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Band-specific phase engineering for curving and focusing light in waveguide arrays
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Band-specific design of curved light caustics and focusing in optical waveguide arrays is introduced. Going
beyond the discrete, tight-binding model, which we examined recently, we show how the exact band structure and
the associated diffraction relations of a periodic waveguide lattice can be exploited to phase-engineer caustics with
predetermined convex trajectories or to achieve optimum aberration-free focal spots. We numerically demonstrate
the formation of convex caustics involving the excitation of Floquet-Bloch modes within the first or the second
band and even multiband caustics created by the simultaneous excitation of more than one band. Interference
of caustics in abruptly autofocusing or collision scenarios are also examined. The experimental implementation
of these ideas should be straightforward since the required input conditions involve phase-only modulation of
otherwise simple optical wavefronts. By direct extension to more complex periodic lattices, possibilities open
up for band-specific curving and focusing of light inside two-dimensional or even three-dimensional photonic
crystals.
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I. INTRODUCTION

Waveguide arrays (WGAs) are a special kind of periodic
optical media that have been attracting vivid research interest
for quite some time [1,2]. In these photonic lattices, light prop-
agates along the waveguides and at the same time it is dispersed
across them through the evanescent interwaveguide coupling.
This simple physical mechanism, called discrete diffraction,
has profound implications on the macroscopic behavior of a
WGA as an optical medium, enabling a diversity of linear
and nonlinear phenomena that are absent in continuous media.
Among them are discrete solitons [3,4], Bloch-momentum-
dependent diffraction [5], Bloch oscillations [6] and surface
Bloch oscillations [7,8], Rabi oscillations [9], Zener tunneling
[10], perfect or fractional revivals [11], discrete Talbot effect
[12], and dynamic localization [13]. The peculiar behavior of
light inside waveguide lattices is owed to the photonic band
structure that is associated with the periodic effective-index
“potential.” Each allowed band is characterized by a certain
diffraction relation between the longitudinal (β) and the
transverse (K) wave-vector component or Bloch momentum
(BM), which accounts for the unusual beam dynamics in the
lattice. For example, in a uniform medium, a light beam
refracts monotonically with its input tilt. By contrast, the
slope or group velocity (GV) (vg = −dβ/dK) of a discrete
beam in a WGA attains a maximum value inside each allowed
band and becomes zero at the band edges. Moreover, inside
each allowed band, the diffraction coefficient (D = d2β/dK2)
can be normal, anomalous, or zero depending on K , with the
magnitude of diffraction increasing toward the band edges [5].

Although being essential for a number of exciting discrete
diffraction phenomena, the band structure and the associated
“anomalous” refractive behavior of light in WGAs preclude
or complicate phenomena that are straightforward to obtain
in continuous media. For example, and in contrast to the
continuous case of Airy beams [14–16] there seem to be no
diffraction-free solutions propagating in one-dimensional (1D)
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WGAs, other than the Floquet-Bloch (FB) modes, i.e., the
physical modes of the periodic system. Also, since GV does not
vary monotonically with the transverse wave number, it is not
so straightforward to design beams with curved trajectories in
WGAs, as it is in continuous media, where optical caustics with
arbitrary convex trajectories can be obtained by an appropriate
phase modulation of the input wavefront [17,18].

Nonetheless, there has recently been some interest in
the design of beams that can follow curved trajectories inside
WGAs. In [19], Wannier-Stark states were shown to write
hyperbolic curves in uniform waveguide lattices that can be
described by the tight-binding model. In the limit of slowly
varying fields across the lattice, the connection of Wannier-
Stark states with continuous Airy beams was also established.
In a more general approach, we have recently investigated
the design of arbitrary optical caustics in periodic waveguide
lattices [20]. Specifically, we showed how different families
of caustics, of the fold and cusp catastrophe type, result from
discrete input beams that are phase modulated with a power
law. Taking into account the sinusoidal dispersion relation
[β = 2κ cos(K�) κ being the coupling coefficient between
adjacent waveguides and � the lattice constant] that follows
from the tight-binding model, we also determined the phase
modulation required to create arbitrary power-law caustics or
to achieve aberration-free focusing.

Discrete (tight-binding) models, such as that adopted in
[20], can account only for propagation within the first allowed
band. In this context, only half of the first Brillouin zone
(|K|�π/2) can be used to create caustics, i.e., the part
corresponding to rays whose slope increases with increasing
K . The maximum slope of the participating rays within this
band is 2κ . This in turn limits the slope of the trajectories
that can be designed. However, GV can be increased if higher
bands are excited. Therefore, if one is able to determine the
dispersion features of higher bands, there will be significant
additional freedom in designing curved trajectories.

