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Disclosing the spatiotemporal structure of parametric down-conversion entanglement through
frequency up-conversion
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In this work we propose and analyze a scheme where the full spatiotemporal correlation of twin photons or
beams generated by parametric down-conversion is detected by using its inverse process, i.e., sum frequency
generation. Our main result is that, by imposing independently a temporal delay �t and a transverse spatial
shift �x between two twin components of PDC light, the up-converted light intensity provides information
on the correlation of the PDC light in the full spatiotemporal domain and should enable the reconstruction of
the peculiar X-shaped structure of the correlation predicted previously [A. Gatti et al. Phys. Rev. Lett. 102,
223601 (2009); L. Caspani et al. Phys. Rev. A 81, 033808 (2010); E. Brambilla et al. Phys. Rev. A 82, 013835
(2010)]. Through both a semianalytical and a numerical modeling of the proposed optical system, we analyze
the feasibility of the experiment and identify the best conditions to implement it. In particular, the tolerance of
the phase-sensitive measurement against the presence of dispersive elements, imperfect imaging conditions, and
possible misalignments of the two crystals is evaluated.
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I. INTRODUCTION

Recent theoretical investigations [1–3] outlined a peculiar
spatiotemporal geometry of the biphoton correlation character-
izing the entanglement of twin beams generated by parametric
down-conversion (PDC) from a broad quasimonochromatic
pump pulse. In collinear phase-matching conditions, the
biphotonic correlation displays an X-shaped geometry as a
function of the relative spatial and temporal coordinates. This
structure is nonfactorable in space and time, thus offering the
relevant possibility of manipulating the temporal bandwidth
of the entanglement of twin photons by acting on their spatial
degrees of freedom. The term ”X entanglement” was used
[1] to describe this geometry. A key feature that emerged
was the extreme spatial and temporal localization of the
biphotonic correlation, in the micrometer and femtosecond
range, respectively, which is present only when twin photons
are detected in the near field of the PDC source. This
feature allows, in principle, the generation of ultrabroadband
temporally entangled photons, via the proper control of their
spatial degrees of freedom. We also showed that these features
of X entanglement persist in the high-gain regime of PDC,
where stimulated down-conversion becomes the main source
of twin photon pairs. A detailed study can be found in Refs. [1]
and [2] for type I phase matching and in Ref. [3] for type II
phase matching.

X entanglement expresses a strong coupling between the
temporal delay and the transverse spatial separation of the
twin photons at the crystal output face. This coupling in direct
space is connected to the nonfactorability of the biphoton state
in the Fourier domain, a well-known property of broadband
PDC (see, e.g., [4–6]), which in turn derives from the
phase-matching conditions linking the emission angles and
the frequencies of the emitted photons. The interdependence of
correlated variables (known as multiparameter entanglement)
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has since long been recognized as a resource for engineering
entanglement in quantum interferometric experiments [4,7],
e.g., for controlling the spatial characteristics of the PDC light
emitted in multimode waveguides [8,9]. In previous works
[1–3], we demonstrated that under appropriate phase-matching
conditions, the coupling between the spatial and the temporal
frequencies translates in direct space into a linear relation
between the temporal delays and the transverse separations
of the twin photons at the crystal output face, within un-
certainties in the femtosecond and in the micrometer range,
respectively. This feature gives the PDC correlation function
the characteristic X-shaped structure with skewed tails in the
space-time domain (see, e.g., Fig. 3). The goal of the present
work is a theoretical investigation of a scheme based on the use
of sum frequency generation (SFG) to explore the predicted
X-shaped geometry of PDC entanglement. An experiment
based on this scheme is currently under development at the
Insubria University in Como [11,12].

At low gains, a prominent way to probe the twin pho-
ton correlation is the Hong-Ou- Mandel (HOM) detection
scheme [13]. However, the experiment in Como works in
the high-gain regime of PDC, where the visibility of a
HOM dip would be exceedingly low. We consider therefore
an alternative detection scheme based on the SFG process
taking place in a second nonlinear crystal, onto which the
PDC source is imaged. This second crystal operates as an
ultrafast optical correlator, the up-converted field contain-
ing the information about the correlation of the injected
source.

Recent experimental works [14–18] used SFG to test the
twin-photon or twin-beam correlation in the purely temporal
domain, by imposing a controlled temporal delay between the
twin photons. A careful theoretical modeling of such schemes,
and of related schemes based on two-photon absorption [19],
was developed in Ref. [18]. However, this analysis is restricted
to models considering only the temporal degrees of freedom
of light. A fully spatiotemporal model describing the up-
conversion of PDC photons via SFG has been considered in
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Ref. [17], however, this model is, in turn, valid only in the
coincidence count regime of PDC.

The aim of the experiment being developed in Como is
to use SFG to explore the PDC correlation in the whole
spatiotemporal domain, by manipulating independently the
temporal and the spatial degrees of freedom of the twin beams.
To this end, we develop here a fully spatiotemporal model in
order to describe the nonlinear processes taking place in the
two crystals and the propagation between the crystals. This
model is valid both in the high-gain regime of PDC, where the
experiment in Como is being performed, and in the low-gain
regime, where twin photons can be resolved by coincidence
counting.

We demonstrate that the proposed scheme allows, in
principle, the reconstruction of the X-shaped spatiotemporal
correlation of twin beams or twin photons, and we identify the
best conditions under which an experimental observation can
be performed. In particular, we analyze important issues such
as the visibility of the information thereby obtained (which
becomes crucial in the high-gain regime of PDC) and the
tolerance of the scheme with respect to common experimental
imperfections, such as errors in the imaging scheme that maps
the PDC light onto the SFG crystal or misalignments of the
two nonlinear crystals.

Besides being necessary to describe the detection of
the spatiotemporal X correlation, we remark that our fully
spatiotemporal model for PDC and SFG is also crucial to
interpret the results of similar schemes aimed at exploring
the purely temporal correlation of twin photons, at least when
the temporal bandwidths in play are large. This statement,
further demonstrated by the experiment reported in Ref. [11],
originates from the intrinsic nonfactorability of spatial and
temporal degrees of freedom of the PDC correlation, which
implies that the temporal properties of twin photons depend
also on the way their spatial degrees of freedom are manip-
ulated before being up-converted (by the use, e.g., of pupils
that restrict the acceptance angle). A clear example is given in
Sec. VIII b, where we show that the effect of spatial diffraction
introduced by an imperfect imaging scheme induces a temporal
broadening of the correlation, in addition to the more obvious
spatial broadening.

The paper is organized as follows. Section II illustrates the
proposed scheme, while in Sec. III we develop a modeling
of the setup. In Sec. IV we derive a general solution for
the coherence function of the generated SFG light, so that in
Sec. V we are able to demonstrate how the full spatiotemporal
X correlation can be retrieved by monitoring the SFG light
intensity as a function of the temporal delay and the spatial
transverse shift between the twin beams. Section VII discusses
the issue of the visibility of the information, while Sec. VIII
analyzes the tolerance of the scheme with respect to some
common experimental imperfections.

II. GENERAL DESCRIPTION OF THE SCHEME

The main features regarding the proposed detection scheme
and its theoretical modeling are the following.

(1) Both the spatial and the temporal degrees of freedom
of the optical fields are taken into account. In order to observe
X entanglement, a large temporal bandwidth (hundreds of
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FIG. 1. (Color online) Proposed scheme for detecting the full
spatiotemporal correlation of PDC via sum frequency generation. The
PDC light generated by the first crystal is imaged onto the second,
identical crystal, where up-conversion takes place. A transverse
spatial displacement �x and a temporal delay �t are imposed
independently on beam + and beam −, respectively, by means of
rotations/translations of mirrors M1/M2 placed in the 2f plane of
the imaging system. The output SFG intensity is monitored as a a
function of �x and �t .

nanometers) of PDC radiation needs to be collected [1,2],
so that special care will be taken to model broadband field
propagation. The spatial bandwidth is also rather large so that
we assume that optical elements have large acceptance angles.

(2) Our description is valid in any gain regime of PDC, so
that it models both the generation and the detection of twin
photons and of twin beams.

(3) A simplified scheme is illustrated in Fig. 1. The first
nonlinear crystal, pumped by a broad coherent pump beam,
generates PDC radiation. After eliminating the pump beam,
the exit face of the PDC crystal is imaged onto the entrance
face of the second nonlinear crystal, where the inverse SFG
process takes place. This is described in Fig. 1 by a 4f lens
imaging system: in a real implementation, however, dispersive
optical elements should be avoided as much as possible, since
dispersion would drastically deteriorate the phase-sensitive
correlation. The use of parabolic mirrors in place of lenses is
a valid alternative, as we recently demonstrated in Refs. [10]
and [11].

(4) In order to have an efficient up-conversion process, the
SFG and PDC crystals must be of the same material and cut
for the same phase-matching conditions, while their lengths
can differ.

(5) We focus on type I PDC, and in the following we always
refer to the case of a BBO (β-barium-borate) crystal pumped
at 527 nm in an e-oo phase-matching configuration. The PDC
field is then described by a single field operator (ordinarily
polarized), while the pump field is extraordinarily polarized.
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(6) In order to explore the full spatiotemporal structure of
PDC entanglement, a key requirement is the ability to impose
independently a temporal delay �t and a transverse spatial
displacement ��x between the two twin components of PDC
radiation. The twin components of the signal beams can be
manipulated separately in the 2f plane of the imaging device
(the far-field plane with respect to both the PDC crystal exit
face and the SFG crystal entrance face): the reason is that for
a broad pump beam, twin photons are always emitted with
opposite transverse wave vectors �q and −�q, so that when a
photon is found in the upper half of the 2f plane, its twin
will always be in the lower half-plane. We denote by beam
+ and beam –respectively, the upper and lower portions of
the 2f plane, which correspond to the two portions of the
PDC radiation having positive qy > 0 and negative qy < 0
components of the transverse wave vector along the y axis in
Fig. 1.

