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The analytical expansion of linearly, azimuthally, and radially polarized rigorous beam-type solutions of
Maxwell’s equations into vector spherical harmonics (VSHs) is presented. We report on the dominance of higher
order multipoles in highly focused radially and azimuthally polarized beams compared to linearly polarized
beams under similar conditions. Furthermore, we theoretically investigate a scenario in which highly focused
azimuthally and radially polarized beams interact with a linear polarizer placed in the focal plane and expand
the resulting fields into VSHs. The generalized Mie theory is used afterwards to investigate the scattering of the
studied beams off a spherical gold nanoparticle.
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I. INTRODUCTION

During the last decade, numerous works have been un-
dertaken to characterize, elaborate, and manipulate single
nanoscaled objects. Metal nanoparticles are among the hot top-
ics of active research in nanoscience [1] and related branches
such as nanobiology [2], nano-optics [3], nanophotonics, and
nanoplasmonics [4,5]. Single nanoparticles are the building
blocks of complex nanostructures [6], and their relative
arrangement [7] strongly influences the collective response
of plasmonic nanoparticle aggregates [8,9].

The theoretical description of light-particle interaction
started from the classical theory of a linearly polarized plane
wave scattering off a sphere [10] and was extended after the
invention of the laser. The first studies on how a spherical
particle illuminated by a Gaussian beam responds to the
incident field have revealed deviations from the classical theory
[11,12]. Thereafter, numerous works devoted to modeling the
optical response of homogeneous spheres illuminated with
Gaussian beams, described by a complex source model [13]
or in the framework of the Bromwich formalism [14], have
been reported along with other studies [15]. In contrast to
the use of a Gaussian beam, the recently renowned interest
in highly focused optical beams is mainly concerned with
the polarization state of the beam, which strongly influences
the size and shape of the focal spot [16]. In particular, the
role of azimuthal and radial polarization has been investigated
both theoretically [17] and experimentally [18]. In recent
publications the interaction between highly focused beams and
nanoparticles has been investigated [4,19–21]. These works
have clearly demonstrated that the optical response is strongly
dependent on both the particle location relative to the beam
focus and the polarization structure of the beam and differs
notably from that of plane wave illumination.

To describe these highly focused beams theoretically, one
can start from the exact analytical solution of the scalar wave
equation by the complex source beam (CSB) [22]. This can
be extended toward a full solution of Maxwell’s equations,
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which accurately describes highly focused linearly, radially,
and azimuthally polarized light beams [23].

The aim of this paper is to investigate an analytical expan-
sion of the vector CSBs [23] into VSHs, i.e., electromagnetic
multipoles [24]. Such an expansion is essential to understand
the interaction of light fields with nano-objects such as
atoms, molecules, or particles, which are all of subwavelength
dimensions. Those nano-objects locally sense only the various
multipole components of the incident field [25]. The dipole
components as the first order of the expansion are the most
important ones, but even objects such as (meta-) atoms already
respond to quadrupole and even higher order excitations
[26,27]. Having found the expansion into multipoles it is, for
example, straightforward to describe the interaction of a beam
with a spherical particle as is done in classical Mie theory for
a plane wave excitation. The expansion into VSHs also allows
for an analysis of the interaction of focused beams with larger
objects, which are conveniently described by a T matrix, the
basis functions of which are again VSHs [28,29]. Moreover,
the multipole approach provides a simple measure of the purity
of the longitudinal field mode and is efficient for calculating
the field in the focal region of a lens [30].

In the first section we start with a brief introduction to the
expressions of vector CSBs. In the next section we develop
an analytical expansion of the CSBs into VSHs. Finally, we
use the generalized Mie theory to investigate the scattering
problem for a nanoparticle illuminated by CSBs. In particular,
we reveal that the interaction of a radially polarized beam with
a particle is stronger than that of a linearly polarized one.