In the present work we examine the design of optical
caustics inside WGAs beyond the limits of the tight-binding
(or coupled-mode) model. Specifically, we adopt a paraxial
model of light propagation in a continuous sinusoidal potential,
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that is both simple and realistic. Such a model accounts
for the continuous evolution of the optical field across a
periodic lattice and thus for propagation in higher bands that
are neglected by discrete models. The full band structure
of the lattice can be determined numerically by Fourier-
series expanding the FB modes and by solving the resulting
eigenvalue problem, a method that is familiar in solid-state
physics [21] and photonic crystals [22].

Having determined the band structure of the WGA, it is
straightforward to derive GV as a function of the BM from
the corresponding dispersion relation within each allowed
band. This can subsequently be used to determine the input
phase modulation that will produce a desired caustic, which
is the essence of our band-specific engineering approach. The
equation relating the input phase with the ray trajectory is
similar to that in a continuous medium and follows from
a stationary phase approximation to the integral transform
of the optical field inside the WGA. In discrete approaches,
e.g., [5] or [20], this integral is obtained with a discrete Fourier
transform of the input condition. In the continuous case, one
must take into account that the input field is decomposed into
FB modes.

Ideally, to excite a desired band with BM K , the input
optical field in a WGA should conform to the profile ψK (x)
of the corresponding FB mode. To create curved caustics
however, K must vary continuously across the input plane (z =
0), so that the slope of the emitted rays follows the shape of the
caustic. Thus an optimum input field would be a continuously
varying FB profile ψK(x)(x), which is, however, very specific
and difficult to realize. Fortunately, in practice, propagation in
higher bands (beyond the third) is very similar to propagation
in free space and the corresponding FB modes are very
much like plane waves, which is particularly true for weakly
modulated lattices. This allows higher bands to be excited
quite effectively with a phase-only modulation of a simple
optical envelope (e.g., Gaussian or exponential). Moreover,
as our simulations show, for weakly modulated lattices, even
the lower bands can be excited fairly well with a phase-
only modulation. In this empty-lattice-like approximation,
a given input modulation exp(iKx) excites efficiently only
the corresponding FB mode of band with number �K/π�.
For continuously varying BM along x, the phase modulation
should be exp[i

∫ x

0 K(ξ )dξ ], so that the neighborhood of x is
occupied by a wave packet with local wave number K(x). The
above should be contrasted to the discrete approach, where
one is limited to the first band and the critical parameter is the
modulo-2π phase difference between adjacent waveguides.

It should be mentioned that a different, “side-coupling”
method was proposed in [23] in order to selectively excite
a single FB mode with a given longitudinal wave number
β, which can be useful in strongly modulated lattices. For
the purpose of the present work, however, we will adopt the
simpler head-on excitation.

In the next sections we demonstrate band-specific engi-
neering of caustics in a WGA. Excitation of the first band
is suggested when the rays involved in the formation of a
caustic or a single focus do not bend more than the maximum
allowed GV in that band. For larger ray inclinations, the nth
(n = 2,3,...) band can be used and the resulting BM satisfies
K(x)�(n − 1)π . It is also possible to create hybrid, multiband

caustics that span more than one band. For example, the first
part of the caustic may be formed by rays within the first
band and the second part by rays within the second band. In
the transition point, K(x) must have a discontinuity such that
the caustic continues with the same slope. We also show how
all rays of an optical wavefront can be made to intersect at a
single point inside the WGA and produce an aberration-free
focal spot of high quality.

II. BAND-SPECIFIC ENGINEERING OF CAUSTICS
AND FOCUSING

Consider the following continuous model for light propa-
gation in a WGA:

iuz + 1
2uxx + V (x)u = 0, (1)

where spatial coordinates are normalized and the lattice of
waveguides is described by the simple periodic potential
V (x) = V0 cos(2πx). The period of the lattice has been set
equal to unity. To determine the band structure of this array
we expand an arbitrary FB mode in a Fourier series

ψK (x,z) = ei(Kx+βz)�K (x) = ei(Kx+βz)
+∞∑

n=−∞
cn,Kei2πnx,

(2)

where K is the BM, β is the propagation constant, and the
series factor �K (x) is the envelope of the FB mode conforming
to the periodicity of the lattice. Substituting Eq. (2) into
Eq. (1) and using the orthogonality of the Fourier harmonics,
we end up with the linear system