(7) Since the PDC correlation is strongly localized both
in space and in time (in the micrometer and femtosecond
range, respectively [1–3]), the temporal and spatial relative
displacements of the twin beams must be scanned with
micrometric precision. This can be realized by means of the
two plane mirrors M1 and M2 placed in the 2f plane of the
telescopic system. As described in detail in the following, a
rotation of mirror M1 by an angle �φ generates, at the SFG
crystal input face, a transverse displacement of beam + of an
amount �x = 2f �φ, while a translation of mirror M2 by a
distance �z2 generates a temporal delay �t = �z2/c.

The intensity of the up-converted field generated by the SFG
process in the second crystal is then monitored as a function
of the relative temporal delay and spatial shift of the twin
beams. The main idea that we demonstrate is that this quantity
is able to give precise information about the structure of the
correlation of twin beams generated in the first crystal and can
be used in order to reconstruct the shape of this correlation in
space and in time.

In the treatment that follows we develop a model that
takes fully into account the propagation effects and the
phase-matching mechanism that selects the spatiotemporal
frequencies in both crystals.

III. MODELING THE OPTICAL SYSTEM

In order to describe the scheme in Fig. 1, we consider
separately the propagation in the PDC crystal (Step I), the
linear propagation between the two crystals (Step II), and
the up-conversion process in the second crystal (Step III). As
indicated in Fig. 1, the field operators in the different planes
of interest are labeled with

(1) aj at the input plane of the PDC crystal,
(2) bj at the output plane of the PDC crystal,
(3) cj at the input plane of the SFG crystal, and
(4) dj at the output plane of the SFG crystal.
The j = 0 index refers to beams with central frequency ω0

(either the pump field in the first crystal or the up-converted
field in the second crystal), the j = 1 index to the beams
of central frequency ω1 = ω0/2 (either the down-converted
field in the first crystal or the fundamental field in the SFG
crystal).

The description of field evolution along z, the mean
propagation axis of the system, is performed either in the
direct spatiotemporal space (�x,t), where �x ≡ (x,y) is the
(2D) transverse coordinate and t is time, or in the Fourier
spatiotemporal domain (�q,�), where �q is the transverse
component of the wave vector and � denotes the frequency
offset from the central frequency.

For convenience, we use a compact notation for these space-
time coordinates by making the substitutions

(�x,t) → �ξ, (1a)

(�q,�) → �w, (1b)

�q · �x − i�t → �w · �ξ . (1c)

Our analysis is carried out at two levels.
(1) In the limit where the pump beam driving the PDC

process is broad and long enough, we adopt the plane-wave
pump approximation (PWPA), which allows us to derive
analytical or semianalytical results. This model is presented
in Secs. III A-VII.

(2) In order to obtain results for a finite pump, we also
developed a full 3D + 1 numerical model, based on stochastic
simulation of field evolutions. This model is introduced in
Sec. VII.

A. Step I: Propagation in the PDC crystal

In this section we describe the model we use to describe
PDC (also derived in Refs. [1], [6], and [2]), and we recall the
main features of the space-time correlation of PDC light that
we call X entanglement [1–3].

The pump and down-converted fields are described by two
field operators, b0 and b1, centered around the frequencies
ω0 and ω1 = ω0/2, respectively. Normalization is such that
〈b†j (ξ )bj (ξ )〉 gives the photon number per unit area and unit
time. The generation of the PDC field along the nonlinear
crystal takes its simplest form in the Fourier domain

bj ( �w,z) =
∫

d3ξ

(2π )
3
2

bj (ξ,z)e−iξ · �w, j = 0,1, (2)

where we recall that �w = (�q,�) is the set of 3D Fourier
coordinates, ξ = (�x,t), while z is the longitudinal coordinate
along the mean propagation direction in the crystal. Next, we
introduce the slowly varying amplitudes

b̄1( �w,z) = e−ik1z( �w)zb1( �w,z), (3a)

b̄0( �w,z) = e−ik0z( �w)zb0( �w,z), (3b)

where kjz( �w) = √
kj ( �w)2 − q2 is the z component of the wave

vector for the j field. These amplitudes vary slowly along the z

coordinate, because their evolution is only due to the nonlinear
interaction, since we have subtracted the effect of the fast linear
propagation contained in the phase factor exp [ikjz( �w)z]. We
can assume that the pump beam is undepleted by the PDC,
so that its evolution is only linear, b̄0( �w,z) = b̄0( �w,0). In the
same approximation, the pump operator can be substituted by
its c -number amplitude b̄0( �w,0) → αp( �w). The propagation
equation for the signal field contains only first-order z
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derivatives and takes the form [1,6]

∂

∂z
b̄1( �w,z) = σ

∫
d �w ′

(2π )3/2
αp( �w + �w ′)b̄†1( �w ′,z)

× e−i�( �w, �w ′)z. (4)

Here the phase-matching function

�( �w, �w ′) = k1z( �w) + k1z( �w ′) − k0z( �w ′ + �w ′) (5)

describes the phase mismatch between the two generated
signal modes (�q,�), (�q ′,�′) and the pump mode
(�q + �q ′,� + �′). Efficient down-conversion takes place
only in those modes for which the phase mismatch is small.
The coupling constant σ is defined by

σ = deff

√
h̄π3ω3

0

4ε0n0n
2
1c

3
, (6)

where deff is the effective second-order susceptibility of the
nonlinear crystal, n0 and n1 are the refraction indexes at the
central frequencies ω0 and ω1.

Equation (4) can be analytically solved in the plane-wave
pump approximation, αp( �w + �w ′) → (2π )3/2ᾱpδ( �w + �w ′),
where ᾱp denotes the pump field peak value in direct space.
As analyzed in detail in Ref. [2], such an approximation
holds as long as the pump beam waist and duration are
larger than the spatial transverse displacement and temporal
delay experienced by the pump and signal beams along the
crystal because of walk-off and group velocity dispersion
(in the example of a 4-mm-long BBO, a pump pulse with
a waist larger than ∼250 μm and a duration above ∼200 fs
satisfies this condition). The solution is expressed by a unitary
transformation linking the field operators at the output face of
the crystal, b1( �w) ≡ b1( �w,z = lc), to those at at the input face,
a1( �w) ≡ b1( �w,z = 0):

b1( �w) = U ( �w)a1( �w) + V ( �w)a†
1(− �w). (7)

The explicit expression of the functions U and V can be found,
e.g., in Ref. [2]. Here we note that they depend on �w only
through the plane-wave pump phase-matching function

�pdc( �w) ≡ �( �w, − �w) = k1z( �w) + k1z(− �w) − k0, (8)

where k0 = n0ω0/c is the wave number of the pump.
All the properties of the PDC light are described by the

following second-order field correlation functions:

〈b†1( �w)b1( �w ′)〉 = δ( �w − �w ′)|V ( �w)|2, (9a)

〈b1( �w)b1( �w ′)〉 = δ( �w + �w ′)U ( �w)V (− �w). (9b)

In particular, from Eq. (9b), we see that the function

FPDC( �w) ≡ U ( �w)V (− �w) (10)

represents the probability amplitude that a pump photon
at (�q = 0,� = 0) is down-converted into a pair of phase-
conjugated photons (�q,�) and (−�q, − �). Its explicit expres-
sion is

FPDC( �w) = geik0lc
sinh �( �w)lc

�( �w)lc

{
cosh �( �w)lc

+ i
�pdc( �w)lc
2�( �w)lc

sinh �( �w)lc

}
, (11a)

�( �w)lc =
√

g2 − [�pdc( �w)lc]2

4
, (11b)

where g is the dimensionless gain parameter proportional to
the pump peak amplitude,

g = σ lcᾱp. (12)

The other relevant function is the PDC spatiotemporal spec-
trum

|V ( �w)|2 = g2 sinh2[�( �w)lc]

�2( �w)l2
c

, (13)

which gives the photon number distribution in the spatiotem-
poral Fourier domain.

We remark that Eqs. (4)–(13) are valid in any gain regime
of PDC. In the low-gain regime g 	 1 they describe the down-
conversion of pump photons into pairs of signal-idler photons
that can be resolved individually. In the high-gain regime g ∼
1 stimulated down-conversion becomes important, and these
equations describe the generation of macroscopic twin beams
of light made of ”bunched” pairs of twin photons.

