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Modulational stability and gap solitons of gapless systems: Continuous versus discrete limits
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We consider a model consisting of two subsystems with crossing linear dispersion curves that describes,
for example, light propagation in binary waveguide arrays. This model admits bright-dark gap solitons in both
the discrete and the continuous (long-wavelength) limits, in spite of the absence of a gap in the linear (i.e.,
plane-wave) spectrum. We find that these solitons are always modulationally unstable in the continuous limit,
whereas they can be stable in the discrete system if the amplitude of the background component exceeds a certain
threshold.
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I. INTRODUCTION

Discrete optics in coupled waveguides has received inten-
sive study during the last three decades [1]. Besides being an
interesting research area on its own, due to several applications,
for example in communication systems and optical computing,
it furnishes a unique test bed for the observation of linear
and nonlinear phenomena occurring in various branches of
science due to the very general character of the underlying
equations. This formal analogy has been exploited to mimic a
variety of phenomena in the realm of (nonrelativistic) quantum
mechanics [2], quantum field theory [3], and relativistic
quantum mechanics [4,5], with particular emphasis on binary
waveguide arrays [6,7]. Binary arrays with different coupling
coefficients have been considered, since they might offer
a feasible experimental framework in which to explore a
two-band structure in the linear and nonlinear regimes [8,9].
In this scenario, the use of photonic crystal waveguides [10] or
waveguides based on plasmonic confinement [11,12] offers a
unique setting in which to exploit propagation in the so-called
alternating positive and negative coupling regime [13,14]. In
this instance, if the coupling coefficients have different moduli,
a gap centered at zero Bloch momentum in the linear dispersion
relation opens, allowing the existence of bright gap solitons
[15,16]. However, if the coupling coefficients have equal
moduli, the gap closes, and a “diabolical” or “Dirac” point
emerges in the band structure at zero transverse momentum
[13]. Despite the absence of a gap in the linear spectrum,
which may prevent the existence of bright gap solitons [17],
nonlinearity could in principle open a gap, allowing for the
existence of gap solitons sitting on a nonvanishing constant
background [18,19].

In this article we show that a nonlinearity-induced gap can
appear in the plane-wave (PW) spectrum of a binary array with
equal coupling coefficients if the nonlinear coefficients in the
even and odd sites are different. We analyze the stability of the
PW solutions in both the discrete case and in the continuous
long-wavelength limit. It turns out that only the discrete system
can support stable plane-wave propagation. Moreover, we find
that highly localized discrete solitons can propagate in a stable
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fashion if the PW background amplitude exceeds a certain
threshold. This perhaps surprising result, to the best of our
knowledge, has not been observed in similar systems.

II. PHYSICAL SETTINGS

According to coupled mode theory (CMT) and taking into
account third-order nonlinearities in the form of a pure Kerr
effect, the governing equations read [15,20]:

iE′
nz

+ βnE
′
n + Cn−1E

′
n−1 + Cn+1E

′
n+1 + χn|E′

n|2E′
n = 0,

where E′
n is the amplitude of the modal field Mn(x) of the nth

waveguide; βn is the propagation constant of each individual
waveguide (βn = β + �β/2 for n even and βn = β − �β/2
for n odd); χn, the site-dependent nonlinear coefficient, is
γ1 (γ2) for n even (odd); and Cn−1, Cn+1 are the coupling
coefficients with the (n − 1)th and the (n + 1)th waveguide,
respectively. In the specific case of interest, Cn−1 = C1 and
Cn+1 = C2 when n is even, whereas Cn−1 = C2 and Cn+1 =
C1 when n is odd. We then perform the transformation E′

n =
En exp(iβz) and we separately consider the mode amplitudes
in the even and odd waveguides. Finally, E2n = An and
E2n−1 = Bn are governed by the following two sets of coupled
equations with constant coefficients:

iAnz + �β

2
An + C1Bn + Bn+1 + γ1|An|2An = 0,

(1)
iBnz − �β

2
Bn + An−1 + C1An + γ2|Bn|2Bn = 0,

where without loss of generality C2 has been set equal to 1.
Assuming Bloch-wave disturbances, (An,Bn) ∝

exp{i(nkx + kzz)}, the linear dispersion relation of Eqs. (1)
reads

k2
z =

(
�β

2

)2

+ C2
1 + 1 + 2C1 cos kx.

Note that a band gap opens whenever �β �= 0 and/or for
C1 �= ±1, the band edges corresponding to the wave number
kx = 0 for C1 < 0 and kx = π for C1 > 0. Moreover, it was
demonstrated that discrete solitons can reside inside this gap
[15,20].