− 1
2 (K + 2nπ )2cn,K +

+∞∑
m=−∞

vn−mcm,K = βcn,K, (3)

where vn are the Fourier series coefficients of V (x). By
truncating the infinite system, β follows as an eigenvalue
of the matrix denoted by the left-hand side of Eq. (3). Ordering
the eigenvalues in descending order, for each K , we obtain
the complete band structure of the WGA, with the largest
eigenvalue corresponding to the first band and so on. The
corresponding eigenvectors can be substituted into Eq. (2) to
return the FB wave functions. In the present case of a sinusoidal
potential, v1 = v−1 = V0/2 are the only nonzero coefficients,
hence the system matrix is tridiagonal Toeplitz.

Figure 1(a) shows the computed band structure in the case
of V0 = 5. A reduced zone scheme is used showing only
the positive part of the first Brillouin zone. Differentiating
the dispersion relation of each band, the GV is derived and
shown in Fig. 1(b). For visualization purposes, an extended
zone scheme is now used, according to which the nth band
occupies the BM interval (n − 1)π � K � nπ . Within each
band, the GV assumes a maximum value, while being zero
at the edges where Bragg reflection occurs. The maximum
value increases with increasing band number. Also, already
from the third band, vg starts to vary almost linearly with K

having sharp zeros at the band edges. This is because, with
increasing BM, propagation in the WGA becomes much like
propagation in an unmodulated, continuous medium (V0 = 0),
FB modes resemble plane waves, and the dispersion relation,
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FIG. 1. (Color online) (a) Band structure and (b) GV (vg =
−dβ/dK) versus BM for a WGA described by the potential V (x) =
5 cos(2πx).

within the paraxial approximation, becomes almost parabolic
(β ≈ −K2/2).

Consider now an arbitrary optical beam u0(x) launched
into the WGA. By the completeness of the FB eigenfunctions,
the input condition can be expressed as the continuous
superposition

u0(x) =
∫ +∞

−∞
C(K)�K (x)eiKx dK. (4)

An extended scheme has again been used for the BM,
according to which the FB mode �K belongs to the band
with number �|K|/π�. The weight function follows easily by
the orthogonality of the FB modes

C(K) =
∫ +∞

−∞
u0(ξ )�∗

K (ξ )e−iKξ dξ . (5)

Now, since each FB mode in the expansion of Eq. (4)
propagates with its own constant β(K), it is straightforward
to combine the last two equations to write the optical field
anywhere inside the WGA as the double integral

u(x,z) =
∫ +∞

−∞

∫ +∞

−∞
u0(ξ )�K (x)�∗

K (ξ )ei[K(x−ξ )+βz] dK dξ.

(6)

In designing caustics and focusing, the input field can
be expressed as a phase-modulated envelope, i.e., u0(ξ ) =
A(ξ ) exp[iφ(ξ )]. Substituting into Eq. (6), the total phase
in the exponential becomes Q = φ(ξ ) + K(x − ξ ) + βz. In
a stationary-phase approximation to the above integral, the
conditions are posed Qξ = QK = 0, from which we obtain

x = ξ + vg(K)z, (7)

where K = φ′(ξ ). Equation (7) is essentially the equation of a
ray starting from the x axis point x = ξ and traveling at a slope
vg(ξ ) = −β ′(K(ξ )), with the local BM being determined by
the derivative of the input phase. Note that the slope vg(ξ ) of
the ray is essentially a local form of GV assigned to the wave
packet around position ξ , and should not be confused with
the GV of a wide (narrow-band) beam as a whole. Hence
the modulated wavefront can be thought as a continuous
train of wave packets each having its own GV. Also note

that, in applying the stationary-phase method, the variation
of the periodic envelopes �K of the FB modes with K in
Eq. (6) has been assumed to be slow, which is true for weakly
modulated lattices. In any case, the success of the very useful
but approximate ray picture must be evaluated in comparison
to more rigorous wave simulations, as will be done in the next
section.

