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Optimization of the recollision step in high-order harmonic generation
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The recombination step of high-order harmonic generation is investigated with the aim of optimizing the
high-energy photon emission yield in this process. The dependence of the recombination probability of a
recolliding electron on the parameters of the atomic potential, such as its width and depth and the parameters of
the electron wave packet such as its impact parameter, width, and angular momentum, are analyzed. Empirical
laws for these parameters are found that ensure optimal recombination and in this way optimal emission of
high-energy photons.
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I. INTRODUCTION

High-order harmonic generation (HHG) [1] has been
developed into a reliable source of coherent extreme ultraviolet
radiation and is expected to be extended into the soft x-ray
region up to kilo-electronvolt photon energies [2–6]. A further
increase of the photon energy can, in principle, be achieved by
increasing the laser intensity. Although it is well known that
the applicable laser intensities are limited by the relativistic
electron drift, which prevents recollision, and by a large
free electron dispersion, which causes a significant phase-
mismatch [7,8], there are ways to overcome these problems
[9,10]. Nevertheless, there are more fundamental restrictions
which hinder realization of HHG at higher photon energies
[9]: even for a suppressed relativistic drift, the HHG photon
yield decreases dramatically with rising photon energy due to
the reduced recombination cross section and the increased
emission bandwidth at a fixed ionization window [9]. In
this context, it is particularly important to find conditions
optimizing the recombination step.

HHG is intuitively explained in the three-step model
[11,12]. In the first step, the active electron is tunnel-ionized
from the atomic system; in the second step, it is propagated in
the continuum by the laser field; finally, in the third step, it is
driven back, recolliding with the atomic system and emitting its
gained energy as a high-frequency photon. Each step of HHG
has a well-defined probability and thus the overall probability
for emission of a highly energetic photon results from the
probabilities of the single steps [13,14]. The probability
for tunnel ionization is well described by the quasiclassical
Perelomov, Popov, Terent’ev (PPT) ionization rates [15,16].
The continuum dynamics is quasiclassical, resulting in the
spreading of the electron wave packet, (see, e.g., Ref. [17]).
The recollision probability of the laser-driven electron, in
general, depends on the shape of the atomic potential (in
particular, on its width and depth parameters), as well as on the
size of the electron wave packet, its momentum distribution,
and the impact parameter. Driving the HHG process effectively
demands optimization of all three steps.

Enhanced recombination probabilities during the third
step have been discussed in connection with multielectron
effects recently. The calculations reported in Ref. [18] show a
general enhancement of the recombination probability with the
number of bound electrons due to polarization recombination
[19,20]. The experimental studies of Ref. [21] concentrate

on the giant resonance in xenon known from its ionization
dynamics for a long time. Their calculation shows that
the enhancement in HHG spectra can be explained via the
excitation of a tightly bound electron to the valence shell by the
recolliding electron simultaneous with the recombination of
the continuum electron to this deeper-lying shell. However, the
contribution of the atomic shell polarization in recombination
decreases sharply when the recombining electron energy
exceeds the ionization potential of the K shell, reducing the
recombination cross section to that of an electron on the atomic
nuclei [19].

In this paper we investigate the recombination step of HHG
at high energies of the recolliding electron, such that the
atomic shell polarization is negligible, with the perspective
of gaining more insight into how the production of high-
frequency photons via HHG can be upgraded in the case of a
one-electron atomic or ionic system. With the goal of finding
optimal conditions for the recollision step, we investigate the
recollision for different atomic potentials and find the potential
parameters that are best suited for effective recombination.
In particular, in the case of a spatially broad recolliding
electron wave packet and large electron energy exceeding
the absolute value of the bound state energy, it is found
that recollision yields are favorable when the characteristic
radius of the atomic potential is less than the de Broglie
electron wavelength. Further, we investigate the impact of the
characteristics of the recolliding electron wave packet on the
recombination probability. In the case of a broad recolliding
electron wave packet in momentum space, it is found that the
recombination is optimal when the momentum width of this
wave packet is of the order of its mean momentum. Thus even
for a very broad recolliding wave packet in momentum space
at high mean energies, as is usual at very strong laser fields,
efficient recombination yields are feasible. The considerations
in the paper are based on the strong field approximation
(SFA) [22–24].