063836-11050-2947/2012/85(6)/063836(6) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.063836


CONFORTI, DE ANGELIS, AKYLAS, AND ACEVES PHYSICAL REVIEW A 85, 063836 (2012)

In what follows, we concentrate on the gapless system,
which is obtained by posing �β = 0 and C1 = −1:

iAnz + Bn+1 − Bn + γ1|An|2An = 0,
(2)

iBnz + An−1 − An + γ2|Bn|2Bn = 0.

In the neighborhood of kx = 0, we use the expansions

An±1(z) = u(x,z) ± ux(x,z) + 1
2uxx(x,z) + · · · ,

Bn±1(z) = w(x,z) ± wx(x,z) + 1
2wxx(x,z) + · · · ,

to obtain (as a first-order approximation) the following
continuous system in the long-wavelength limit:

iuz + wx + γ1|u|2u = 0,
(3)

iwz − ux + γ2|w|2w = 0.

This system also arises in the neighborhood of kx = π for C1 =
1, following a similar expansion procedure after the change of
variables (An,Bn) → (−1)n(An,Bn).

III. NONLINEAR DISPERSION AND MODULATIONAL
STABILITY

A. Continuous limit

We start by looking for plane-wave solutions u(x,z) =
A exp[ikxx + ikzz], w(x,z) = B exp[ikxx + ikzz] of the con-
tinuous system (3), for fixed total field intensity I = |A|2 +
|B|2, to get[

kz − γ1|A|2 −ikx

ikx kz − γ2|B|2
] [

A

B

]
= 0. (4)

It turns out that the PW amplitude |A| and wave number kz

must satisfy

k2
x = (kz − γ1|A|2)(kz − γ2|B|2), (5)

|A|2 = kz − γ2|B|2
kz − γ1|A|2 |B|2, (6)

I = |A|2 + |B|2, (7)

where Eq. (5) is derived from the determinant of the coefficient
matrix of the vector [A,B]T and Eq. (6) is obtained by
subtracting the first of Eqs. (4) multiplied by A∗ from the
conjugate of the second of Eqs. (4) multiplied by B.

After some algebra we can find |A|2 as the roots of the
fourth-order polynomial

(γ1 + γ2)2|A|8 − I (γ1 + γ2)(γ1 + 3γ2)|A|6
+ [

γ2I
2(2γ1 + 3γ2) + 4k2

x

]|A|4
− I

(
γ 2

2 I 2 + 4k2
x

)|A|2 + k2
xI

2 = 0, (8)
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FIG. 1. (Color online) Dispersion relation for I = 1 and (a) γ1 =
γ2 = 1; (b) γ1 = 1, γ2 = 0.5; (c) γ1 = 1, γ2 = 0; and (d) γ1 = 1,
γ2 = −1.

and the wave number kz from

kz = γ1|A|4 − γ2|B|4
|A|2 − |B|2 . (9)

Examples of the computed dispersion relations are shown
in Fig. 1. For a homogeneous array γ1 = γ2, the nonlinear
dispersion relation does not show any gap. However, as soon as
γ1 �= γ2 a gap opens, and it widens upon increasing nonlinear
nonhomogeneity.

We now perform a standard linear stability analy-
sis (LSA) in order to analyze the modulational stabil-
ity of the PW solutions. As usual we consider the
ansatz u(z,x) = [A + p1(z,x)] exp[ikxx + ikzz], w(z,x) =
[B + p2(z,x)] exp[ikxx + ikzz] that when inserted in Eqs. (3)
gives the following linearized system for the small perturba-
tions (|p1| � |A|, |p2| � |B|):

ip1z + p2x − kzp1 + ikxp2 + γ1(A2p∗
1 + 2|A|2p1) = 0,

ip2z − p1x − kzp2 − ikxp1 + γ2(B2p∗
2 + 2|B|2p2) = 0.

(10)

By writing the perturbations as the sum of a Stokes–anti-
Stokes pair as pm = εs,m(z) exp[iqx] + εa,m(z) exp[−iqx],
we can write the first-order system for ε = [ε1,s ,ε

∗
1,a,ε2,s ,ε

∗
2,a]T

ε̇ = Mε, (11)

where

M = i

⎡
⎢⎢⎢⎣

2γ1|A|2 − kz γ1A
2 i(kx + q) 0

−γ1A
2∗ −(2γ1|A|2 − kz) 0 i(kx − q)

−i(kx + q) 0 2γ2|B|2 − kz γ2B
2

0 −i(kx − q) −γ2B
2∗ −(2γ2|B|2 − kz)

⎤
⎥⎥⎥⎦ .
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FIG. 2. (Color online) Modulational instability gain for I = 4,
kx = 1, γ1 = 1, γ2 = 0.5. (a) Lower branch and (b) upper branch of
dispersion relation.