For a given phase modulation, Eq. (7) can be used to
parametrically determine the equation of the caustic, namely,
the envelope of the bundle of rays emanating from all ξ .
Differentiating Eq. (7) with respect to ξ and taking into account
that the GV of a ray is equal to the slope of the caustic at the
touching point (vg = dx/dz), one obtains

(x,z) =
(

ξ − vg(ξ )

v′
g (ξ )

, − 1

v′
g (ξ )

)
, (8)

where vg is implied to be a function of ξ as vg(ξ ) = −β ′(φ′(ξ )).
It also follows from the chain rule that v′

g (ξ ) = v′
g (K) K ′ (ξ ).

From the latter, the importance of the relation vg(K) between
GV and BM in the formation of caustics in a WGA is clear.
This remark is the key to band-specific engineering of caustics,
in the sense that the input phase modulation depends critically
on the excited band and its associated dispersion properties.
By contrast, in a continuous medium, β is a quadratic function
of K (within the paraxial regime), hence vg(K) is a linear
function, v′

g(K) is a constant, and the shape of the caustic is
determined solely by the input phase φ(ξ ).

In an inverse design approach one first specifies the function
of the caustic x = f (z). An arbitrary tangent ray to this curve
has a slope vg = f ′(z) and intersects the input plane at the
point ξ = f (z) − zf ′(z). By inverting the last equation, z can
be determined as a function of ξ . The dispersion properties of
the periodic medium are expressed through a function vg =
G(K), from which one readily obtains BM as a function of
the input position as K(ξ ) = G−1(vg(ξ )). Finally integrating
K(ξ ) = φ′(ξ ), the required phase is given by

φ (ξ ) =
∫ ξ

0
K (χ ) dχ =

∫ ξ

0
G−1(vg (χ ))dχ, (9)

where inside the integral ξ has been replaced by χ , the
integration variable. Note that in a periodic medium, such as a
WGA, function G(K) is not one to one [Fig. 1(b)]. Therefore,
in order that the inverse function G−1 is single valued, the
BM is restricted to the part of a Brillouin zone where the
GV is increasing. When more than one band participates in
the formation of a caustic, G−1 experiences discontinuities,
which, however, do not affect the integration in Eq. (9). For
example, referring to Fig. 1(b), for 0 � vg < 1.5, G−1 returns
BM values 0 � K < 0.69π within the first band, while for
1.5 � vg < 5.8, it returns values 1.1π � K < 1.93π within
the second band. Therefore, at vg = 1.5, the maximum GV
within the first band, G−1, experiences a discontinuity. The
next discontinuity is at vg = 5.8, the maximum GV within the
second band, where the BM jumps to the third band and so on.
For higher bands, the GV varies almost linearly with K and
the discontinuities occur approximately at vg = nπ , i.e., very
close to the Bragg resonances. In this regime the jumps of the
BM are very small and have a little effect on the computation
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of the input phase, which physically means that the periodic
medium responds as a continuous one.

Let us now consider the case of focusing. To focus an
optical beam, an appropriate phase modulation should be
imparted to it so that the constituent rays converge to a single
point. This implies that the GV (or slope) of any ray must
be proportional to the distance of its starting point from the
center of the beam. In a continuous medium and within the
paraxial propagation regime, this is achieved with a parabolic
phase φ(ξ ) = −ξ 2/2f , which is most conveniently imposed
by passing the beam through a thin lens with focal distance f .
Indeed, a parabolic phase induces a transverse wave number
K(ξ ) that varies linearly with ξ . Since the dispersion equation
of a continuous medium is also parabolic (β = −K2/2), the
GV of rays is proportional to K , and hence proportional to
ξ . Therefore all rays meet at a single point. In a WGA,
however, the dispersion relation β(K) is not parabolic and
a parabolic input phase results in a focus that suffers from
spherical aberrations [20]. Due to the band structure, the
GV satisfies vg(K) < K , hence rays bend less than required
(negative aberrations), creating a cusp catastrophe, i.e., two
symmetric fold type caustics that originate at a zero angle
from the intended focus.

To achieve aberration-free focusing in a WGA, the GV
should be made to vary linearly with distance from the center or
vg = −ξ/zf , zf being the distance to the desired focus inside
the array. Note that the minus sign denotes that the rays bend
inward. Then, according to the previous discussion, the Bloch
wave number should vary with ξ as K(ξ ) = G−1(−ξ/zf ),
where G−1 is now assumed to extend to negative arguments
as an odd function, i.e., G−1(−ξ ) = −G−1(ξ ). The phase is
finally determined by integrating φ′(ξ ) = K(ξ ) as in Eq. (9)
and is an even function of ξ .