The structure of the paper is as follows. In Sec. II we
investigate how the process is described most accurately within
SFA, comparing the transition matrix element from the initial
exact continuum state with that using an initial plane-wave
state. Section III is devoted to the optimization of parameters
of the atomic potential and Sec. IV to that of the electron wave
packet. In Sec. V we present applications of our findings. The
conclusion is given in Sec. VI.
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II. THE CHOICE OF GAUGE IN THE RECOLLISION
MATRIX ELEMENT

The Hamiltonian of the considered system can be written
as follows:

H = HV + V (r) + Hi, (1)

where HV is the Volkov-Hamiltonian of the electron in the
laser field, V (r) the atomic potential, and Hi the Hamiltonian
of the electron interaction with the harmonic field. The latter
is described in second quantization and can be treated as a
perturbation. Our discussion is based on the description of
the HHG process within the SFA. The differential rate of the
nth harmonic emission during the recombination of the laser-
driven electron reads [25]
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where |φ0,1H 〉 ≡ |φ0〉|1H 〉 and |ψSFA,0H 〉 ≡ |ψSFA〉|1H 〉,
with the bound state |φ0〉 of the electron and the harmonic
field state with n photons |nH 〉. c is the speed of light, ω the
laser angular frequency, and T the laser period. Atomic units
are used throughout the paper. The electron continuum state
in the SFA reads [26]

|ψSFA(t)〉 =
∫ t

−∞
dt̃UV (t,t̃)V (r)|φ0(t̃)〉, (3)

where UV represents the Volkov time-evolution operator. The
differential emission rate can then be written as
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From this expression the three steps consisting of ionization,
free propagation, and recombination can be identified [14]. In
the SFA, the state of the electron is approximated by a plane
wave and the probability of the electron recombination with an
emission of a harmonic photon is proportional to the squared
matrix element of Hi :

P = |〈p,0H |Hi |φ0,1H 〉|2, (5)

with the momentum p at the moment of recollision.
The form of Hi depends on the adopted gauge. Three

different forms of the interaction Hamiltonian are well known:
the length HL

i = r · EH , the velocity HV
i = p · AH , and the

acceleration form HA
i = −∇V · αH with the harmonics elec-

tric field EH = −ȦH = −α̈H in second quantization. In the
case that the exact continuum state of the electron is employed
in Eq. (5), taking into account the atomic potential explicitly,
the recombination probability is gauge independent. However,
when the state of the recolliding electron is approximated by
a plane wave |p〉 as in the standard SFA, these three forms
are not equivalent and the question arises as to which form
is best suited for the description of the recollision process.
To answer this question, we calculate the recombination
probability P = |〈p,0H |Hi |φ0,1H 〉|2 for the transition from
the plane-wave continuum state |p〉 into the ground state |φ0〉

of the atomic potential using the interaction Hamiltonian Hi in
all three forms and compare them with the case when the initial
state is an exact continuum state of the atomic potential with
an asymptotic momentum p (see Appendix). Note that in the
last case the result is independent of the gauge. Three different
atomic potentials are considered: a Coulomb potential

V C(r) = −κ/r, (6)

a zero-range (ZR) potential

V Z(r) = −2π

κ
δ(r)∂rr, (7)

and a radial symmetric box potential

V B(r) = −V0
(R − r), (8)

with the typical momentum of the bound electron κ = √
2Ip,

the ionization potential Ip, and the Heaviside step function

(x). While the Coulomb and the ZR potentials depend only
on a single parameter κ , the box potential is determined by
two parameters: the box size R and the depth V0. The box size
R is a function of V0 and κ:

R = π − tan−1(
√

2V0/κ2 − 1)√
2V0 − κ2

. (9)

In Fig. 1 the recombination probability versus the momentum
of the recolliding electron is displayed for the various gauges
and potentials at a fixed κ . For the ZR potential, the transition
matrix element is independent of the choice of the interaction
Hamiltonian (because the continuum is not affected by the ZR
potential) and coincides with the exact solution

P = 2p2κ

π2(p2 + κ2)3
. (10)