If for a fixed disturbance wave vector q the matrix M

possesses at least one eigenvalue with nonvanishing real
part, the PW solution will be unstable, and the perturbation
will grow with a rate G(q) = maxi=1,4[Re{λi}], λi being the
eigenvalues of the matrix M .

We found that the plane-wave solutions are always modula-
tionally unstable. In particular the PW solutions corresponding
to the upper branch of the dispersion relation are unstable
for high-disturbance wave number q, whereas the solutions
corresponding to the lower branch show the usual instability
gain profile, similar to the focusing nonlinear Schrödinger
equation [21]. Figure 2 shows two representative examples.

B. Discrete problem

We now analyze the discrete system (2) in order to
understand if the transition from a continuous system to a
discrete one can change the LSA scenario. For the purpose of
analyzing the crossover region, we write Eqs. (2) as the limit
for N → ∞ of the continuous systems:

iuz +
N∑

n=1

wxn

n!
+ γ1|u|2u = 0,

(12)

iwz +
N∑

n=1

(−1)nuxn

n!
+ γ2|w|2w = 0.

Again we calculate the plane-wave solutions u(x,z) =
A exp[ikxx + ikzz], w(x,z) = B exp[ikxx + ikzz] with fixed
field intensity I = |A|2 + |B|2. We obtain that the PW ampli-
tude and wave number must satisfy the same constraints of the
continuous systems (6) and (7), with Eq. (5) replaced by

|	k|2 = (kz − γ1|A|2)(kz − γ2|B|2), (13)

where 	k = ∑N
n=1(ikx)n/n!. For the fully discrete problem

(N → ∞) we get 	k = exp[ikx] − 1, as expected from direct
analysis of system (2).
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FIG. 3. (Color online) Dispersion relation for I = 1 and (a) γ1 =
γ2 = 1; (b) γ1 = 1, γ2 = 0.5; (c) γ1 = 1, γ2 = 0; and (d) γ1 = 1,
γ2 = −1. Thick (red) curve, discrete system; thin (blue) curve, long-
wavelength limit.

After some algebra, we can find |A|2 as the roots of the
fourth-order polynomial,

(γ1 + γ2)2|A|8 − I (γ1 + γ2)(γ1 + 3γ2)|A|6
+ [γ2I

2(2γ1 + 3γ2) + 4|	k|2]|A|4
− I

(
γ 2

2 I 2 + 4|	k|2
)|A|2 + |	k|2I 2 = 0, (14)

and the wave number kz from Eq. (9).
Examples of the computed dispersion relations are shown

in Fig. 3, superimposed with the corresponding ones for the
long-wavelength limit.

We now perform LSA assuming as before
u(z,x) = [A + p1(z,x)] exp[ikxx + ikzz], w(z,x) =
[B + p2(z,x)] exp[ikxx + ikzz]. Inserting this ansatz in
Eqs. (12) gives the linearized system

ip1z + D1p2 − kzp1 + 	kp2 + γ1(A2p∗
1 + 2|A|2p1) = 0,

ip2z − D2p1 − kzp2 + 	∗
kp1 + γ2(B2p∗

2 + 2|B|2p2) = 0,

(15)

where D1 and D2 are the differential operators defined in
Eqs. (12).

By writing the perturbations as before, pm =
εs,m(z) exp[iqx] + εa,m(z) exp[−iqx], we can write the
first-order system

ε̇ = Qε, (16)

where

Q = i

⎡
⎢⎢⎢⎣

2γ1|A|2 − kz γ1A
2 	k + 	q 0

−γ1A
2∗ −(2γ1|A|2 − kz) 0 −	∗

k − 	q

	∗
k + 	∗

q 0 2γ2|B|2 − kz γ2B
2

0 −	k − 	∗
q −γ2B

2∗ −(2γ2|B|2 − kz)

⎤
⎥⎥⎥⎦ ,

where 	q = ∑N
n=1(iq)n/n!.
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FIG. 4. (Color online) Modulational instability gain maps for (a)
γ1 = 1, γ2 = 0 and (b) γ1 = 1, γ2 = 0.5.