It is obvious that, for beams with a sufficient initial width
and/or an appropriate focal distance, focusing may involve
rays from more than one band. The jump of the local BM
(function G−1) to the next higher band occurs at ±ξ where the
slope |ξ |/zf of the corresponding ray exceeds the maximum
GV of the current band. It is also possible to excite only one
band by accordingly restricting the values of function G−1. For
example, as we will show in the next section, if the maximum
slope of the focusing rays is larger than the maximum GV of
the first band but smaller than the maximum GV of the second
band, one can arrange that G−1 returns values K � π , so that
all rays stay within the second band. This is characteristic of the
freedom in design offered by band-specific phase engineering.

It is also worth mentioning that the phase resulting from
Eq. (9) depends on the construction of function G−1 and is
not unique. One may construct this function in infinite ways
by choosing the discontinuity points to be at GV values lower
than the maxima of each band. However, we have here opted
to utilize each band up to its maximum GV.

III. NUMERICAL EXAMPLES

In this section we demonstrate band-specific engineering
of caustics and aberration-free focusing inside a WGA
through several numerical examples. In all cases, the input
condition u0(ξ ) has been propagated in the WGA by solving
Eq. (1) with a fourth-order Runge-Kutta scheme. In all of the

examples, the amplitude of the sinusoidal lattice potential has
been assumed V0 = 5.

Power laws are a familiar model for convex optical caustics.
Assuming the general function f (z) = γ zδ , where γ > 0 and
δ > 1, and following the discussion of Sec. II, it is easy to show
that this caustic is constructed by rays starting from points ξ

on the negative x axis and that their GV is given as a function
of ξ by

vg (ξ ) = vg0

(
ξ

ξ0

)(δ−1)/δ

, (10)

where vg0 is the GV of the ray starting from point ξ0 < 0 on
the input plane. If the input wavefront (or practically most of
its power) is confined from ξ0 to 0, then vg0 is the maximum
GV and determines the bands that must be excited to create
this caustic. Using Eqs. (8) and (10), it can also be shown that
this extreme ray touches the caustic at the point (x0,z0), where
x0 = ξ0/(1 − δ) and z0 = δξ0/vg0(1 − δ). In the following we
use ξ0, vg0, and δ to parametrically define the caustics to be
designed.

A. First band caustics

Figure 2 shows two examples of caustics in a WGA that are
designed by exciting rays mainly within the first allowed band.
In both cases, the input wavefront is confined to negative values
of ξ using the simple envelope A(ξ ) = (e−0.1ξ + e5ξ )−1, which
decays slowly as e0.1ξ for decreasing negative ξ and strongly
as e−5ξ for increasing positive ξ . The phase of the beam is
provided by Eq. (9). At point ξ0 = −20, where the input
amplitude has dropped to 0.15 of its maximum value, the group
velocity vg0 is lower or equal than the maximum GV within
the first band. Note how the optical field propagates in the
form of a curved beam, staying confined around integer values
of x, namely, within the maxima of the potential V (x)—the
waveguides—which is indicative of the characteristic profile of
the FB modes within the first band. The success of the design
is verified by the superposed curves x = γ zδ , which agree
very well with the simulated trajectories of the beams. It is
remarkable that these curved trajectories are achieved by phase
modulating an otherwise simple optical wavefront, suggesting
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FIG. 2. (Color online) Caustics in a WGA under excitation of
the first band. The design parameters are (a) δ = 1.8, ξ0 = −20,
vg0 = 1.5 and (b) δ = 2.2, ξ0 = −20, vg0 = 1.2. The equations of the
caustics are f (z) = 0.055z1.8 and f (z) = 0.009z2.2, respectively, and
are superposed as red curves. In both cases, the envelope of the input
beam is A(ξ ) = (e−0.1ξ + e5ξ )−1.

063830-4



BAND-SPECIFIC PHASE ENGINEERING FOR CURVING . . . PHYSICAL REVIEW A 85, 063830 (2012)

x

z

−20 −10 0 10 20 30 40
0

5

10

15

x

z

−20 0 20 40 60
0

5

10

15

20
(b)(a)

FIG. 3. (Color online) Caustics in a WGA under excitation of
the second band. The design parameters are (a) δ = 1.8, vg0 = 5,
ξ0 = −20, α = 0 and (b) δ = 1.8, vg0 = 5, ξ0 = −20, α = 2. The
corresponding equations are f (z) = 0.4790z1.8 and f (z) = 2z +
0.1910z1.8, respectively, and are superposed as red curves. The
envelope of the input beam and the lattice potential are the same
as Fig. 2.

that the experimental implementation of these caustics should
be straightforward by reflecting the beam on a spatial light
modulator (SLM) programed with phase φ(ξ ), just before it
enters the front facet of the WGA.