Accordingly, a single line is plotted for the ZR potential in
Fig. 1(a). However, for the Coulomb potential and the box
potential, the exact results differ from the SFA results in the
different gauges. The SFA results in acceleration form have the
best agreement with the one obtained with exact continuum
states for p > κ , while those in the velocity and length gauges
largely deviate in the same parameter regime. For the length
gauge, the deviation is more than an order of magnitude.
This is in accordance with the numerical analysis given in
Ref. [27]. For recolliding electron momenta p � κ , none of
the three approximations can be favored and a deeper analysis
via comparison with numerical calculations of the HHG
process is needed [28]. We consider optimization of HHG
for plateau harmonics, i.e., in the regime p > κ . Accordingly,
a conclusion is drawn to employ the acceleration form of the
recollision matrix element.

III. PARAMETERS OF THE ATOMIC POTENTIAL
FOR EFFECTIVE RECOMBINATION

In this section, we investigate the influence of the atomic
potential shape on the effectiveness of recollision. We compare
the recombination probabilities for the three potentials at hand
at a fixed binding energy Ip. In Fig. 2, the absolute squares of
the recombination matrix elements P versus the momentum of
the recolliding electron are displayed for the ZR, the Coulomb,
and the box potential. In the latter case three different sizes
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FIG. 1. (Color online) Recombination probability into a bound
state with κ = 5 a.u. versus the electron recollision momentum for
the (Z) zero-range, (C) Coulomb, and (B) box potential with R =
0.25 a.u., using different approximations: an exact continuum state
for the recombining electron (solid black), and a plane-wave state for
the recombining electron with the interaction Hamiltonian Hi in the
length form (blue, dotted), velocity form (green, dashed), acceleration
form (red, dashed-dotted). The curves corresponding to the exact
continuum states are independent of the employed operator.

of the potential box are considered corresponding to the three
parameter regimes: R < 1/κ , R = 1/κ , and R > 1/κ . The
first can be seen as a model for a short-range potential, whereas
the second has a size of the typical length of the Coulomb
potential, and the third is a broad potential.

The following features can be recognized in Fig. 2. First,
the Coulomb and ZR potentials can be modeled by the box
potential, as long as the box size corresponds to the respective

ZR
B, R 0.04 a .u .
B, R 0.20 a .u .
B, R 1.00 a .u .

C

10 20 30 40 50 60

10 12

10 9

10 6

0.001

p a.u.

P

FIG. 2. (Color online) Recombination probability from the exact
continuum states of the respective potential into a bound state with
κ = 5 a.u. versus the electron recollision momentum for the Coulomb
(black, solid), zero-range (yellow, gray solid), and box potentials,
with a radius R = 0.04 a.u. (red, dashed), R = 0.2 a.u. (green, long-
dashed), and R = 1 a.u. (blue, dot-dashed).

typical length. Then the envelope of the recombination
probability for the box potential reproduces the one in the
Coulomb and ZR potentials; only resonance effects due to
the box form alter the probability curves. This also indicates
that for the analysis of the recombination effectiveness more
sophisticated potential forms are not required. Second, for p >

κ (here, κ = 5 a.u.) the recombination probability decreases
with increasing p in all cases, and a narrow potential should
be preferred in this parameter regime. This is because the
matrix element P is proportional to the square of the Fourier
component of the potential |Vp|2 [38], which is constant in
the case of the short-range potential (then P ∼ 1/p4, see
the estimation in Ref. [32] and Eq. (10)) and Vp ∼ 1/p2

in the case of Coulomb potential (P ∼ 1/p8, see [32]). Third,
in the area p ≈ κ all probabilities have a similar order of
magnitude and the potential shape plays only a secondary
role.

Using the box potential as a simple two-parameter model of
any potential, we are now able to choose optimal conditions to
enhance the recombination probability for a given momentum
of the recolliding electron, i.e., at a fixed energy of the emitted
harmonic photon. In the high-energy regime p � κ , the short-
range potential is favored, as the estimation above and Fig. 2
show. The box potential can be regarded as short range when
R 	 1/κ and additionally,

R � 1/p, (11)

i.e., for a given momentum p of recolliding electron, the
potential size should be chosen as R ∼ 1/p or smaller to
have the largest probability; even smaller sizes do not improve
recombination anymore. (The dashed line in Fig. 2, corre-
sponding to the case of the box potential with R = 0.04 a.u.,
coincides with the case of ZR potential up to p ∼ 1/R and
decreases at further increase of momentum.)