Interestingly enough, we find that the plane-wave solutions
for the discrete system can be modulationally stable. In
particular we found that the PW solutions corresponding to
the upper branch of the dispersion relation can be stable for
high enough values of intensity I . Figure 4 shows maximum
modulational instability gain as a function of intensity and
wave number of the PW solutions for two representative
examples. Observe that in both cases the (colored) region of
instability is confined to a range of finite intensities.

Figure 5(a) shows the instability gain for an unstable PW of
the discrete system, consisting in two bands centered around
q = ±π (red curve). The modulational instability (MI) gain
for the long-wavelength limit N = 1 consists of two bands
with |q| > q0 (blue curve); by increasing N the bands of the
discrete system are well approximated, but the high-frequency
bands do not disappear (black curves). Figure 5(b) shows that
these high-frequency bands exist also when the discrete system
does not manifest instability. The different behavior of discrete
and continuous systems can be ascribed the periodicity. In fact
the discrete system is periodic in the wave-number domain,
and all the relevant features are contained in the first Brillouin
zone q ∈ [−π,π ].

Some analytical calculations can be performed by taking
kx = 0. In this case 	k = kx = 0, and the PW solutions of
the discrete and continuous system coincide. We find from
Eq. (14) that the PW solution sitting on the upper branch is
given by |A|2 = I , B = 0, and kz = γ1I . Moreover, we can
calculate the eigenvalues of the matrix Q/i:

λ = ±
√

|	q |2 + 1
2γ 2

1 I 2 ± 1
2γ1I

√
γ 2

1 I 2 − 4|	q |2. (17)

The solution is stable if λ are real for all values of
wave-number disturbance q, so the intensity must satisfy
γ 2

1 I 2 > 4|	q |2. In the long-wavelength limit |	q |2 = q2,
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FIG. 5. (Color online) Modulational instability gain for kx = 0,
γ1 = 1, γ2 = 0: (a) kz = I = 3.5, (b) kz = I = 4. Dash-dotted (red)
curves, discrete system; dashed (blue) curves, N = 1; solid black
curves, N = 8. Vertical curves delimit the first Brillouin zone [−π,π ].

so the solution is always unstable with respect to high
enough wave-vector disturbance. However, in the discrete
case |	q |2 = 2 − 2 cos(q), entailing that PW solutions with
I > 4/|γ1| are stable.

To conclude, the main result of this section is that PW
solutions are always modulationally unstable in the continuous
long-wavelength limit, whereas they can become stable in
the discrete case for high enough intensity. This feature is
quite counterintuitive, because in the standard modulational
instability scenario, the higher is the intensity, the higher is the
modulational instability gain [21].

IV. DARK SOLITONS

A. Long-wavelength limit

We restrict ourselves to the simple interlaced linear-
nonlinear case (γ1 �= 0, γ2 = 0) and stationary solitons (kx =
0) [22]. Despite its simplicity, this case contains all the
relevant physics. More complex walking solitons of the general
nonlinear case (γ1 �= 0, γ2 �= 0, kx = 0), which can be found
by Hamiltonian methods [15], are not considered here in
order to keep the treatment as simple as possible. The simple
bright-dark soliton reads

u(x,z) =
√

μ

γ1
tanh

(
μx√

2

)
eiμz,

(18)

w(x,z) = −
√

μ

2γ1
sech2

(
μx√

2

)
eiμz.

This solution sits on the PW characterized by intensity
I = μ/γ1, wave number kz = μ, and amplitude |A|2 = I ,
|B| = 0. From the previous section we know that this PW is
always unstable in the continuous limit, entailing the instability
of the soliton. This scenario is confirmed by numerical solution
of Eqs. (3) with Eqs. (18) as the initial condition plus
small noise (Fig. 6). The high-wave-number modulational
instability corrupts the soliton profile after some propagation
distance.

This solution, however, can in principle be stable in the
discrete system. In fact we showed that an intensity threshold
exists in the discrete system that permits PW solutions to be
stable. With intensity I > 4/|γ1| solutions (18) sit on a stable
background for the discrete system. However, the width of the
solitons scales as 1/I , entailing that the widest stable soliton
has width ≈√

2/μ ≈ 0.35. In this case, the long-wavelength
limit breaks down, making the solutions a bad approximation
for the discrete system. This case is well represented in Fig. 7,
where solution (3) is used as the initial condition for system

FIG. 6. (Color online) Propagation of a dark-bright soliton: γ1 =
1, γ2 = 0, and I = 0.5.
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FIG. 7. (Color online) Failure of the continuous model for
strongly localized beams. In the figure we report the numerical
integration of Eqs. (2) using an initial condition corresponding to
a very localized dark-bright soliton solution of the continuous system
(γ1 = 1, γ2 = 0, I = 4).