B. Second band caustics

Caustics with higher slopes can be designed by exciting
rays within the second band. This is achieved by letting
function G−1 return BM values K � π in Eq. (9). For example,
Fig. 3(a) shows the case of a caustic with order δ = 1.8, which
reaches a GV vg0 = 5 at the contact point with the ray that
is emitted from input point ξ0 = −20. The input envelope is
the same as that of Fig. 2(a). The result of the simulation
shows that, although the expected caustic is reproduced fairly
well, the field initially experiences oscillations that were not
present in the case of Fig. 2. These oscillations are a result
of interference between FB modes located at the K = π edge
of the first and the second bands, which are simultaneously
excited near the input plane. To see why this is happening,
note that, in order to excite the second band, we have let the
BM assume values K � π . This implies that, for a caustic
with zero initial GV and close to ξ = 0, the input wave locally
resembles exp(iπξ ) = cos(πξ ) + i sin(πξ ). The real part of
this wave function corresponds to a wave that has maximum
energy within the high-index regions and an alternating sign.
This clearly excites the FB mode located at the K = π (low)
edge of the first band. The imaginary part, on the other hand, is
a wave that also has an alternating sign but which is maximum
in between the waveguides having field nodes inside them.
This condition clearly excites the FB mode located at the
K = π (high) edge of the second band. The local interference
of the two modes is responsible for the observed distorted,
oscillating image of the field close to the input plane. At
longer propagation distances, the oscillations fade out and
the beam propagates along a curved path staying confined to
the low-index regions, indicating the pure excitation of the FB
modes of the second band. Figure 3(b) shows another example
of a caustic created using the second band, however with a
nonzero initial GV. Such a caustic is expressed by the curve
f (z) = αz + γ zδ , where vg(0) = α is the initial GV (or tilt).
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FIG. 4. (Color online) Caustics in a WGA under excitation of
the second band. The input beam amplitude A(ξ ) is a continuous FB
mode envelope in (a) and A(x) = (e−0.1x + e5x)−1 in (b). The input
phase is the same in both cases and results from Eq. (9), where GV
is given by Eq. (10) with the parameters δ = 1.8, ξ0 = −30, and
vg0 = 5. The bottom blue curves are the intensity of the input beam,
while the superposed red curves are the caustic x = 0.346z1.8.

In this case, Eq. (10) is modified to

vg (ξ ) = α + (
vg0 − α

) (
ξ

ξ0

)(δ−1)/δ

. (11)

Now the extreme ray, starting from ξ0 with slope vg0, touches
the caustic at the point (x0,z0), where z0 = δξ0/(vg0 − α)(1 −
δ) and x0 = αz0 + ξ0/(1 − δ). As shown by the simulation,
this caustic has a clearer intensity profile with weaker initial
distortion. This should be expected by the fact that, due to
the initial tilt, the input BM starts from a value K > π , thus
mainly exciting FB modes of the second band.

The initial distortion of the beam observed in Fig. 3(a)
can be reduced if the WGA is optimally excited with a beam
whose amplitude is a continuous varying, according to the
input BM, FB envelope. Specifically, if K(ξ ) = G−1(vg(ξ )) is
the input BM required to create a given caustic, the amplitude
of the input beam is taken to be A (ξ ) = �K(ξ ) (ξ ), where
�K is the periodic envelope of the FB mode with BM K , as
defined below Eq. (2). The resulting envelope is subsequently
modulated by the phase obtained from Eq. (9) as in the previous
examples. To better illustrate the improvement achieved with
such a particularly designed input condition, we have let the
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FIG. 5. (Color online) Focusing in a WGA using (a) the
parabolic phase φ(ξ ) = −ξ 2/70.4 imposed on the envelope A (ξ ) =
exp[−(ξ/76)20] and (b) the phase resulting from Eq. (9) with
vg(ξ ) = −ξ/40, imposed on the envelope A (ξ ) = exp −(ξ/60)20].
The dashed red curves in (a) are the twin fold type caustics that create
the cusp.
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FIG. 6. (Color online) Focusing in a WGA using the phase
resulting from Eq. (9) with (a) vg(ξ ) = −ξ/6 and (b) vg(ξ ) =
−(ξ − 0.5)/6, imposed on the envelope A(ξ ) = exp

[−(ξ/30)20
]
.