However, generally the p � κ region is the most favorable
for the recombination. Therefore, the dependence on the
potential box size in this region is investigated next. In Fig. 3
the dependence of the recombination probability on the box
size R and the bound-state parameter κ is shown. As one
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FIG. 3. (Color online) Recombination probability from the exact
continuum states into the bound state versus the bound-state param-
eter κ = √

2Ip and the box size R for a fixed momentum p = 5 a.u.
of the recolliding electron.

can see from Fig. 3, in the region κ > p the recombination
probability is sharply peaked at R ∼ 1/p. In the κ < p region,
the optimal radius is in the domain around R ∼ 1/p but the
dependence on the radius is rather smooth. The explanation for
the “pR ∼ 1” rule can be given via a partial wave analysis. The
incoming plane wave consists of a superposition of spherical
harmonics [29]:

〈r|p〉 = exp[ip · r]/(2π )3/2

=
∞∑
l=0

il(2l + 1)jl(pr)Pl(cos[θ ])/(2π )3/2, (12)

with the angular momentum quantum number l. Inserting this
expansion into the matrix element for recollision into a 1s

Coulomb state leads to

〈φ0|∇V |p〉 =
∞∑
l=0

i
√

2κ5/2p[1 − (κ/p) arctan(p/κ)]

πp2
δl,1

= i
√

2κ5/2p[1 − (κ/p) arctan(p/κ)]

πp2
, (13)

which indicates that only the partial wave with an angular
momentum l = 1 contributes to the transition, a property
which is well known from the photoionization theory [30].
In the case for l = 1, the spherical Bessel function with an
argument pr has a characteristic size of the order of 1/p.
Consequently, the overlap with the atomic system is the largest
when the characteristic size of the impinging electron wave is
comparable with the size of the atomic potential R ≈ 1/p,
which justifies the numerical analysis above.

Thus, for a recolliding electron with a fixed energy, the
HHG is most effective when the typical parameter κ of the
potential is of the order of the electron momentum and,
further, when the potential radius R ∼ 1/p. For the Coulomb
potential in the p ∼ κ regime, the “pR = 1” rule is fulfilled
automatically, indicating that hydrogenlike atoms are already
the optimal choice for the atomic system in the HHG process in

this parameter regime. In the high-energy regime p � κ , the
short-range potential (R � 1/p) is most favorable for HHG.

IV. PARAMETERS OF THE RECOLLIDING ELECTRON
WAVE PACKET FOR EFFECTIVE RECOMBINATION

In the previous section, we considered the case correspond-
ing to the usual HHG scenario when the wave packet of the
recolliding electron is much broader than the characteristic
size of the parent ion. Then, the electron’s initial state for the
recombination process is well approximated by a plane wave
and the momentum is the only parameter that characterizes the
electron. However, using specific setups one may control [31]
and even focus the recolliding wave packet [32,33]. Let us
discuss the optimization of recombination in the case when
the dimension of the wave packet is comparable to or smaller
than the characteristic size of the parent ion. Under these
circumstances additional parameters arise, namely, the impact
parameter of recollision and the size of the wave packet over
which the recombination probability should be optimized.

Therefore, we proceed with the calculation of the recom-
bination probability for a three-dimensional Gaussian wave
packet which is localized in momentum space with a width
�p and an average momentum p. In coordinate space the
wave packet of the electron is focused at the parent ion. The
wave packet passes the ionic core at the moment t = 0 with a
width of the Gaussian wave packet �s (see the scheme of the
recollision in Fig. 4). It is then possible to define an impact
parameter b perpendicular to its recolliding momentum p and
give the wave function in momentum space:

〈k|ψ(t)〉 = (4 ln 2)3/4

π3/4�
3/2
p

× exp

[
− 2 ln 2

(k − p)2 + iγ k2
⊥

�2
p

− ik2t

2
+ ik · b

]
, (14)

where k⊥ is the momentum component perpendicular to p.
We have also included a possible chirp factor γ in the wave
packet to vary the wave-packet size s in coordinate space
perpendicular to the recolliding momentum p independently