In particular, in the low-gain regime Eq. (11) takes the
well-known Sinc dependence on the phase mismatch:

lim
g	1

FPDC( �w) = geik0lc Sinc
�pdc( �w)lc

2
ei

�pdc( �w)lc
2 . (14)

In Ref. [1] the term X entanglement was used to describe
the shape of the spatiotemporal correlation of the biphoton
amplitude at the crystal output face. The quantity of interest is
therefore

ψPDC(�ξ ) = 〈b1(�ξ ) b1(�ξ + ��ξ )〉, (15)

which, in the stationary plane-wave pump regime, depends
only on the relative spatial and temporal coordinates �ξ ≡
(��x,�t). It can be expressed [2] as the Fourier transform
of the spectral probability amplitude FPDC( �w) of generating
photons in phase conjugate modes �w and − �w, that is,

ψPDC(ξ ) =
∫

d �w
(2π )3

ei�ξ · �wFPDC( �w). (16)

Figure 2 shows the behavior of |FPDC| for collinear phase
matching, calculated by using the Sellmaier relations for the
refractive indexes [22]. As can be inferred from Eqs. (11)
and (14), in any gain regime FPDC( �w) is strongly peaked
around the phase-matching curves defined by �pdc( �w) = 0.
The hyperbolic geometry displayed in the neighborhood
of degeneracy can be understood by making a quadratic
expansion of kz around (�q = 0,� = 0),

k1z(�q,�) ≈ k1 + k′
1� + 1

2
k′′

1�2 − q2

2k1
, (17)

where k1 = k1( �w = 0), k′
1 = dk1/d�| �w=0, and

k′′
1 = d2kj/d�2| �w=0.1 The phase-matching function, (8),

1A detailed discussion on the range of validity of approxima-
tions (17) can be found in Ref. [3] in the context of type II phase
matching.
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FIG. 2. (Color online) Plot of |FPDC| in the (qx,�) plane, for a
4-mm-long type I BBO pumped at 527 nm, cut for collinear phase
matching. The unshaded region corresponds to the frequency filter
used in the simulation with 2�max = 0.965 × 1015 Hz FWHM. The
bandwidths ∼4qD and ∼4� of the phase matching of |FPDC| along the
spatial and the temporal frequency axis are indicated. The parametric
gain is g = 8,�PDC

0 = 0.

then takes the quadratic form

�pdc( �w)lc ≈ �PDC
0 lc + q2

q2
D

− �2

�2
D

, (18)

where �PDC
0 = 2k1 − k0 is the collinear phase-mismatch pa-

rameter, and

�D =
√

1/k′′
1 lc, qD =

√
k1/lc. (19)

qD and �D determine the characteristic scale of variations of
FPDC along the � axis, at fixed q, and along the q axis at fixed
�, respectively. They scale with the inverse square root of the
crystal length and are generally much smaller than the range
of frequencies of the whole PDC emission spectrum (the latter
can, in principle, extend up to the pump optical frequency).
When tuning the crystal for collinear phase matching, i.e.,
for �PDC

0 = 0, phase matching occurs along the lines q/qD =
±�/�D . Under this condition, we note that the first zeros of
the function �(�q,�)lc [see Eq. (11b)] along the � and q axis,
evaluated using approximation (18),

�̄D =
√

2(π2 + g2)1/4�D, q̄D =
√

2(π2 + g2)1/4qD,

(20)

provide good estimates of the widths of |FPDC| along those
axis, which take into account the gain broadening effect in the
spectral domain. For the example shown in Fig. 2, with g = 8,
we have �̄D ≈ 4�D , q̄D ≈ 4qD , as indicated by the arrows.

The hyperbolic geometry of phase matching in the spectral
domain turns into a characteristic X-shaped geometry for
the spatiotemporal biphoton correlation ψPDC(��x,�t), (16).
Figure 3(a) shows the profile of ψPDC as a function of the
relative spatial and temporal coordinates. (Only one transverse
dimension is shown.) The tails of the structure are oriented
along the lines �D�t = ±qD�x, a feature expressing a linear
relation between the temporal delay and the spatial transverse
separation acquired by the twin photons when arriving at the
crystal output face [1,2], i.e., making use of Eqs. (19),

�t = ±
√

k′′
1k1�x. (21)
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FIG. 3. Example of X entanglement for the same crystal as in
Fig. 2. (a) Plot of the modulus of the biphoton amplitude as a function
of the relative spatiotemporal coordinates �x and �t . (b) Temporal
and (c) spatial profiles of the central peak of the correlation. Same
parameters as in Fig. 2.

As described in detail in Ref. [2], when tilting the crystal away
from collinear phase matching, this linear relation becomes
less and less stringent: as a consequence, the tails of the
structure become progressively less visible. The �PDC

0 = 0
phase-matching condition therefore represents the optimal
configuration for observing X entanglement.

A relevant feature of X entanglement is the strong localiza-
tion of the central peak of the correlation function, whose
cross sections along the temporal and the spatial axes are
shown in the lower part in Fig. 3. The width of the peak is, in
principle, determined by the inverse of the full PDC emission
bandwidth or, in practice, by the bandwidth intercepted in
the measurement. In the example in the figure, we simulated
the presence of a filter in the temporal frequency of width
2��max = 0.965 × 1015Hz (indicated by the unshaded region
in Fig. 2), which corresponds to a wavelength interval ranging
from 830 nm up to the conjugate wavelength 1444 nm. The
temporal profile of the correlation in Fig. 3 has a full width
at half-maximum �tfwhm ≈ 5fs, close to that of the Fourier
transform of a box function of width 2�max. The spatial width
of the correlation peak, in turn, is determined by the range
of spatial frequencies involved in the PDC emission and,
typically, is of the order of a few micrometers.

B. Step II: Propagation between the two crystals

We assume ideally that the optical setup illustrated in Fig. 1
behaves as a perfect imaging system, free of dispersion and
losses. In the absence of any temporal delay and spatial shift
(�t = 0,�x = 0), the PDC field at the PDC crystal exit face
is then mapped into the SFG crystal entrance face c1(�x,t) =
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b1(�x,t).2 In order to model the effect of a small rotation of
mirror M1 and a small translation of mirror M2, we assume
that the propagation angles in play are such that the paraxial
approximation holds.

Let us first consider the temporal delay applied to the qy < 0
Fourier modes of the PDC light (beam –). By translating mirror
M2 by �z2 the separation between the two lenses in Fig. 1
becomes 2f + �z2. The fields at frequency ω1 + � in the
left and right focal planes of the imaging device are related
through the algebraic transformation (the �x → −�x reflection
is omitted)

c1(�x,�) = e
i

ω1+�

c
(1− |�x|2

f 2 )�z2
b1(�x,�). (22)

The effect of diffraction due to the additional propagation
�z2 is described, within the paraxial approximation, by the
quadratic phase factor proportional to |�x|2/f 2. Its effect can
be neglected as long as

�z 	 λ

π

f 2

|�x|2 . (23)

Referring to the conditions of the experiment [10,11], for
f ∼ 20 cm, λ ∼ 1 μm, and |�x| ∼ wp � 1 mm, the condition
reads �z 	 1.2 cm. In order to explore the X-shaped PDC
correlation, delays of a few hundred femtoseconds at most are
sufficient [see, e.g., the plot in Fig. 3(a)], so that, in practice,
condition (23) is always fulfilled. Each Fourier mode of beam
– therefore undergoes, within a very good approximation, the
diffractionless transformation

c1(�q,�) = ei �
c
�z2b1(�q,�) for qy < 0, (24)

where an inessential constant phase factor has been omitted.
We now consider the manipulation of beam + through the

rotating mirror M1. As shown in the Appendix, a rotation
of M1 by a small angle �φ around a given axis generates
a transverse shift �s = 2f �φ of the beam at the entrance
face of the SFG crystal (the imaging plane), in the direction
orthogonal to the rotation axis. According to Eq. (A6), the
complete transformation undergone by beam + between the
input and the output planes of the 4f telescopic system can
be written in the Fourier domain in the form (the �q → −�q
reflection and the minus sign are omitted here for simplicity)

c1(�q,�) = ei �q·��sb1(�q,�) for qy > 0, (25)

where ��s denotes the transverse shift generated by a rotation of
mirror M1 around a generic axis. Putting together relations (24)
and (25), the overall transformation describing propagation
from the PDC crystal output face to the SFG crystal input
face can therefore be synthesized into the unitary input-output
relation

c1(�q,�) = [
�(qy)H+(�q,�) + �(−qy)H−(�q,�)

]
b1(�q,�),

(26)

2For simplicity, we neglect here and in the following the spatial
reflection with respect to the z axis �x → −�x, as well as constant
phase factors.
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FIG. 4. (Color online) In configuration (a) the rotation by a small
angle �φx of mirror M1 around the π axis produces the displacement
��s = (�x = 2f �φx,0) along the x direction at the entrance face
of the SFG crystal (orthogonal to the figure plane). In case (b) the
rotation is performed around the x axis and produces the displacement
��s = (0,�y = 2f �φy) along the y direction.

where �(qy) denotes the step function, equal to 1 for qy � 0
and to 0 for qy < 0, and

H+(�q,�) = ei �q·��s , H−(�q,�) = ei �
c
�z2 (27)

are the transfer functions associated with beam + and beam
−, respectively. The identity �(qy) + �(−qy) ≡ 1 guarantees
that the commutation rules are preserved by the transformation.

It is important to note that the correlation measurement
depends on the particular choice of the rotation axis of M1, as
shown in Sec.V. We consider explicitly the two configurations
illustrated in Fig. 4: in case (a) M1 is rotated around the π

axis orthogonal to the gap between the two mirrors, while in
case (b) the rotation axis π of M1 is coincident with the x axis
(orthogonal to the figure plane). We thus have

��s = (�x,0), �x = 2f �φx in case (a), (28a)

��s = (0,�y), �y = 2f �φy in case (b), (28b)

where �φx and �φy denote a small rotation angle applied to
the mirror around the π axis in configuration (a) and around
the x axis in configuration (b).

C. Step III: Propagation in the SFG crystal

We now model the generation of the up-converted field
inside the SFG crystal. This process is just the reverse of the
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down-conversion described in Sec. III A. Following the same
procedure outlined there, we work in the Fourier domain and
we introduce the slowly varying amplitudes of the fundamental
d1 (carrier frequency ω1) and second harmonic d0 (carrier
frequency ω0) fields along the SFG crystal

d̄0( �w,z) = e−ik0z( �w)zd0( �w,z), (29a)

d̄1( �w,z) = e−ik1z( �w)zd1( �w,z), (29b)

which vary along z only because of the nonlinear interaction,
since we have subtracted the effect of linear propagation.
Their evolution is described by the following pair of coupled
equations:

∂d̄0( �w,z)

∂z
=−σ

∫
d �w ′

(2π )3/2
d̄1( �w ′,z)d̄1( �w− �w ′,z)ei�( �w ′, �w− �w ′)z,

(30a)

∂d̄1( �w,z)

∂z
= σ

∫
d �w ′

(2π )3/2
d̄0( �w + �w ′,z)d̄†

1( �w ′,z)e−i�( �w, �w ′)z.