(2). Due to the presence of high-wave-vector components,
the initial profile is destroyed after a short propagation
distance.

B. Strongly localized solitons

From the analysis above, we expect that discrete stable
solitons will be strongly localized. Again we concentrate on
the linear-nonlinear case γ2 = 0 and γ1 �= 0, and without loss
of generality we assume γ1 = σ = ±1. In this case the PW
solution is characterized by kz = σI , |A|2 = I , |B| = 0. We
try to find discrete solitons with the ansatz An = an exp[iλσz],
Bn = bn exp[iλσz], where λ = I > 0. We find from Eqs. (2)

bn = 1

σλ
(an−1 − an), (19)

(2 − λ2)an − an+1 − an−1 + λ|an|2an = 0. (20)

We write an = √
λân and assume ân = O(1). Assuming a

solution localized around the n = 0 waveguide, we consider a
three-site solution [23]:

n = −1 : (2 − λ2)â−1 − â0 − â−2 + λ2â2
−1 â∗

−1 = 0,

n = 0 : (2 − λ2)â0 − â1 − â−1 + λ2â2
0 â

∗
0 = 0, (21)

n = 1 : (2 − λ2)â1 − â2 − â0 + λ2â2
1 â

∗
1 = 0.

Assuming λ � 1 we make the following asymptotic ex-
pansion:

â−2 = −1 + · · · ,
â−1 = −1 + c−1

λ2
+ · · · ,

â0 = c0

λ2
+ · · · ,

â1 = s + c1

λ2
+ · · · ,

â2 = −s + · · · ,
where s = ±1 and ân<−2 = â−2, ân>2 = â2. Inserting the
asymptotic expansion into Eqs. (21) we find the consistency
relation for the coefficients cn:

c−1 + c∗
−1 = 1,

c0 = 1 − s,

c1 + c∗
1 = −s.
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FIG. 8. (Color online) Strongly localized discrete solitons profile:
λ = 5 and (a) s = 1, (b) s = −1. Circles, an; squares, bn. Solid curves
in (a) show the continuous soliton (18) sampled in the waveguide’s
positions.

For s = 1 we obtain the following solution (at the leading
order in λ):

. . . , a−1 = −
√

λ, a0 = 0, a1 =
√

λ, . . . , (22)

. . . , b−1 = 0, b0 = − 1

σ
√

λ
, b1 = − 1

σ
√

λ
, . . . , (23)

whereas for s = −1 we get

. . . , a−1 = −
√

λ, a0 = 2

λ3/2
, a1 = −

√
λ, . . . , (24)

. . . , b−1 = 0, b0 = − 1

σ
√

λ
, b1 = 1

σ
√

λ
, . . . . (25)

Two representative examples are shown in Fig. 8. For s = 1
we can also make a comparison with the sech-tanh soliton
of the continuous system. While the dark component is well
approximated by a hyperbolic tangent, the bright component
is very different from the hyperbolic secant. The cause of the
discrepancy is the fact that while the sech is peaked around
n = 0, the discrete soliton has two equally high sites in n = 0
and n = 1, whereas the s = −1 soliton has no counterpart in
the continuous system.

From the result of LSA we expect that discrete solitons will
be unstable for λ < 4. In fact the numerical simulation reported
in Fig. 9 for λ = 3.5, shows a destruction of the soliton profile
after a short propagation distance. However, for λ > 4 we
expect a stable propagation for the PW background; moreover,

FIG. 9. (Color online) Propagation of discrete solitons for s = 1:
(a, b) λ = 3.5, (c, d) λ = 6. Similar behavior is obtained for s = −1.
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λ being sufficiently high, we expect that the asymptotic
expansion at first order will give a good estimate for the soliton
profile. This is indeed the case, as shown in Fig. 9, where a
stable propagation is evident, together with a very low emission
of radiation, for λ = 6.

V. CONCLUSIONS

We considered a model consisting of two equations coupled
exclusively by nonlinear terms that describes light propa-
gation in nonlinearly nonuniform binary waveguide arrays.
We showed the existence of bright-dark gap solitons of
both the discrete system and its continuous long-wavelength
limit, in spite of the absence of a gap in the linear (i.e.,
plane-wave) spectrum. We find that these solitons are always

modulationally unstable in the continuous limit, whereas they
can be stable in the discrete system if the amplitude of the dark
component exceeds a certain threshold.
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