R

b p

FIG. 4. Schematic picture of the recollision scenario. The black
and the transparent circle represent the atomic system and the
recolliding wave packet, respectively. The arrow gives the direction
of the recolliding momentum p.
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FIG. 5. (Color online) (a) Recombination probability versus b�p

for three different momentum space wave packet sizes: �p = 2 a.u.
(red, solid), �p = 5 a.u. (blue, dashed), and �p = 10 a.u. (green,
dotted) with κ = 5 a.u. and p = 5 a.u., and a chirping factor of γ = 0.
(b) The amplitude of the p-wave component cl=1 in the incoming
electron wave packet of Eq. (14).

from �p via �s ≈ 2.8
√

1 + γ 2/�p. The total recombination
probability after the collision of the wave packet is given by

P =
∫

dt |ρ(t)|2, (15)

with

ρ(t) =
∫

d3k〈ψ(t)|k〉〈k|α̃H · ∇V (r)|φ0(t)〉, (16)

with α̃H = 〈0H |αH |1H 〉. In Fig. 5 we plot the dependence of
the recombination probability against the value of the impact
parameter |b| for different sizes �p of the wave packet in
momentum space in a regime when the recolliding momentum
is p ∼ κ . We consider situations when the momentum width
of the wave packet is smaller than the typical momentum of
the atomic system (�p 	 κ) of the same size as the typical
momentum of the atomic system (�p ∼ κ) or larger than the
typical momentum of the atomic system (�p � κ).

For all momentum widths the recollision is most likely
when the impact parameter is zero. The recollision probability
then decreases down to zero with increasing impact parameter
b at a value that is comparable with the wave-packet size. This
is because the recombination probability is determined by the
p-wave component of the incoming electron wave packet:

ρ(t) =
∫

d3k〈ψ(t)|k〉〈k|k,(l = 1)〉
× 〈k,(l = 1)|α̃H · ∇V (r)|φ0(t)〉 (17)
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FIG. 6. (Color online) Recombination probability versus mo-
mentum width �p and the recolliding momentum p for a central
recollision with an atomic parameter of κ = 5 a.u.: (a) chirping factor
γ = 0; (b) chirping factor γ = 10. The black line represents the
relation p/�p = 1 and the dashed red line the relation p�s = 1.

with the p-wave state |k,(l = 1)〉. However, the amplitude
of the p-wave component cl=1 = ∫

d3k〈ψ(t)|k〉〈k|k,(l = 1)〉
decreases with increasing impact parameter b [see Fig. 5(b)].
This is simply describing the situation when the electron
misses the atomic core. Note that the recombination proba-
bility at the maxima of the curves in Fig. 5 depends on the
value of the momentum width which is investigated in more
detail below.

Further, we investigate the dependence of the recollision
probability on the width of the wave packet in coordinate
and momentum space. We choose the ideal case when the
wave packet recollides centrally, i.e., b = 0. The width of
the wave packet in coordinate and momentum space can be
varied independently by means of the chirping factor γ . The
recombination probability against the recolliding momentum
p and the momentum width �p are shown in Fig. 6 for two
cases, either no chirp (γ = 0) or a large chirp (γ = 10). From
Fig. 6 we can deduce a condition for optimal recombination:
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approximately, the momentum width of the wave packet
should be of the order of the recolliding momentum: p ∼ �p.
This is intuitively understandable as follows. At increasing
the momentum spread of the wave packet �p, the size of
the wave packet decreases (focused electron beam) which
increases the overlap of the incoming wave with the potential
and, consequently, increases the recombination probability
ρ(t) = 〈ψ(t)|α̃H · ∇V (r)|φ0(t)〉, while in the opposite limit
�p � p, the damping behavior of the recombination matrix
element Eq. (13) dominates. The large chirping factor of the
wave packet, i.e., the increase of the size of the wave packet,
generally decreases the recombination probability. However,
the condition for the optimal recombination is still close to the
rule p ∼ �p [see Fig. 6(b)]. As long as the optimal condition
p ∼ �p is fulfilled, the chirp of the wave packet can be chosen
arbitrarily in an experimental realization.