(30b)

Equation (30a) describes all the up-conversion processes
where a pair of fundamental photons in modes �w ′, �w − �w ′
are up-converted into a SFG photon in mode �w. Accordingly,
in this equation �( �w ′, �w − �w ′) = k1z( �w ′) + k1z( �w − �w ′) −
k0z( �w) represents the phase mismatch of such a process in the
second SFG crystal. Equation (30b) is obviously just the same
as Eq. (4) describing the down-conversion process.

Equations (30) need to be considered together with the
initial conditions at the crystal input face. For the fundamental
field we have

d̄1( �w,z = 0) = c1( �w), (31)

where c1 is the field down-converted in the first PDC crystal,
after steps I and II. For the second harmonic field, we assume
that the pump field is completely eliminated after the PDC
crystal, so that it is in the vacuum state at the SFG crystal
input.

We now assume that the SFG crystal is short enough so that
only a small fraction of the PDC light is up-converted. Under
these conditions, the fundamental field remains basically
unchanged during propagation, and Eq. (30) can be solved
with a perturbative approach similar to that used in the low-gain
regime of PDC in Ref. [2] (see Appendix therein). In this way,
we obtain an explicit expression that links the operators at the
SFG crystal output plane to those at the SFG input plane:

d1( �w) ≡ d1( �w,l′c) = eik1z( �w)l′c c1( �w), (32a)

d0( �w) ≡ d0( �w,l′c) = eik0z( �w)l′c

[
c0( �w) −

∫
d �w ′

(2π )3/2
c1( �w − �w ′)

× c1( �w ′)FSFG( �w − �w ′, �w ′)
]
, (32b)

where

FSFG( �w, �w ′) = σ l′ce
i

�( �w, �w ′)l′c
2 Sinc

�( �w, �w ′)l′c
2

. (33)

The function FSFG( �w, �w ′) can be interpreted as the probability
amplitude density3 that a pair of photons in the fundamental
modes �w ≡ (�q,�) and �w′ ≡ (�q ′,�′) is up-converted into
the second-harmonic mode �w + �w′ ≡ (�q + �q ′,� + �′): this
up-conversion probability is non-negligible only for those
pairs of modes for which the phase mismatch �( �w, �w ′)l′c ≈ 0.
As can be expected, the probability amplitude for such a
process is formally identical to that of the reverse process of
down-conversion. Equation (33) indeed has the same form as
Eq. (14), the main difference being that Eq. (14) describes PDC
only in the plane-wave pump limit, where the only allowed
down-conversion processes are those leading to twin photons
in modes �w and �w ′ = − �w.

IV. GENERAL SOLUTION: THE SFG COHERENCE
FUNCTION

We now put together the chain of field transformations
presented in the previous section. Our main goal is to evaluate
the intensity of the SFG field, but we start from a more
general result, i.e., the coherence function of the SFG field
in the spectral domain, evaluated at the output face of the SFG
crystal,

CSFG( �w0, �w ′
0) = 〈d†

0( �w0)d0( �w ′
0)〉. (34)

Inserting the input output relation, (32b), for the SFG crystal
inside this expression, we obtain an equation that links the
SFG coherence function to the correlation functions of the
fundamental field c1 at the crystal input face. These correla-
tions can be calculated by using relations (9), together with the
identities |H+( �w)|2 = |H−( �w)|2 ≡ 1 and �(qy) + �(−qy) ≡
1. We obtain the following expressions:

〈c†1( �w)c1( �w ′)〉 = δ( �w − �w ′)|V ( �w)|2, (35a)

〈c1( �w)c1( �w ′)〉 = δ( �w + �w ′)U ( �w)V (− �w)

× [�(qy)H+( �w)H−(− �w)

+�(−qy)H+(− �w)H−( �w)]. (35b)

Using these relations we obtain, after some manipulations, the
result

CSFG( �w0, �w ′
0) = C(inc)

SFG ( �w0, �w ′
0) + C(coh)

SFG ( �w0, �w ′
0), (36)

with

C(inc)
SFG ( �w0, �w ′

0) = 2δ( �w0 − �w ′
0)

∫
d �w

(2π )3
|V ( �w0 − �w)|2

× |V ( �w)|2 |FSFG( �w0 − �w, �w)|2 , (37a)

C(coh)
SFG ( �w0, �w ′

0) = δ( �w0)δ( �w ′
0)|2

∫
d �w

(2π )3/2
�(qy)H+( �w)

×H−(− �w)FPDC( �w)FSFG( �w, − �w),|2 (37b)

where FPDC( �w) and FSFG( �w, �w ′) are the spectral probability
amplitudes defined in Eqs. (11) and (33).

3Its square modulus |FSFG( �w, �w ′)|2 gives the probability per unit of
spectral bandwidth.
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The incoherent term, (37a), originates from the up-
conversion of PDC photons which do not belong to phase-
conjugated mode pairs. By contrast, the coherent term, (37b),
originates from the up-conversion of photon pairs coming from
phase-conjugate PDC modes, the latter process leading to the
partial reconstruction of the original coherent pump beam as
described in the experiment in Ref. [10]. In this regard, it is
convenient to introduce a special symbol for the up-conversion
probability amplitude appearing in Eq. (37b), namely,

F
(coh)
SFG ( �w) ≡ FSFG( �w; − �w) (38a)

= σ l′ce
i

�sfg( �w)l′c
2 Sinc

�sfg( �w)l′c
2

, (38b)

where

�sfg( �w) ≡ �( �w, − �w) = k1( �w) + k1(− �w) − k
sfg
0 (39)

is the phase mismatch function for these coherent up-
conversion processes. The function F

(coh)
SFG plays a fundamental

role in determining the properties of the coherent component
of the SFG field. It describes the efficiency with which photons
belonging to a particular pair of phase-conjugated modes
�w and − �w undergoes the inverse process of the original
PDC event, i.e., the back-conversion into the monochromatic
plane-wave mode ( �w = 0) corresponding to the original pump
driving the PDC. The corresponding phase mismatch �sfg is
identical to the PDC phase-matching function, (8), except for
the presence of the wave number k

sfg
0 , which differs from the

pump wave number k0 only in the case when the two crystals
are not perfectly aligned (for the type I e-oo phase matching
we are considering, only the pump beam k vector depends on
direction). When the two crystals are aligned, F (coh)

SFG coincides
with the probability amplitude for the reverse PDC process
in the low-gain regime, as given by Eq. (14) (apart from a
constant factor).

As can be inferred by comparing Eqs. (37b) and (16), only
the coherent contribution contains the information about the
biphoton correlation ψPDC(�ξ ) we are looking for. The incoher-
ent contribution rather acts as a background which tends to
deteriorate the visibility of the correlation measurement [18].

Note also that the coherent component, (37b), factorizes
into the product of the SFG field mean values,

C(coh)
SFG ( �w, �w ′) = 〈d†

0( �w)〉 〈d0( �w ′)〉, (40)

with

〈d0( �w)〉 = δ( �w)
∫

d �w ′

(2π )3/2
H+( �w ′)

×H−(− �w ′)FPDC( �w ′)F (coh)
SFG ( �w ′). (41)

From Eqs. (36) and (37) we can evaluate the SFG intensity
(number of photons per unit area and unit time) at the exit face
of the second crystal, obtaining

ISFG(�ξ ) ≡ 〈d†
0(�ξ )d0(�ξ )〉 = I

(coh)
SFG + I

(inc)
SFG , (42)

with

I
(inc)
SFG = 2

∫
d �w

(2π )3

∫
d �w ′

(2π )3
|V ( �w)|2|V ( �w ′)|2 ∣∣FSFG( �w, �w ′)

∣∣2
,

(43a)

I
(coh)
SFG =

∣∣∣∣2
∫

d �w ′

(2π )3
�(qy)H+( �w ′)H−(− �w ′)FPDC( �w ′)

×F
(coh)
SFG ( �w ′)

∣∣∣∣
2

. (43b)

The intensity distribution of the SFG light in the near field is
uniform in space and time, an artifact due to the spatiotemporal
invariance of our model deriving from the monochromatic and
plane-wave pump approximation. By comparing Eqs. (37b)
and (43b), we obtain the following relevant identity,

C(coh)
SFG ( �w, �w ′) = (2π )3δ( �w)δ( �w ′)I (coh)

SFG , (44)

which shows that the coherent component of the SFG field
contains the same kind of information on the biphoton
amplitude both in the space-time domain and in the spectral
domain. The most important difference lies in the fact that the
coherent intensity in the spectral domain is concentrated in
a single peak at the origin (�q = 0,� = 0), i.e., in the mode
corresponding to the original pump field. On the other hand,
the spectrum of the incoherent background is δ correlated in
space and time, and spreads over a very broad range of spatial
and temporal frequencies, its particular shape being related
to the phase-matching conditions inside the SFG crystal as
elucidated in Ref. [20]. This circumstance suggests that either
far-field or spectral measurement may be conveniently used to
enhance the visibility of the coherent contribution with respect
to the incoherent background.

V. RETRIEVING THE PDC CORRELATION

Let us now investigate how the information on the cor-
relation ψPDC(�x,t) of twin beams and twin photons can be
effectively extracted from the coherent component of the SFG
light, given by Eq. (43b). Making explicit the dependence on
the temporal delay and spatial shift applied to beam + and
beam – contained in the transfer functions, (27), it can be
written in the form

I
(coh)
SFG [��s,�t] = |ψmeas (��s,�t)|2 , (45)

where

ψmeas(��ξ ) = 2
∫

d �w
(2π )3

�(qy)ei �w·��ξFPDC( �w)F (coh)
SFG ( �w) (46)

and ��ξ ≡ (��s,�t).
In this section we consider the configuration shown in

Fig. 4(a), where mirror M1 is rotated orthogonally to the
gap between the two movable mirrors so that ��s ≡ (�x =
2f �φx,0). In this case, the right-hand side of Eq. (45)
coincides with the square modulus of the following quantity:

ψmeas(�x,0,�t)

=
∫

d �q
(2π )2

∫
d�

2π
eiqx�x−i��tFPDC(�q,�)F (coh)

SFG (�q,�). (47)
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FIG. 5. (Color online) (a) Surface and (b) density plots
I coh

SFG[�x,0,�t] = |ψmeas(�x,0,�t)|2 normalized to the peak value,
corresponding to measurement in the configuration in Fig. 4(a).