The input BM assumes values K � 0 in (a), hence exciting the first
and second bands, and K � π in (b) hence exciting only the second
band.

BM assume values K � π in order to excite the second
band. The result of the simulation is shown in Fig. 4(a), in
comparison to the case of a simple exponential envelope shown
in Fig. 4(b). As expected, in the first case, the specifically
engineered input amplitude facilitates the pure excitation of
the FB modes of the second band, hence the initial evolution of
the beam is smoother. By contrast, the second case suffers from
intensity oscillations, the result of the simultaneous excitation
of the K = π edges of the first and second bands. However, it
should be noted that the improved behavior of Fig. 4(a) is at
the cost of a more difficult to realize input wavefront.

C. Focusing

Let us now examine the case of focusing. As mentioned,
using a parabolic phase to focus a beam inside a WGA leads to
a focus that suffers from negative spherical aberrations. Such
a phase is given by φ(ξ ) = −ξ 2/2f , where f is the focal
distance of a lens that induces the same phase to a transmitted
wavefront. Since GV is generally smaller inside the WGA than
in the unmodulated lattice (V0 = 0), f is smaller than the actual
distance zf at which the focus will be created in the WGA.
Specifically, using Eq. (8), it can be shown that f = D0zf ,
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FIG. 7. (Color online) (a) Caustic in a WGA under the excitation
of two bands. The parameters for the phase engineering are δ = 2.5,
vg0 = 1.5, and ξ0 = −12. (b) BM (solid, blue line, left ordinate)
and phase (dashed, red line, right ordinate) of the input beam. The
amplitude of the input beam is A (ξ ) = exp[−( x+45
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FIG. 8. (Color online) (a) Interference of two symmetric, opposite
accelerating caustics. The parameters of the caustics are the same as
Fig. 2(a). (b) Collision of caustics from the first and second bands
excited simultaneously by the same input wavefront. The input BM
varies linearly with slope 0.688π/20 and a 0.5π jump to the second
band at ξ = −20. The amplitude of the input beam in (b) is A (ξ ) =
exp[−( x+21

22 )
20

].

where D0 = (
dvg/dK

)
K=0 is the diffraction coefficient at the

top edge of the first band. To determine the maximum width
2ξ0 of the wavefront that can be focused, one requires that the
extreme rays starting from ±ξ0 have the maximum GV within
the first band, i.e., ξ0 = f Kmax, where Kmax is the BM where
the maximum GV occurs. These two rays are the asymptotes
of the twofold-type caustics that bifurcate from point z = zf to
create the cusp catastrophe. An example is shown in Fig. 5(a),
where the focal distance inside the WGA is set to zf = 40. For
our lattice with V0 = 5, D0 ≈ 0.88 and Kmax ≈ 0.688π . The
result clearly verifies the formation of the cusp as indicated
by the evident curved intensity wings that develop outward
beyond the focus.

The aberrations can be eliminated with band-specific phase
engineering. Using the phase given by Eq. (9) with vg(ξ ) =
−ξ/zf implies that all rays are forced to pass from the on-axis
point z = zf , and thus create an optimum focus. The maximum
beam width is again determined by the extreme rays as ξ0 =
zf vg,max, where vg,max = G(Kmax) is the maximum GV within
the first band. The result of the corresponding simulation is
shown in Fig. 5(b) and is very satisfactory. The aberrations
have been completely eliminated and the quality of the focus
has been significantly improved. Note that in both examples
of Fig. 5 a super-Gaussian envelope has been assumed.

We now consider a case of focusing involving larger
values of GV. An example is shown in Fig. 6(a), where
a super-Gaussian wavefront with width 60 is focused at a
distance zf = 6. The input phase is obtained from Eq. (9)
with vg(ξ ) = −ξ/zf . For |ξ | � 9, we have vg(ξ ) � vg,max and
the BM resulting from function G−1 is within 0 � K � Kmax,
hence the first band is excited. For larger |ξ |, the BM jumps into
the interval π < K < 2π and the second band is excited. The
excitation of the two bands is evident in the simulation if one
carefully observes the confinement of the field in the high- and
low-index regions. Note how all rays focus at the desired point,
which is, however, surrounded by secondary intensity maxima,
in contrast to the clear focus of Fig. 5(b). This is obviously the
result of interference between the different envelopes of the FB
modes of the first and second bands in the neighborhood of the
focus. Focusing using only the second band is demonstrated
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in Fig. 6(b). As mentioned, excitation of the second band
is achieved by letting function G−1 obtain values K � π