II. EXPANSION OF HIGHLY FOCUSED VECTOR
BEAMS INTO VSHs

A. Expansion of the scalar complex source beam

To generate vectorial CSB solutions we start from the scalar
one [22], which is defined as

{
Rg u(r)

u(r)

}
= U0

{
j0(ks)

ih
(1)
0 (ks)

}
, k = ω

c
, (1)
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where j0 and h0 are spherical Bessel functions of first and
third kind, namely, j0(x) = sin(x)/x and h0(x) = exp(ix)/x.
Here the first line corresponds to the regular solution (suf-
fix “Rg”) and the second line to the irregular one. U0

is a normalization constant. The complex distance s is
defined as s(r) = [x2 + y2 + (z − iz0)2]1/2 in Cartesian, or
as s(r) = [r2 − 2irz0 cos θ − z2

0]1/2 in spherical coordinates
[r = (r,θ,φ)]. The Rayleigh distance z0 is related to the waist
of the beam w0 as z0 = kw2

0/2. Further, we make the “beam”
choice for a branch cut (Im[s(r)] � 0) [22,23]. It guarantees a
constant power flow in forward direction, where the irregular
solution also includes a ring of sources at x2 + y2 = z2

0 (for
a more detailed discussion of the different solutions see
Ref. [23]). The normalization constant U0 is thus

U0 = g−1
0 (ikz0) =

{
Ur = kz0/ sinh(kz0),

Ui = kz0 exp(kz0),
(2)

where g0 is a short notation of a either regular (r) or irregular
(i) spherical Bessel function.

To generate a system of basis functions which we can
use to represent the CSB we start from the eigenfunctions
of the scalar wave equation in spherical coordinates (scalar
multipoles), which are expressed as [24]

umn(r) = gn(kr)P m
n (cos θ ) exp(imφ), (3)

where P m
n is the associated Legendre polynomial, which we

define as in Ref. [28], and m, n are integer numbers. Here gn

is either a regular (nonsingular) spherical Bessel function of
the first kind jn or an irregular (singular) function of the third
kind h(1)

n .
Our intention is to expand the scalar CSB (1) into scalar

multipoles. This expansion is formally given by

u(r) =
∞∑

n=0

anu0n(r), (4)

where only radially symmetric basis functions have to be taken
into account. The decomposition coefficients in the source-free
region are determined from the integral

an = 2n + 1

2gn(krd )

∫ π

0
u(rd,θ )Pn(cos θ ) sin θ dθ, (5)

where rd is the distance from the waist of the beam (for the
irregular solution rd � z0). Next, we employ the addition the-
orem for spherical Bessel functions, and after redefining it for
complex values we readily obtain the expansion coefficients
a(i)

n of an irregular solution as

a(i)
n = kz0(2n + 1) exp(−kz0)

{
jn(kz0i), if rd � z0,

h(2)
n (kz0i), if rd � z0.

(6)

In the case of infinite width (z0 → ∞) the expansion
coefficients a(i)

n converge to those of a plane wave a
plane
n =

in(2n + 1), due to our choice of the normalization constant
U0; see (2).

For a regular solution, the expansion coefficients a(r)
n are

slightly different:

a(r)
n = kz0

(2n + 1)

sinh(kz0)
jn(kz0i). (7)

From here on we will mainly consider the regular solution
u(r), and the irregular solution will be briefly discussed
throughout the paper when necessary.