The step function �(qy) could be eliminated from Eq. (46)
by exploiting the parity of the integrand with respect to qx ,
the latter being a consequence of the radial symmetry of
FPDC(�q,�) and F

(coh)
SFG (�q,�) in the (qx,qy) plane. The function

ψmeas(�x,0,�t), like ψPDC, is therefore an even function
of both the spatial and the temporal coordinates, a feature
not holding for the alternative configuration with mirror M1
rotating around the x axis [see Fig. 4(b)], which is discussed
in the next section. Figure 5 plots the coherent contribution
of the SFG intensity as a function of the applied spatial and
the temporal shifts. In this example, the two crystals have the
same lengths, lc = l′c = 4 mm, and the PDC gain is g = 8.
The structure preserves the nonfactorable X-shaped geometry
of the original PDC correlation function |ψPDC|2 shown in
Fig. 3, with symmetric tails developing along the bisector lines
�t = ±√

k′′
1k1�x (corresponding to the diagonals of the plot

frame).
The SFG coherent component, (47), differs from the PDC

biphoton correlation |ψPDC|2 defined in Eq. (16) only for
the presence of the SFG spectral amplitude F

(coh)
SFG ( �w). The

latter describes how the phase-matching mechanism selects the
spatiotemporal modes in the coherent up-conversion process.
We analyze in detail how it affects the PDC correlation
measurement in the next subsection. In this regard, it is useful
to recast Eq. (46) in the form of a convolution of the PDC
biphoton amplitude ψPDC, the quantity under investigation,
with the Fourier transform of �(qy)F (coh)

SFG (�q,�), i.e.,

ψmeas(��ξ ) =
∫

d�ξ ′ψSFG(��ξ − �ξ ′)ψPDC(�ξ ′), (48)

where

ψSFG(��ξ ) =
∫

d�ξ
(2π )3

ei �w·��ξF (coh)
SFG ( �w). (49)

This identity has been written taking into account that ��s ≡
(�x,0), so that the step function could be eliminated as for
Eq. (47). Noting that Eqs. (49) and (38) are formally identical
to Eqs. (16) and (14), we see that ψSFG(��ξ ) is proportional to
the low-gain biphoton amplitude in the space-time domain
for the second SFG crystals. It represents the probability
amplitude that a pair of photons delayed by a time �t

and displaced by ��s is coherently back-converted into the
plane-wave pump mode (�q = 0,� = 0). This function can
also be interpreted as the optical response function of the SFG
crystal in the measurement of |ψPDC|2 via SFG.

A. Thin SFG crystal limit

Let us assume that the two crystals are tuned for the same
phase-matching conditions, so that �sfg( �w) = �pdc( �w), but
the SFG crystal is much shorter than the PDC crystal, l′c 	
lc. In this limit, the PDC biphoton amplitude can be exactly
reconstructed by monitoring the SFG coherent component.

This can be shown by inspection of Eq. (46). When the
same phase-matching conditions hold in the two crystals,
the spectral probability amplitudes F

(coh)
SFG ( �w) and FPDC( �w)

are peaked around the same geometrical curve �pdc( �w) =
�sfg( �w) = 0. However, for l′c 	 lc the spectral bandwidths
in the SFG crystal are much wider than in the PDC crystal
[the bandwidths of FSFG exceeds those of FPDC by a factor of√

lc/ l′c � 1, according to Eq. (19)]. As a result, F
(coh)
SFG ( �w) is

almost constant in the region where FPDC( �w) is not negligible,
close to its maximum value σ l′c. Under these conditions, the
filtering effect due to phase matching in the SFG crystal
becomes ineffective and we have

I
(coh)
SFG [�x,0,�z] ≈ σ 2l′2c |ψPDC(�x,0,�t)|2 (l′c 	 lc).

(50)

Thus the coherent component of the SFG output reproduces
the biphoton correlation as anticipated.

The same conclusion can be derived also looking at
Eq. (48): in the limit l′c 	 lc, the biphoton amplitude ψSFG,
defined by Eq. (49), has scales of variation in space and time
much shorter than ψPDC, because it is the Fourier transform of
a much wider spectral amplitude. It therefore behaves as a δ

function inside the convolution integral, (48), so that the PDC
biphoton amplitude is recovered.

For completeness, we mention that in the l′c → 0 limit the
incoherent contribution, (43a), takes the form

I
(inc)
SFG = σ 2l′2c |〈b†1(�x,t)b1(�x,t)〉|2 (l′c → 0), (51)

where

〈b†1(�x,t)b1(�x,t)〉 =
∫

d �q
(2π )2

∫
d�

(2π )
|V (�q,�)|2 (52)

is the PDC photon flux evaluated at the output face of the first
crystal [as can be easily inferred from relation (9a)]. However,
we see in Sec. VII that the temporal walk-off between the PDC
field and the generated incoherent SFG field plays a funda-
mental role in the formation of the incoherent component even
when considering short propagation distances. In practice, the
validity of expressions (51) fails as soon as the finite length of
the SFG crystal is taken into account.

B. Long SFG crystal

We now investigate how propagation in the SFG crystal af-
fects the retrieval of the PDC correlation via the measurement
of I

(coh)
SFG [�x,0,�z], showing that both the X-shaped geometry

and the strong localization of the biphoton correlation are
preserved, at least when the two crystals are equally tuned.

The left panels in Fig. 6 plot the retrieved quantity
I

(coh)
SFG [�x,0,�t] for increasing values of the SFG crystal length

l′c. The most evident effect is that the tails of the correlation
becomes progressively more visible with respect to the central
peak, as the propagation distance inside the SFG crystal
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FIG. 6. Left: Numerical evaluation from Eqs. (45)–(47) of
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SFG[�x,0,�t]/I coh
SFG[0,0,0] for increasing values of the SFG crystal

length l′c. Right: Corresponding temporal cross section I coh
SFG[�x =

25 μm,0,�t]/I coh
SFG[0,0,0]. The X-shaped structure is robust against

propagation in the SFG crystal and the tails are enhanced with respect
to the central peak as l′c increases. The PDC parameters are g = 8,
lc = 4 mm.

increases. This is clearly shown by the temporal cross sections
at �x = 25 μm of the same quantity (right panels in Fig. 6).
Figure 7 shows that the height of the tails, at a fixed time delay
�t = 30 fs, increases almost linearly with l′c up to the value
of the PDC crystal length lc = 4 mm. We expect therefore
that the choice of a few-millimeter-long SFG crystal, with
respect to that of a very short crystal, presents a twofold
advantage: (i) the total number of up-converted photons is
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FIG. 8. (Color online) Left and middle panels: Density plots of
|ψPDC(�x,0,�t)| and |ψSFG(�x,0,�t)|, respectively, considering
either short or long crystals (values of lc and l′c are indicated).

Right panel: Square root of the measured quantity,
√

I coh
SFG =

|ψmeas(�x,0,�t)|, obtained by convolving ψPDC and ψSFG. See text
for discussion.

obviously larger, and (ii) the visibility of the tails, although
small with respect to that of the central peak, will be enhanced,
a feature which should facilitate the experimental observation
of the X-shaped structure through the scanning of �x and
�t . A further advantage lies in that the overall visibility of the
coherent component with respect to the incoherent background
improves substantially as the SFG crystal length is increased
above a few hundred micrometers, as shown in Sec. VII.

An explanation of the behavior depicted in Fig. 6 can be
obtained considering the convolution integral in Eq. (48) and
referring to the density plots in Fig. 8, which illustrate the
effect of the convolution (48) under three different conditions.

(a) l′c 	 lc: The SFG crystal response function ψSFG

behaves as a Dirac δ function both in the spatial and in
the temporal domain [see Fig. 8 (a2)], so that the second
crystal works as an ultrafast correlator with an instantaneous
and localized response. The coherent component of the SFG
intensity [Fig. 8(a3)] therefore provides the PDC biphoton
amplitude square modulus |ψPDC|2, in agreement with the short
crystal limit result, (50).

(b) lc ∼ l′c: If the SFG crystal has a length comparable to
that of the PDC crystal, it displays a nonlocal spatiotemporal
response. However, provided the two crystals are tuned for
the same phase-matching conditions, the response of the SFG
crystal has the same geometrical X shape as the original
biphoton correlation [see Figs. 8(b1) and 8(b2)]. This is not
unexpected: as a matter of fact, the function ψSFG is identical to
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FIG. 9. (Color online) (a) Surface and (b) density plots
I coh

SFG[0,�y,�t] = |ψmeas(0,�y,�t)|2 normalized to the peak value,
corresponding to a measurement in the configuration in Fig. 4(a).

ψPDC in the low-PDC-gain limit (apart from a constant factor).
In the high-gain regime of PDC considered in this example,
the PDC biphoton amplitude displays a faster decay of the tails
than its low-gain counterpart4 but, nevertheless, keeps the same
geometrical shape. Therefore ψmeas is the convolution of two
functions which have almost the same X-shaped structure in
the space-time domain, and the main effect of this convolution
is to enhance the weight of the tails with respect to the central
peak, as can be seen from Fig. 8(b3). Most importantly from
our point of view, the nonfactorable X-shaped geometry of the
PDC biphoton amplitude is preserved, as well as its strong
localization in time (or in space) when particular temporal (or
spatial) cross sections are considered.

