. We have shown that the
positive eigenvalue λ of the symplectic operator (4.17), which
had been proven to exist for −1 < η < 0, does not approach
zero as η approaches −1 from the right. (The same is obviously
true for the negative counterpart of this positive λ.) Note that
our argument does not rule out the existence of pairs of real
eigenvalues converging at zero as η approaches −1 from the
left.
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