B. Expansion of radially and azimuthally polarized beams

The azimuthally UM and radially UN polarized vector
complex source beams are defined as in Ref. [23] and can
be expressed as

UM (r) = ∇u(r)×r, UN (r) = 1

k
∇×UM (r). (8)

The function UM has only azimuthal components, so it
represents the electric field EM = E0UM of an azimuthally
polarized highly focused CSB, where E0 is an amplitude.
The function UN represents the electric field EN = E0UN

of a radially polarized CSB. The magnetic fields H of both
beams can be generated using iωμ0H = ∇ × E. It turns out
that the vector function UN also describes the magnetic field
HN = H0UN of an azimuthally polarized beam E0UM and UM

that of a radially polarized one [23].
The family of the orthogonal VSHs Mmn, Nmn [24] is

obtained from the scalar spherical multipoles (3) after applying
the same operators as in Eq. (8). The substitution of the sum (4)
into Eq. (8) results in the following expansions of radially and
azimuthally polarized beams into VSHs, which we write as

UM =
∞∑

n=1

AnM̃0n, UN =
∞∑

n=1

AnÑ0n, (9)

where M̃0n = γ0nM0n and Ñ0n = γ0nN0n are normalized VSHs
[28]. The γmn are the standard normalization constants (see
Ref. [28]), and the normalized expansion coefficients thus are
An = an/γ0n.

The dependence of the expansion coefficients An on the
collimation distance kz0 and the multipole order n is shown in
Fig. 1. Here we note that the differences in the expansion
coefficients between regular and irregular complex source
beams appear only at values of the collimation distance
kz0 < n. The natural cause for this divergent behavior is the
presence of virtual sources in the irregular beam [23].

C. Interaction of radially and azimuthally polarized beams with
a linear polarizer and expansion of resulting fields into VSHs

Radially, azimuthally and linearly polarized beams are most
commonly used in scattering problems. However, more com-
plicated polarization states (highly focused linearly polarized
TEM01 and TEM10 modes) for investigation of nanostructures
received attention just recently [4]. Therefore, in this section
we consider such linearly polarized TEM01 and TEM10 modes
under tight focusing conditions to address the growing interest
in these more complicated field structures. These modes can be
usually achieved by transmitting paraxially propagating radi-
ally or azimuthally polarized beams through a linear polarizer.

In what follows, we will investigate a theoretical scenario in
which a linear polarizer is placed in the focal plane of the highly
focused radially and azimuthally polarized CSBs, which
we discussed already before. We investigate how the linear
polarizer transforms the expansion coefficients of arbitrary
incident fields. We also briefly interpret the resulting beam
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(a)

(b)

FIG. 1. (Color online) (a) Dependence of the different expansion
coefficients |An| on the collimation distance kz0 for regular and
irregular solutions. The multipole order n is shown. (b) Dependence
of the different expansion coefficients |An| on the multipole order for
regular solutions for different kz0.

configurations and attribute them to possible experimental
realizations.

Therefore, we need to define the action of a polarizer which
is placed in a nonparaxial beam. In this context, the theoretical
description of paraxial polarizers is well established [31].
However, insights into the theory of nonparaxial polarizers

are only emerging [32]; thus we define a linear polarizer as
follows: We assume that a linear polarizer acts only on the
electric field of the beams (8) and require that the plane wave
spectrum remains transverse, so the resulting spectrum can be
written as

Upx

M → (UM · px)px, Upx

N → (UN · px)px, (10)

where px = ex − er (ex · er ) and ex = er sin θ cos φ +
eθ cos θ cos φ − eφ sin φ is a unit vector oriented along the x

axis. We note that contrary to the definition of Ref. [32] the
nonparaxial polarizer model used here [Eq. (10)] mimics an
experimentally realizable situation, when the transmission
decreases with increasing angles of incidence. Another
pair of beams Upy

M , Upy

N is obtained by interchanging ex

in Eq. (10) with ey . In this manner we end up with four
beam configurations. A curl of each beam provides us with
further four TEM-like beam configurations, Uπx

M , Uπy

M , Uπx

N ,
and Uπy

N . In general, Uπx

N �= (ik)−1∇ × Upy

M , and thus the
last four beams represent different configurations of a linear
polarizer.