(c) lc 	 l′c: Because of the symmetrical role played by
ψPDC and ψSFG in Eq. (48), a configuration with lc 	 l′c would
provide a direct measure of |ψSFG|2, which is proportional
to the PWP biphoton amplitude in the SFG crystal at low
parametric gains [accordingly, the density plots, Figs. 8(c2)
and 8(c3), are nearly identical, as for plots Figs. 8(a1) and 9(a3)
in case a]. However, in this case the SFG photon flux would be
strongly reduced because of the lower gain of the PDC field
associated with short crystals.

VI. ALTERNATIVE DETECTION SCHEME

We now focus on the alternative configuration (b) for mirror
M1 shown in Fig. 4(b), considering rotations performed around
the x axis. In contrast to configuration (a), treated in the
previous section, the step function �(qy) cannot be eliminated
from Eq. (46) and the SFG coherent component is now given
by the square modulus of

ψmeas(0,�y,�t) = 2
∫

d �q
(2π )2

∫
d�

2π
eiqy�y−i��t�(qy)

× FPDC(�q,�)F (coh)
SFG (�q,�), (53)

with �y = 2f �φy .
Because of the presence of the step function, the even

symmetry with respect to the spatial coordinate is lost. As
shown in Fig. 9, the retrieved correlation function in the
(�t,�y) plane displays a V-shaped geometry: the tails extend

4The faster decay of the PDC correlation ψPDC along its tails for
high gain is due to the broadening of the spectral amplitude with g

described by Eq. (20).
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FIG. 10. (Color online) Temporal cross sections of the SFG
coherent component obtained by varying �t for (a) �s = 0, (b)
�s = 50 μm, and (c) �s = −50 μm. The solid line corresponds to
configuration (a); the dotted-dashed line corresponds to configuration
(b).

along the lines �t = ±√
k′′

1k1�y in the �y > 0 half-plane,
while they disappear for �y < 0. Moreover, compared to the
result obtained in configuration (a) shown in Fig. 5, the tails
are strongly enhanced with respect to the central peak. From
simple geometrical optics considerations, it can be shown that
negative values of the rotation angle �φy of mirror M1 around
the x axis prevents the overlap of beam + and beam–inside
the SFG crystal, so that the up-conversion efficiency becomes
much lower under this condition (i.e., for �y < 0). On the
contrary, a negative rotation �φy increases the overlap of beam
+ and beam –thereby enhancing the up-conversion efficiency
compared to configuration (a) in the �y > 0 region.

Noting that the complex amplitude ψmeas(�x,0,�t) and
ψmeas(0,�y,�t) given by Eqs. (47) and (53) are linked through
the relation

ψmeas(�x,0,�t) = 1
2 [ψmeas(0,�y = �x,�t)

×ψmeas(0,�y = −�x,�t)], (54)

from which it can be inferred that the temporal profile across
the central peak [obtained by setting �x = 0 in case (a) and
�y = 0 in case (b)] is identical in the two configurations
[see Fig. 10(a)]. On the other hand, ψmeas(0,�y,�t) ≈ 0 in
the �y < 0 region being not too close to the central peak,
relation (54) implies that I coh

SFG[0,�y,�t] ≈ 0 for �y < 0 and
I coh

SFG[0,�y,�t] ≈ 4 × I coh
SFG[�x = �y,0,�t] for �y > 0. The

tails of the coherent SFG component, extending only in the
�y > 0 region in configuration (b), are thus about four times
more intense than in configuration (a). This behavior is shown
in Figs. 10(b) and 10(c), which compare the temporal profile
in the two configurations for the spatial shifts �s = 50 μm
and �s = −50 μm, respectively.

We note that configuration (b) offers the relevant benefit
that the tails are more visible and can therefore be detected
more easily than in configuration (a). Although, in principle,
configuration (b) does not allow the reconstruction of the
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symmetric X-shaped correlation as configuration (a), we found
the following approximate empirical relation that links the
results in the two configurations:

I coh
SFG[�x = �y,0,�t]

≈ 1

4

[√
I coh

SFG[0,�y,�t] −
√

I coh
SFG[0, − �y,�t]

]2

for �y 
= 0, (55)

this approximation holding as long as �y is sufficiently large,
i.e., far from the central peak. This relation should allow us
to infer from experimental data collected in configuration (b)
the data that would be collected in configuration (a), thus
allowing the reconstruction of the X-shaped PDC correlation
in configuration (b).

VII. VISIBILITY OF THE INFORMATION

The issue of the visibility of the information contained in the
coherent SFG contribution, against the incoherent background,
is a crucial one, especially for the observation of the tails
of the PDC X-shaped correlation. As already remarked,
expression (37) of the spectral coherence function of the SFG
light suggests that the visibility should be greatly enhanced
by measuring the SFG light in the far field of the second
crystal, where the coherent contribution propagating in the
forward direction is separated from the incoherent background
propagating over a broad angle. This issue is discussed in
Sec. VII B. We start here by considering the visibility of a
measurement of the total number of SFG photons, which
provides a useful estimation of the overall weight of the
coherent component with respect to the incoherent one.

A. Bucket detection of the SFG photons

The photon fluxes I
(inc)
SFG and I

(coh)
SFG [�x,0,�t] given in

Sec. IV, Eqs. (43), have been evaluated at the SFG crystal
output face and are uniform in the transverse plane because
of the artifact of the plane-wave pump approximation. Within
this limit, the ratio

V = I
(coh)
SFG [0,0,�z = 0]

I
(inc)
SFG + I

(coh)
SFG [0,0,�z = 0]

(56)

therefore defines the visibility of the correlation peak at �x =
�t = 0 against the incoherent background either in the case
of a near-field detection of the SFG intensity or assuming that
all the SFG photons are collected without discrimination (e.g.,
by using a bucket detector).

Figure 11 plots the visibility V as a function of the length
of the SFG crystal l′c for increasing PDC parametric gain,
starting from values of g below unity Fig. 11(a) up to very
high values [Fig. 11(b)], the latter corresponding to the regime
of the experiment reported in Ref. [10]. The contributions
of both the coherent and the incoherent components, (43b)
and (43a), have been estimated numerically with a Monte
Carlo integration, assuming that a 550-nm FWHM temporal
bandwidth is selected with a super-Gaussian frequency filter,
from 850 up to 1400 nm.

In a regime of low parametric gain, i.e., for g 	 1, the
PDC spectral probability amplitude FPDC( �w) scales as g [see
Eq. (14)], while the spectrum |V ( �w)|2 given by Eq. (13)
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FIG. 11. Visibility of the coherent component with respect to the
incoherent background as a function of the length of the SFG crystal
l′c, for (a) medium-low and (b) high parametric gain values (indicated
in the figure). The length of the PDC crystal, lc = 4 mm, is kept fixed.
The selected temporal bandwidth extends from 850 up to 1400 mm.

scales as g2. For this reason, I
(coh)
SFG and I

(inc)
SFG scale as g2 and

g4, respectively, and the visibility, (56), is close to 100%.
This behavior can be physically understood by noting that
the probability of finding pair of photons that are not twins
becomes exceedingly low in this regime.

As the PDC parametric gain increases, the incoherent
component rapidly increases and becomes comparable to the
coherent one. As a consequence, V decreases to lower values,
the degradation being particularly relevant in the l′c 	 lc limit.
For longer propagation distances in the SFG crystal, the
generation of incoherent SFG photons becomes less efficient
because of spatial walk-off and GVM, while the coherent com-
ponent is not affected by those phenomena, as further discussed
in Ref. [20]. The visibility therefore remains above 60% even
for high PDC gains, as long as the propagation distance inside
the SFG crystal exceeds a few hundred micrometers. However,
we note that such visibility, although not negligible, would
make the detection of the full X correlation very challenging in
a practical implementation, because the tails would be hidden
by the incoherent background.

Figure 12 displays I
(coh)
SFG [0,0,0] and I

(inc)
SFG separately as a

function of l′c, evaluated in the high-gain case (g = 8) from
Eq. (43). It shows that the coherent component increases
almost quadratically up to l′c ∼ 1 mm, while for a larger prop-
agation distance in the SFG crystal the coherent up-conversion
becomes less efficient. The initial quadratic behavior reflects
the result of Eq. (50) derived in the “thin SFG crystal” limit,
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FIG. 12. (Color online) Estimation of the coherent and incoherent
SFG photon fluxes, I

(inc)
SFG and I

(coh)
SFG [0,0,0], as a function of the SFG

crystal length l′c. The PDC crystal parameters are g = 8 and lc =
4000 μm.
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where the filtering effect due to the SFG spectral probability
amplitude F

(coh)
SFG (�q,�) in Eq. (43b) is almost ineffective.

By inspecting the expression of the typical bandwidths
of F

(coh)
SFG (�q,�) and FPDC(�q,�) [only the latter depends on

the parametric gain according to Eq. (20)], we find that
they become comparable for l′c = lc

√
π2/(π2 + g2) ≈ 1.5 mm

for g = 8,lc = 4 mm. For l′c above this characteristic length
the SFG spectral probability amplitude F

(coh)
SFG (�q,�) becomes

narrower than FPDC(�q,�), and the integral, (43b), spans a
volume in the Fourier space ∝ l

′ −3/2
c , so that I

(coh)
SFG not longer

scales as l′2c .
On the other hand, the SFG incoherent component increases

only linearly with l′c, except for very short propagation
distances, for which approximation (51) holds. This is due
to the fact that the up-conversion probability |FSFG( �w, �w ′)|2
appearing inside the integral on the right-hand side of (43a)
decays rapidly when �w ′ 
= − �w, because of the effect of the
spatial walk-off and the temporal group velocity mismatch
arising between the ordinary fundamental beam and the
extraordinary up-converted beam. These issues are further
elucidated in a related publication [20].