Thus, we come to the conclusion that for a very broad
wave packet in momentum space the recombination with a
high recolliding energy becomes feasible. We note that this
conclusion is valid in the �p > κ regime. In the opposite
regime, when �p < κ , the wave packet can be considered as
a plane wave and the discussion in Sec. III is applicable.

V. APPLICATIONS

In this section we apply the obtained optimal recollision
rules to the HHG process. Let us consider HHG in a certain
photon energy range, ωH ∼ 500 eV, i.e., for a typical rec-
ollision momentum p ∼ E0/ω ∼ √

2ωH ≈ 6 a.u. Following
Sec. III we will use hydrogenlike ions. Then, the mean
separation of the ionic core and bound electron is given by
R = 1/κ and optimal recombination is expected when the
recolliding momentum is of the order of the atomic potential
parameter, i.e., p ∼ κ . HHG in the given range can be realized
using a suboptical laser, e.g., ω = 0.03 a.u. and E0 = 0.4 a.u.
However, in this case the ionization potential Ip = κ2/2 with
κ = 2 a.u. is rather small, when the ionization rate is fixed
via the parameter E0/κ

3 = 1/20, where E0 is the driving
laser electric field strength. Consequently, the condition for
optimal recollision will not be fulfilled. To fulfill the condition
p ∼ κ at a given recollision energy due to fixed E0/ω, the
ionization potential should be larger such that κ = 6 a.u.,
i.e., Ip ≈ 490 eV for hydrogenlike C5+, which will require
a stronger laser field E0 = 10.8 a.u. (I ≈ 4 × 1018 W/cm2)
and a larger laser frequency ω = 1 a.u. = 27.25 eV from a
FLASH laser [34]. In Fig. 7 two HHG spectra are calculated
via Eq. (4), where the effect of the Coulomb force of the atomic
core during ionization is taken into account via a correction
factor [35] and the integral is evaluated via the saddle-point
method [25]. They correspond to the case where the condition
p ∼ κ is either fulfilled or where it is not when p � κ . We have
fixed the recollision momentum via a cutoff energy at 3 keV
and the ionization rate via the parameter E0/κ

3 = 1/20. Then
differences of the HHG emission rates in the two spectra can be
traced back solely to the deviating spreading of the recolliding
wave packet and the recombination probability. In the figure it
is shown that the HHG emission probability for the parameters
with p ∼ κ is about 6 orders of magnitude larger than for
p � κ . This is mainly (4 orders of magnitude) due to the much
larger recombination probability for the first parameter set. The

0.5 1. 0 1. 5 2. 0 2. 5 3. 0
10 23

10 21

10 19

10 17

10 15

10 13

ΩH keV

dw
d

a.
u.

FIG. 7. (Color online) The HHG emission probability spectrum
in laser polarization direction is displayed via Eq. (4) in two cases for
a fixed ratio E0/κ

3 = 1/20. In the upper curve (red) the parameters
are the laser angular frequency ω = 1 a.u. and the atomic parameter
κ = 6 a.u., whereas in the lower curve we used ω = 0.03 a.u. and
κ = 2 a.u.. The employed step size in both curves is ω.

contribution of spreading is proportional to E0/(κω2) and is
responsible for only 2 orders of magnitude. An estimation of
the photon number per emitted pulse can be accomplished via
Eqs. (8) and (9) of Ref. [36] for an emission window between
0.5 and 1 keV. Assuming a target gas density of 1017/cm3 and a
target gas diameter of 10 μm in the optimized scenario p ∼ κ ,
a number of 104 photons per pulse is expected, whereas for the
other case, when p � κ , less than one photon is emitted. This
example shows that the judicious choice of the applied HHG
parameters according to the optimal conditions can improve
the efficiency of the HHG process significantly. For a fixed
cutoff energy this suggests the use of high laser frequencies.

In a second scenario we show how the rule p ∼ �p

discussed in Sec. IV can be taken advantage of to improve
the HHG yield. We propose to employ such a strong laser field
(E0 ∼ κ3/16) that the ionization step takes place in the vicinity
of the over-the-barrier mechanism. Then, the momentum
distribution of the ionized wave packet will have the width of
the bound-state momentum distribution that is of the order of κ .
The latter is large enough to allow a fraction of the distribution
to fulfill the condition for optimal recombination, i.e., p ∼ κ

at the typical recollision momentum p ∼ E0/ω if the laser fre-
quency is large enough. For example, with a feasible parameter
set κ = 6 a.u., a laser electric field strength of E0 = 13.5 a.u.
(I ≈ 6.4 × 1018 W/cm2), and a laser angular frequency of
ω ≈ 2.2 a.u. ≈ 61 eV this scenario can be realized.