Upon substitution of Eq. (9) into Eq. (10), the beam
expansion reduces to the decomposition of the vector functions
(M0n · px)px and (N0n · px)px into VSHs. After rather tedious
analytical calculations we arrive at the following expression
for the term (M0n · px)px :

(M0n · px)px

=
∞∑

ν=1

δν,n

[
M0ν

2
+ M2ν

4ν(ν + 1)
+ M−2ν(ν − 1)(ν + 2)

4

]

+ i

4

[
δν,n+1

ν(2ν − 1)
− δν,n−1

(ν + 1)(2ν + 3)

][
N2ν− (ν+2)!

(ν−2)!
N−2ν

]
.

(11)

We see that for n = 1 a magnetic dipole M01 is present, and
its amplitude is half of the initial dipole. Thus, the nonparaxial
polarizer absorbs half of the energy of the dipole. A curl of
(11) produces an electric dipole N01, whose dipole moment
is oriented in the z direction. We note also an appearance of
magnetic and electric multipoles with m = ±2. The expansion
of (N0n · px)px is written as

(N0n · px)px =
∞∑

ν=1

N0ν

2

[
δν,n

2ν2 + 2ν − 3

(2ν − 1)(2ν + 3)
− δν,n+2

(ν − 1)(ν − 2)

(2ν − 3)(2ν − 1)
− δν,n−2

(ν + 3)(ν + 2)

(2ν + 3)(2ν + 5)

]

+ 1

4ν(ν + 1)

{
i

[
(ν + 2)δν,n−1

(2ν + 3)
− (ν − 1)δν,n+1

(2ν − 1)

] [
M2ν − (ν + 2)!

(ν − 2)!
M−2ν

]

−
[

(2ν2 + 2ν + 3)δν,n

(2ν − 1)(2ν + 3)
− δν,n+2(ν + 1)(ν − 2)

(2ν − 3)(2ν − 1)
− δν,n−2ν(ν + 3)

(2ν + 3)(2ν + 5)

] [
N2ν + (ν + 2)!

(ν − 2)!
N−2ν

]}
. (12)

A particularly interesting result is that for n = 1 the electric
dipole N01 field has 1/10 of the amplitude of that before
passing through a linear polarizer, and a sextupole N03 appears
in the expansion to compensate the remaining longitudinal

electric field component. Thus, the operation of the nonparax-
ial polarizer results in a decreased dipole moment of the beam
and an effective defocusing of the resulting beam [30]; see
Fig. 2.
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FIG. 2. (Color online) Modulus of the total (left side) and incident (right side) fields for radially (a) and azimuthally (b) polarized CSB
scattered off a gold sphere. Corresponding distributions for CSBs interacting with a linear polarizer and scattered off a gold sphere (c)–(f).
The radius of the sphere is Rsp = 75 nm, the wavelength is λ = 780 nm, and kz0 = 1.5. The white arrows (a, c, e) depict the direction of the
electric field E. The arrows are not shown in panels b, d, and f.

The decompositions (11) and (12) contain terms with m = 0
and m = ±2, so the linearly polarized beams Upx

M and Upx

N are
expressed by the corresponding sums

Upx

M =
∞∑

n=1

AM
0nM̃0n + [

AM
2n(M̃2n + M̃−2n) + BM

2n(Ñ2n − Ñ−2n)
]
,

(13)

Upx

N =
∞∑

n=1

BN
0nÑ0n + [

BN
2n(Ñ2n + Ñ−2n) + AN

2n(M̃2n − M̃−2n)
]
,

where

γ0nA
M
0n = an

2
, γ2nA

M
2n = an

4n(n + 1)
,

(14)

γ2nA
N
2n = −U0i

(n − 1)g∗
n−1 − (n + 2)g∗

n+1

4n(n + 1)

and

γ0nB
N
0n = U0

2

[
(2n + 1)(2n2 + 2n − 3)g∗

n

(2n − 1)(2n + 3)

− (n − 1)(n − 2)g∗
n−2

(2n − 1)
− (n + 2)(n + 3)g∗

n+2

(2n + 3)