B. Far-field detection of the SFG light

According to the plane-wave pump result of (37), the
spectral distribution of the PDC light consists of a coherent
contribution, concentrated in the original plane-wave pump
mode at �q = 0 and � = 0, superimposed on an incoherent
background that spreads over a large bandwidth of spa-
tiotemporal modes. The PWP approximation leads to artificial
divergences (the δ-function factors) that do not allow a direct
evaluation of the visibility of the coherent component against
the incoherent background in the Fourier domain. For this
reason, we implemented a full 3D + 1 numerical simulation
of our proposed setup (see Fig. 3) and modeled the result of
the detection of the SFG intensity distribution in the far field
of the SFG crystal, as shown in Fig. 13(a). The generation of
the broadband PDC field is simulated in the framework of the
Wigner representation as described in Ref. [21], taking into
account both the finite cross section wp and the duration τp

of the pump pulse and the phase-matching conditions inside
the two crystals (the full BBO Sellmeier dispersion relation
[22] is used in the simulation). The propagation in the two
crystals, described by Eqs. (4) and (30), is simulated through
a pseudospectral (split-step) method using a 256 × 256 × 512
numerical grid in the (�x,t) and the (�q,t) spaces. The parameters
of the numerical simulations are chosen to reproduce the
conditions of the experiment being developed in Como [10],
which operates in a pulsed regime of high parametric gain (g ≈
8). The broadband PDC field injected into the SFG crystal after
the extraction of the pump beam undergoes the three-wave
mixing process described by Eqs. (30) and the up-converted
SFG field is mapped into the far field with an f-f lens system,
as shown schematically in Fig. 13(a). We expect that a single
stochastic realization of our simulations roughly reproduces
the field distribution obtained from a single pump shot.

The typical far-field intensity distribution of the up-
converted SFG field obtained in the detection plane from a
Gaussian pump pulse of waist wp = 600 μm and duration

τp = 1 ps is shown in Figs. 13(b) and 13(c). We verified
that for the chosen PDC gain g = 8 the injected PDC field
(not shown in the figure) is only slightly depleted during
propagation in the second crystal (<0.1%), a feature which
confirms the validity of the perturbative approximation, (32b),
for the SFG field used in the PWPA model. The narrow central
peak results from coherent processes in which pairs of phase
conjugate photons back-convert to a coherent field component
reproducing partially the far-field distribution of the original
pump beam. This peak is fixed, in the sense that it is reproduced
identically in each stochastic simulation. The broad speckled
background instead is noisy and changes in each realization,
giving rise, on average, to a broad distribution. It originates
from the incoherent processes where non-phase-conjugated
photon pairs are up-converted. These kind of simulations
reproduce very closely the results on the far-field detection
of SFG reported in Ref. [10] (see, in particular, Fig. 4 in
Ref. [10]).

The full-scale plot in Fig. 13(c) shows that under such ideal
conditions (perfect imaging, no dispersive optical elements,
no misalignments between the two crystals), the visibility of
the coherent vs incoherent component for �x = �t = 0 is
very high, close to 100%. We can therefore expect that this
far-field detection scheme is well suited for performing the
measurement of the full X correlation.

Figure 14 simulates the reconstruction of the X-shaped
correlation obtained by monitoring the number of photons
in the central peak of the SFG far field as a function
of the temporal delay �t and the spatial shift �x imposed
on the two twin PDC components (more precisely, it reports
the number of SFG photons over a pixel 56 × 56 μm wide,
in the focal plane of a lens with f = 20 cm, placed at a focal
distance from the SFG crystal). We verified that for the chosen
pump pulse parameters, the retrieved structure in the (�t,�x)
plane is very close to that obtained by evaluating the coherent
component, (47), within the PWPA [see, e.g., Fig. 9(a)]. Note
that despite the fact that both the coherent and the incoherent
components are displayed in Fig. 14, the visibility of the tails
of the correlation with respect to the speckled background is
very high. The relative weight of the incoherent background,
about 0.2% of the coherent peak value, can be inferred from
the height of the baseline of the temporal profile plotted in
Fig. 14(d) for �x = 0.

VIII. FRAGILITY OF THE CORRELATION
MEASUREMENT

The previous simulations that display nearly 100% visibil-
ity for the correlation measurement have been obtained assum-
ing a perfect imaging of the PDC source into the SFG crystal
input face. The coherent component ∝ |ψmeas(�x,0,�t)|2 is,
however, strongly phase sensitive and, therefore, extremely
fragile against dispersion, imperfect imaging conditions, and
small misalignments between the two crystals. For this
reason, the slightest imperfection in the imaging device
that maps the PDC output plane into the SFG input plane
deteriorates the coherent component of the SFG field which
contains the correlation information. On the other hand, the
incoherent component, (43a), remains unaffected because of
its phase-insensitive nature, so that the overall visibility of
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FIG. 13. (Color online) Numerical 3D + 1 modeling of the
experiment. (a) Detection scheme with a 2f lens system to observe
the SFG far field (f = 20 cm). (b) Far-field distribution of the SFG
light for ��x = �t = 0: the narrow central peak (truncated to 1% of its
peak value) is the coherent component, arising from the up-conversion
of phase-conjugated photons. The incoherent contribution gives rise
to the broad speckled distribution. (c) Full-scale plot, showing that
the visibility of the coherent component is close to 100%. g = 8,
wp = 600 μm, τp = 1 ps. The z axis scale gives the estimated number
of photons on the 56 × 56 μm pixels of the numerical grid.

|ψmeas(�x,0,�t)|2 is strongly sensitive to those imperfections.
In the following we study the effects of the main sources of
experimental imperfection.

A. Temporal dispersion

It is well known [14,15,17,18] that the scheme is very
sensitive to the presence of any dispersive optical elements. As
an example, Fig. 15 shows the effect of a half-millimeter-thick
slab of BK7 glass inserted in the propagation path between the
PDC and the SFG crystals.

It shows that not only is the central correlation peak
broadened, but also the X-shaped structure of the correlation
is strongly distorted. As a matter of fact, in order to com-
pensate for the detrimental effect of dispersion introduced
by optical lenses, prisms have been used in experimental
works [14,15,17]; a valid alternative approach, which we
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FIG. 14. (Color online) Simulation of the reconstruction of the
X correlation via SFG under ideal conditions based on the far-field
detection scheme in Fig. 13(a). (a) Surface and (b) density plots
of the number of SFG photons measured in the central pixel (at
�x = 0), obtained by scanning �x and �t on an 80 × 80 grid.
(b) Temporal profiles for three values of �x showing the transition
from the central-peak to the double-peak profile. (d) Baseline of the
�x = 0 profile, corresponding to the incoherent background with
around 350 photons per pixel, about 0.2% of the peak value at
�x = �t = 0. g = 8, wp = 600 μm, τp = 1 ps.

implemented in Refs. [10] and [11] is, rather, to replace
dispersive lenses with achromatic parabolic mirrors.

B. Imperfect imaging

Because of the smallness of the variation scale of the X
correlation along the spatial dimension (�10 μm), we expect
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FIG. 15. Simulation of the effect of a dispersive element between
the PDC and the SFG crystal obtained using the PWPA model.
Spatiotemporal correlation |ψmeas|2 reconstructed (a) under ideal
conditions, (b) in the presence of a 0.5-mm slab of BK7 glass between
the PDC and the SFG crystals.

that the scheme shows very little tolerance with respect to
errors in the positioning of the SFG crystal with respect to the
image plane of the telescopic system illustrated in Fig. 1. Under
ideal imaging conditions, the spatial width of the correlation
peak is indeed determined by the collected PDC bandwidth
considered in the simulation, i.e., 2qmax ≈ 0.6 μm−1, which
gives a spatial correlation profile of width �xfwhm ≈ 11 μm
[see Figs. 2(a) and 3(c)].

Let us suppose, for example, that the second crystal entrance
face is set at a distance f + �zimg from the second lens of the
4f system. This error introduces an additional phase factor to
the transfer function product that enters into Eq. (43b), which
is now given by

H+(�q,�)H−(−�q, − �) = e−i��teiqx�xe
−i

cq2

ω1(1−�2/ω2
1)

�zimg
.

(57)

The condition for neglecting the diffraction term reads

�zimg 	 zDOF ≡ π2

λq2
max

(
1 − �2

max

ω2
1

)
, (58)

where qmax is the maximal transverse wave vector of the PDC
emission in the collected bandwidth. For the temporal band-
width 2�max = 0.965 × 1015 Hz assumed in the simulations,
we have a tolerance on �zimg of the order of hundreds of
micrometers.

This is confirmed by our numerical modeling of the
experiment. The first effect of an error in the imaging system
is that the efficiency of the coherent up-conversion drops
substantially with respect to the ideal configuration. Figure 16
shows the far-field distribution of the SFG light [as it would
be detected in the scheme in Fig. 13(a)], for increasing values
of the error in the imaging plane �zimg. A displacement of
500 μm is sufficient to decrease the back-conversion efficiency
of the twin photons by a factor of 12, and for �zmm = 2 mm
the coherent peak becomes comparable in magnitude to the
incoherent background (which is not sensitive to �zimg).

Even more dramatic is the deterioration of the shape of the
correlation function. Figure 17 plots the spatiotemporal profile
of the detected PDC correlation |ψmeas(�x,0,�t)|2 [rows (a)
and (b)] and of its temporal cross section at �x = 0 [row (c)]
for increasing values of the error �zimg, evaluated from the
PWPA result, (43b). The density plots in row (a) show that a
large broadening occurs along the spatial direction. This is not
unexpected: with respect to an error in the imaging plane, the
reconstructed spatial correlation as a function of �x behaves
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FIG. 16. Simulation of the far-field distribution of the SFG light
evaluated for increasing values of the error in the imaging plane
positioning �zimg.

as the spatial resolution of an ordinary optical image with
respect to the depth of focus of the imaging system, i.e., it

roughly broadens as �xfwhm

√
1 + �z2

img/z
2
DOF.