VI. CONCLUSION

We have investigated the recombination step of HHG
which represents the bottleneck in achieving HHG at high-
photon energies and thus hinders the efficient hard x-ray
generation via HHG. The influence of the atomic potential
parameters as well as the parameters of the recolliding
electron wave packet on the effectiveness of recollision are
analyzed. The recombination takes place most efficiently for
the recolliding electron momentum p � κ . In this regime the
optimal condition is described by the so-called “pR ∼ 1” rule,
imposing a restriction on the characteristic size of the atomic
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potential R. For the Coulomb potential in the p ∼ κ regime,
the “pR ∼ 1” rule is fulfilled automatically, indicating that
hydrogenlike atoms and ions are already a good choice for the
atomic system in the HHG process at p ∼ κ . However, for
large electron momenta this regime requires very large κ , i.e.,
high ionization potentials which are only available with highly
charged ions. In the regime p � κ and in the case of a broad
recolliding electron wave packet �p 	 p, the recollision
is optimal at R � 1/p; however, it decreases with rising
momentum.

In the case of a focused electron wave packet �p � κ ,
the recombination is optimal when the momentum width

of the wave packet is of the order of the recolliding momentum,
the so-called p ∼ �p rule. This means that for a very broad
wave packet in momentum space, the recombination with a
high recolliding energy can be feasible.

APPENDIX

Here we show the exact continuum wave functions in the
ZR, Coulomb, and box potential which have been used for the
calculation of the recombination matrix element Eq. (5).

The wave function of the ground and continuum states in
the ZR potential are [25,37]

ψZ
0 (r) =

√
κ

2π

exp[−κr]

r
, ψZ

p (r) = 1

(2π )
3
2

(
exp[ip · r] − exp[ipr]

(κ + ip)r

)
. (A1)

The ground-state and continuum-state wave functions in Coulomb potential are

ψC
0 (r) =

√
κ3

π
exp[−κr], ψC

p (r) =
�

[
1 + iκ

p

]
e
− πκ

2p
+ip·r

1F1
[− iκ

p
; 1; ipr − ip · r)

]
2
√

2π3/2
, (A2)

and the ground-state and continuum-state wave functions in the box potential are

ψB
0 (r)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin[r
√

2V0−κ2]
√

2πr

√
1
κ
+ π√

2V0−κ2
−arccot

(
κ√

2V0−κ2

)
(2V0−κ2)−1/2

, r < R

exp[κR−κr] sin[R
√

2V0−κ2]
√

2πr

√
1
κ
+ π√

2V0−κ2
−arccot

(
κ√

2V0−κ2

)
(2V0−κ2)−1/2

, r > R,

ψB
p (r)=

⎧⎪⎨
⎪⎩

2
√

2
3ai

( sin(r
√

p2+2V0)
(p2+2V0)3/4 − r cos(r

√
p2+2V0)

4
√

p2+2V0

)
, r < R

2i
√

2
3 a0e

ipr (pr+i)
p3/2 − i

√
2
π

(pr cos[pr]−sin[pr])
p2 , r > R,

with

ai =
√

3

π
pR(p2 + 2V0)3/4(sin[pR] + i cos[pR])1/{2p2R

√
p2 + 2V0 cos[R

√
p2 + 2V0]

− 2i(p3R + 2pRV0 + 2iV0) sin[R
√

p2 + 2V0]}
(A3)

and

a0 =
√

3

π
e−ipR{sin(R

√
p2 + 2V0)[pR(p2 + 2V0) cos[pR] − 2V0 sin(pR)] − p2R

√
p2 + 2V0 sin(pR) cos(R

√
p2 + 2V0)}

× 1/{2√
p[ip2R

√
p2 + 2V0 cos(R

√
p2 + 2V0) + (p3R + 2pRV0 + 2iV0) sin(R

√
p2 + 2V0)]}. (A4)
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