]
,

γ2nB
N
2n = − U0

4n(n + 1)

[
(2n + 1)(2n2 + 2n + 3)g∗

n

(2n − 1)(2n + 3)

− (n + 1)(n − 2)g∗
n−2

(2n − 1)
− n(n + 3)g∗

n+2

(2n + 3)

]
,

γ2nB
M
2n = U0i

(n + 1)g∗
n−1 − ng∗

n+1

4n(n + 1)
. (15)

Here g∗
n denotes either jn or h(2)

n . The most intriguing feature
of the linearly polarized Upx

M beam is the absence of the
electric dipole and the presence of relatively strong electric
quadrupoles in the expansion of the beam (13). Thus, this
configuration may be a promising tool in the studies of
quadrupole responses of various scatterers.

In the limit of large beam widths kz0 → ∞, we have g∗
n =

in/U0, and expressions (14, 15) are simplified to

γ0nA
M
0n = γ0nB

N
0n = (2n + 1)in

2
,

γ2nA
M
2n = −γ2nA

N
2n = (2n + 1)in

4n(n + 1)
, (16)

γ2nB
M
2n = −γ2nB

N
2n = (2n + 1)in

4n(n + 1)
;

thus, for kz0 → ∞ we have Uπx

N = k−1∇ × Upy

M . The typical
dependencies of the expansion coefficients are presented in
Fig. 3.

The natural question arises how the discussed beam con-
figurations can be experimentally realized. In order to address
this concern, we formally introduce the following theoretical
scenario. The vectors px and py can be written in the small
angle approximation (θ ≈ 0) as p(p)

x = eθ cos φ − eφ sin φ and
p(p)

y = eθ sin φ + eφ cos φ. We note that the θ components now
do not depend on the angle of incidence. Upon passing through
a focusing system with high numerical aperture the paraxial
(|Ez| � √|Eρ |2 + |Eφ|2) vector field E = Eρeρ + Eφeφ at
the entrance of the pupil of a focusing system is converted
into a plane wave with an amplitude E ≈ Eρeθ + Eφeφ after
the output pupil. So, if a linear polarizer oriented in x direction
is placed in front of the entrance pupil, the unitary vectors of a
cylindrical coordinate system (eρ , eφ) are transformed into (eθ ,
eφ); thus the vector ex = eρ cos φ − eφ sin φ is transformed
into the vector p(p)

x . Furthermore, the repeating derivations of
Eqs. (11) and (12) show the halved dipole amplitudes of N01

and M01 dipoles compared to the situation without a polarizer.
Thus, the beam configurations Uπx

N , Uπy

N , Upx

M , Upy

M can be
attributed to the tightly focused TEM10 and TEM01 modes [4].

Next, we can backpropagate the action of the vectors px ,
py , thus revealing how the input field at the entrance has to
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(a)

(b)

(c)

FIG. 3. (Color online) (a) Dependence of the ratio |BN
0n|/|AM

0n| for
CSBs interacting with a linear polarizer on the collimation distance
kz0. The multipole order n is shown. (b) Dependence of the expansion
coefficients |AM,N

22 | and |BM,N
22 | of CSBs interacting with a linear

polarizer on the collimation distance kz0. (c) Dependence of the
expansion coefficients |AM,N

2n | and |BM,N
2n | on the multipole order n.

be modified in order to realize Uπx

M , Uπy

M , Upx

N , Upy

N beams. It
turns out, that besides a linear polarizer an additional spatial
modulation of the input field depending on the focusing system
has to be performed.