Less expected is perhaps the broadening of the correlation
along the temporal direction, evidenced by row (c) in Fig. 17.
This temporal broadening is a clear consequence of the
nonfactorability of the twin-beam correlation in space and
time. In turn, this is a consequence of the nonfactorable
character of phase matching: the phase-matching condition
[see Eq. (18)]

�pdc(q,�) ≈ �2/�2
D − q2/q2

D = 0 ↔ k′′
1�2 = q2/k1

(59)

can indeed be read as a compensation of the temporal
dispersion experienced by twin photons inside the PDC crystal
due to diffraction. Only if the entrance face of the second
crystal is placed exactly in the image plane of the first crystal
does this compensation occur, and the biphoton correlation is
a nearly transform-limited coherent sum of the phase-matched
spectral modes.

On the contrary, if the second crystal is misplaced with
respect to the image plane, free propagation deteriorates
this exact compensation of dispersion and diffraction. By
making the simple assumption that only phase-matched modes
contribute to the coherent SFG component, (43b), we can
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FIG. 17. (Color online) (a) Behavior of the reconstructed correlation |ψmeas(�x,0,�t)|2, normalized to its peak value, for increasing values
of �zimg, showing the rapid deterioration of the X shape of the correlation. (b) Decrease in the peak height (normalized to the �zimg = 0 value).
(c) Cross section of the central peak along the temporal delay �t , evidencing a broadening of the temporal correlation for increasing errors in
the imaging plane.

make the substitution q2 → �2k1k
′′
1 in the propagation term

on the right-hand side of (57). It then transforms into the

�-dependent phase factor e
−i

n1k′′
1 �2

1−�2/ω2
1
�zimg

, which describes a
quadratic dispersion-like chirp of the twin beams.

C. Effect of misalignments of the two crystals

The coherent component of the SFG light is also strongly
sensitive to misalignments of the SFG crystal with respect to
the PDC crystal orientation. We investigated numerically the
effect of a small tilt δθSFG

0 
= 0 of the SFG crystal with respect
to the PDC crystal orientation, the latter satisfying perfect
phase matching at degeneracy, i.e., �PDC

0 = 0. Figure 18 shows
how the peak of the coherent contribution, i.e., [see Eqs. (45)
and (46)],

I coh
SFG[0,0,0] =

∣∣∣∣
∫

d �w
(2π )3

FPDC( �w)F (coh)
SFG ( �w)

∣∣∣∣
2

, (60)

rapidly goes to zero as the tilt angle exceeds a few tenths of
degrees. As expected, I

(coh)
SFG takes its maximum value when

the two crystals are perfectly aligned, as FPDC and F
(coh)
SFG , and

are peaked around the same phase-matching curves, and their
overlap integral is maximized.

We can give a quantitative estimate of the angular tolerance
in the alignment of the two crystals by considering explicitly
the case when the second crystal is slightly tilted with respect
to the first crystal, the latter being tuned for collinear phase
matching. Denoting by θPDC (θSFG) the orientation angle of
the PDC (SFG) crystals with the pump axis (i.e., the z axis),

and assuming that the tilt angle between the two crystals
δθSFG = θSFG − θPDC is small, the following approximate
relation between the pump-mode wave numbers in the two
crystals holds:

kSFG
0 ≈ k0 − k0ρ0δθ

SFG, (61)
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FIG. 18. (Color online) Bottom: Peak of the coherent SFG
intensity I

(coh)
SFG [0,0,0] as a function of the angular tilt �θSFG

0 between
the two crystals (normalized to the value it has for δθSFG

0 = 0).
Top: Plot of |F (coh)

SFG (�q,�)|2 for three orientations of the SFG crystal:
(a) δθSFG

0 = −0.06◦,�SFG
0 = −4.24; (b) δθSFG

0 = 0◦,�SFG
0 l′c = 0; and

(c) δθSFG
0 l′c = 0.07◦,�SFG

0 l′c = 5.8.
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where ρ0 = −∂k0/∂qx
|ω=ω0,q=0 is the positive defined walk-off

angle of the extraordinary wave at frequency ω0. Since, by
assumption, �PDC

0 ≡ 2k1 − k0 = 0, according to Eq. (61) a
negative tilt δθSFG < 0 leads to a positive collinear phase mis-
match �SFG

0 ≡ 2k1 − kSFG
0 = −k0ρ0δθ

SFG > 0 in the second
crystal. At degeneracy the phase-matched spatial modes in the
second crystal therefore lie on a circumference of radius

qR = qD

√
�SFG

0 l′c ≈ qD

√
k0ρ0l′c|δθSFG|. (62)

Close to degeneracy, the region of overlap of FPDC and F
(coh)
SFG

can be expected to decrease drastically when qR coincides with
the first node of the PDC probability amplitude FPDC(�q,� = 0)
along the spatial frequency axis, which is found to be well
approximated by q̄D = √

2(π2 + g2)1/4qD [see Eq. (20)].
Following this criterion, the overlap integral, (60), will be
reduced by a large amount when the tilt angle exceeds the
critical value

δθSFG
c = 2

√
π2 + g2

ρ0k0l′c
. (63)

Taking, e.g., g = 7, it gives us a tolerance δθSFG
c = 0.2◦ in the

alignment of the second BBO crystal with respect to the first.
This value is in agreement with the numerical evaluation of
I

(coh)
SFG [0,0,0] as a function of δθSFG

0 shown in Fig. 18.

IX. CONCLUSIONS

Our treatment shows that the SFG process represents a
powerful tool for exploring the biphotonic correlation in the
full spatiotemporal domain. Through a careful manipulation
of both the spatial and the temporal degrees of freedom of
the PDC field emitted by the first χ (2) crystal, the proposed
optical setup allows us to retrieve the strongly localized
X-shaped PDC correlation in the space-time domain, predicted
in Refs. [1]– [3]. The analytical result obtained within the
PWPA shows that the coherent component of the up-converted
SFG field contains the desired information on the PDC
correlation function. In particular, this coherent component
can be expressed in the form of a convolution between the
PDC biphotonic function in direct space, the quantity under
investigation, and the corresponding probability amplitude
describing the up-conversion process in the SFG crystal, the
convolution being evaluated at the applied temporal delay and
spatial shift between two conjugate PDC components. It is
shown that the measured quantity retains the main features of
the biphotonic correlation, namely, its nonfactorable X-shaped
geometry and its strong localization in space and time. The
latter, which can, in principle, decrease to a few pump optical
cycles [1], is determined by the acceptance bandwidth of
the up-conversion process. Finally, a fully 3D + 1 numerical
modeling of the optical setup that takes into account the
pump pulse finite size has been implemented in order to
provide a more realistic simulation of the experiment being
implemented in Como. This allowed us to show that, even in
the high-gain regime of PDC, the visibility of the correlation
measurement can be close to 100% when the up-converted
light is collected in the far field of the SFG crystal and in
evaluation of the tolerance of the phase-sensitive correlation
measurement against imperfection of the imaging system.

z

k

FIG. 19. (Color online) A rotation of �φ of the mirror with
respect to its original position (dashed line) generates a tilt by 2�φ

of the k vector with respect to the z-axis direction after reflection.
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APPENDIX: DERIVATION OF EQS. (26) AND (27)

In this Appendix we describe the effect of a rotating mirror
set in the 2f plane of a 4f telescopic system. Let us consider
a rotation by �φ of the mirror across the y axis (orthogonal
to the figure plane) with respect to its normal position set
at 45◦ with respect to the incident beam (dashed line in
Fig. 19). Because of reflection, the k vector of an incident mode
(�q,�) with free-space wave number kf (�) = (ω1 + �)/c
and direction angle α = arcsin(qx/kf ) in the (x,z) plane
is tilted by an additional angle 2�φ with respect to the
�φ = 0 direction. Accordingly, the k-vector transverse and
longitudinal components in the plane orthogonal to the rotation
axis, qx = kf sin α and kz = kf cos α, transform according to
the orthogonal transformations

q ′
x = qx cos 2�φ + kf z sin 2�φ, (A1a)

k′
f z = kf z cos 2�φ − qx sin 2�φ. (A1b)

For small angles, i.e., for qx/kf = sin α 	 1 and �φ 	 1,
relations (A1) reduce to

q ′
x = qx + 2kf �φ, k′

f z = kf z, (A2)

where all powers of qx/kz and �φ have been neglected except
the linear terms. Under this approximation the relation between
the reflected and the incident field, e1r and e1i , can be written
as

e1r (qx,qy,�) = e1i(qx − 2kf (�)�φ,qy,�). (A3)

The field Fourier transformation performed by the second lens
of the 4f system (see Fig. 3) can be written as

c1(�x,�) = − ikf (�)

2πf

∫
d �x ′e−i

kf (�)

f
�x·�x ′

e1r (�x,�)

= − ikf (�)

f
e1r

(
�q = kf (�)

f
�x,�

)
, (A4)
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while that performed by the first lens can be written as

e1i(�q,�) = − if

kf

b1

(
�x = − f

kf

�q,�

)
. (A5)

Combining Eqs. (A3)–(A5), we readily obtain the following
transformation between the input and the output planes of the
telescopic system:

c1(�x,�) = −b1(−�x + ��x,�), (A6)

where ��x = (2f �φ,0) denotes the transverse displacement
of the field at the SFG crystal input plane produced by the

mirror rotation. It is worth noting that, under this approxima-
tion, the transverse shift is the same at all temporal frequencies.

In the Fourier domain, Eq. (A6) reduces to the linear phase-
shift transformation

c1(�q,�) = −ei �q·��xb1(−�q,�), (A7)

which coincides with input-output relation, (25), affecting the
qx > 0 modes of beam + , except for the �q → −�q reflection
and the −1 factor introduced by the two lenses, which has
been omitted in the main treatment.
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