for all positive values of GV. Attention should be paid to
the fact that, since FB modes of the second band have field
nodes inside the high-index regions, effective focusing can be
achieved only in the low-index regions. For this reason, the
GV in this case is chosen as vg(ξ ) = −(ξ − 0.5)/6 so that all
rays intersect at the off-axis point (0.5,zf ). The result verifies
the expected behavior. At the desired focal distance, power
is indeed confined in the potential valley around x = 0.5,
although with some secondary power maxima in the adjacent
lattice periods.

D. Caustics interference

Two or more bands can be simultaneously excited and
cooperate to create a given caustic. For example, rays of the
first band can create the initial part of the caustic, in which the
GV stays lower than vg,max, and then the second band takes
over to account for the part with larger slopes. A characteristic
example is shown in Fig. 7(a) for the caustic x = 0.012z2.5. In
this case, rays emanating from the interval −12 � ξ � 0 have
GV in the range 0 � vg � 1.5 and BM within the first band
[Fig. 1(b)]. At around ξ = −12 the BM has a discontinuity
jump to the point with equal GV within the second band
and the caustic continues smoothly. The input phase φ(ξ ) is
determined by integrating this function and is a continuous
function with a discontinuous derivative at ξ = −12. Both BM
and phase versus ξ are shown in Fig. 7(b). The numerical sim-
ulation of Fig. 7(a) verifies the expected behavior. In the initial
part of the caustic the field is confined—-although with some
oscillations—in the high-index regions manifesting the excita-
tion of the FB modes of the first band. A region of interference
between two bands follows and, after a certain point, the
caustic is clearly constructed by rays of the second band, as the
field confinement in the low-index region indicates. The shape
of the caustic is verified by the superposed analytic curve.

Optical caustics can interact in many other ways. In contin-
uous media, a remarkable case is that of abrupt autofocusing
where a circular beam with Airy radial amplitude profile writes
a parabolic caustic surface of revolution that collapses on axis
on a point of large intensity gradient [24]. For 1D beams inside
a WGA, an analogous phenomenon can be obtained when two
mirror-symmetric, fold-type caustics, such as those of Fig. 2 or
Fig. 3, are made to intersect. An example is shown in Fig. 8(a)
using the caustic of Fig. 2(a). The obtained effect is very similar

to autofocusing beams in free space. It is remarkable how
power is confined at the focus within the central waveguide.
Note, however, that the intensity contrasts obtained with 1D
beams are much lower compared to two-dimensional (2D)
beams because, in the latter case, the focus is formed by the
interference of a continuum of rays emanating from a circle on
the input plane. Another case of interfering caustics is shown
in Fig. 8(b) where a linear input BM excites simultaneously
the first two bands creating two colliding caustics. A notable
interference effect is evident at the collision region where
the low GV caustic of the first band, which is confined in
the high-index regions, intersects the high GV caustic of the
second band, which is confined in the low-index regions.

IV. CONCLUSION

We have investigated band-specific phase engineering of
optical caustics and focusing inside WGAs. Taking into
account the band structure and the associated dispersion
equations of each allowed band, it is possible to determine the
phase modulation that will force a simple optical wavefront
to form a desired convex caustic. Caustics that involve the
excitation of one or more bands are possible, with each band
being assigned the part of the caustic whose slope is within
the range of GV inside this band. The transitions between the
bands are triggered by corresponding discontinuity jumps in
the derivative of the input phase or the local BM. Band-specific
phase engineering can also be used to create optimum focal
spots inside a WGA, eliminating the spherical aberrations that
occur when trying to focus a wavefront by means of a parabolic
phase modulation. What we find particularly important is
that such beams can be effectively designed in WGAs by
a phase-only modulation of a simple optical wavefront,
thus lending themselves to a straightforward experimental
realization. Together with our recent work [20] on caustics
in discrete optical lattices, the possibilities explored here
expand the concept of curved light in general periodic optical
structures. By properly exploiting the band structure and the
resulting dispersion properties, it should also be possible to
apply similar design procedures and observe analogous curved
light phenomena inside 2D or even 3D photonic crystals.
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