D. Expansion of linearly polarized beams

We define electric fields of linearly polarized beams as [23]

U(x)
M (r) = ∇u(r)×2ey

k
, U(y)

N (r) = 1

k
∇×U(x)

M (r),
(17)

U(y)
M (r) = ∇u(r)×2ex

k
, U(x)

N (r) = 1

k
∇×U(y)

M (r),

so that in principle four beam choices are possible, see
discussion in Ref. [23] for more details. We use the definition

of the beams U(x)
M , U(y)

N to expand the beams into VSHs. First,
we decompose the vector function

L0n×ey

k
=

[
er

gn(kr)

kr

∂

∂θ
Pn(cos θ )

+ eθ

∂gn(kr)

k∂r
Pn(cos θ )

]
cos φ

+ eφ sin φ

[
∂gn(kr)

k∂r
Pn(cos θ ) cos θ

]
− gn(kr)

kr

∂

∂θ
Pn(cos θ ) sin θ

]
, (18)

where L0n is a nonsolenoidal VSH [24]. For the sake of
simplicity, we employ for the decomposition the fact that
the functions Nmn have a nonzero radial component at the
origin r → 0. The decomposition into Mmn is performed on the
other hand at infinity (r → ∞). The complicated integration
is omitted here, and the final expression is given as

L0n×2ey

k

=
∞∑

ν=1

[
N1,ν

ν (ν + 1)
− N−1,ν

]
δν,n + i

[
M1,ν

ν (ν + 1)
+ M−1,ν

]
×

[
ν + 1

2ν − 1
δν,n+1 − ν

2ν + 3
δν,n−1

]
. (19)

The decomposition contains only terms with m = ±1, so
the linearly polarized beam is expressed by the sum

U(x)
M = i

∞∑
n=1

C1n[M̃1n + M̃−1n] + D1n[Ñ1n − Ñ−1n],

(20)

U(y)
N = i

∞∑
n=1

C1n[Ñ1n + Ñ−1n] + D1n[M̃1n − M̃−1n],

where

γ1nC1n = U0i

[
g∗

n−1

n
− g∗

n+1

n + 1

]
, γ1nD1n = U0

(2n+ 1) g∗
n

n (n+ 1)
,

(21)

and the complex conjugated g∗
n denotes either jn or h(2)

n . The
coefficients for m = 1 and m = −1 are closely related. It holds
that C1n = C−1n and D1n = −D−1n. The beams U(x)

M and U(y)
N

are represented at the origin r = 0 by electric and magnetic
dipoles whose moments are perpendicular to each other in the
transverse plane. For example, the beam U(x)

M (20) consists of
a pair of two dipoles: An electric dipole oriented along the
x direction, and a magnetic dipole along the y direction. For
z0 → ∞ the expansion coefficients C1n and D1n are equal
and coincide with those of a plane wave. If kz0 = 0, the
coefficients D1n are zero and the only nonzero expansion
coefficients are C±11. Thus, for small z0 the solution U(x)

M

represents the radiation of a magnetic dipole oriented along
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(a)

(b)

FIG. 4. (Color online) (a) Dependence of the first five (n =
1,2,3,4,5) expansion coefficients |C1n|, |D1n|, and |C ′

1n| for lin-
early polarized regular CSB on the collimation distance kz0. (b)
Dependence of the expansion coefficients |C1n| and |D1n| for linearly
polarized regular CSBs on the multipole order.

y direction, whereas U(y)
N coincides with an electric dipole

oriented along the same direction. Therefore, we call the beam
U(x)

M a “magnetic”-type and the U(y)
N an “electric”-type linearly

polarized beam.
The dependence of the multipole amplitudes C1n and D1n

on the multipole order for different values of kz0 are presented
in Fig. 4. The maximum amplitude for a regular beam
corresponds to a first order vector multipole; see Fig. 4(a).
The dependence of the amplitudes of the first four multipole
components C1n, D1n on the collimation distance kz0 are
depicted in Fig. 4(b). We note briefly that for kz0 > n the
expansion coefficients of the irregular solution do not differ
significantly from that of the regular solution and the multipole
with highest amplitude is always n → ∞ due to the presence
of virtual sources in the model.

The beams U(y)
M , U(x)

N are expanded in the same fashion.
The decomposition of the function L0n×ex into VSHs can be
written as

L0n×2ex

k

=
∞∑

ν=1

i

[
N1,ν

ν(ν + 1)
+ N−1,ν

]
δν,n −

[
M1,ν

ν(ν + 1)
− M−1,ν

]
×

[
(ν + 1)δν,n+1

2ν − 1
δν,n+1 − νδν,n−1

2ν + 3

]
, (22)

and the linearly polarized beams U(y)
M and U(x)

N are

U(y)
M = i

∞∑
n=1

C1n[M̃1n − M̃−1n] + D1n[Ñ1n + Ñ−1n],

(23)

U(x)
N = i

∞∑
n=1

C1n[Ñ1n − Ñ−1n] + D1n[M̃1n + M̃−1n].

Besides the “pure” electric and magnetic linearly polarized
beams, a variety of linear combinations are of interest. For
example, we define two mixed-type beams which correspond
to a tightly focused linearly polarized Gaussian beam [23]

U(x) = U(x)
M − iU(x)

N

2
,

U(y) = U(y)
M + iU(y)

N

2
.

By putting Eqs. (20) and (23) into Eq. (24) the new expansion
coefficients C ′

1n, D′
1n are obtained as

C ′
1n = C1n + D1n

2
= D′

1n. (24)

The comparison of the first five expansion coefficients C ′
1n

of the mixed-type beams is presented in Fig. 4(a).
A brief comparison of the expansion coefficients An and

C1n, D1n reveals that under similar conditions, the amplitudes
of the higher order multipoles are larger in the highly focused
radially and azimuthally polarized beams than that of the
linearly polarized beams. Indeed, the analysis of Eqs. (7) and
(21) shows that |An|/|C1n| < |An|/|D1n| = √

n(n + 1). Thus,
the higher order multipoles are stronger in a radially polarized
beam relative to those in a linearly polarized beam.

III. MULTIPOLE RESPONSE OF A SPHERICAL PARTICLE

Now we come to an application of the expansion into VSHs
presented above. We develop an analytical Mie-like theory for
highly focused CSBs which interact with a sphere situated in
the origin. The derivations of the generalized Mie scattering
theory, suitable for an arbitrary incoming electromagnetic
field, follow the same steps as those described in classical
textbooks dealing with the diffraction of a monochromatic
plane wave of angular frequency ω by a homogeneous sphere
with a radius Rsp and a complex refractive index nsp embedded
in a homogeneous nonabsorbing medium with refractive index
nm. In this theory, the incoming (index “inc”) and scattered
(index “sca”) electric fields are expanded into normalized
VSHs Mmn, Nmn (see Refs. [10,24,28,33]):

Einc =
∞∑

n=1

n∑
m=−n

[
AmnM̃(1)

mn + BmnÑ(1)
mn

]
,

(25)

Esca =
∞∑

n=1

n∑
m=−n

[
αnAmnM̃(3)

mn + βnBmnÑ(3)
mn

]
,

where the indices (1) and (3) denote regular and irregular
VSHs, respectively. αn, βn are the classical Mie scattering
coefficients, which can be associated with the natural modes
of the sphere [34]. The amount of power dissipated by
scattering, absorption (index “abs”) and extinction (scattering
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plus absorption, index “ext”) is obtained by the integration of
the Poynting vectors flux over a sphere enclosing the particle.
The dissipated energy rates are then expressed by [24,28,33]

Wext = 1

2k2

√
ε

μ

∞∑
n=1

n∑
m=−n

Re(αn)|Amn|2 + Re(βn)|Bmn|2,

Wsca = 1

2k2

√
ε

μ

∞∑
n=1

n∑
m=−n

|αn|2|Amn|2 + |βn|2|Bmn|2, (26)

Wabs = Wext − Wsca.

To characterize the interaction between beam and parti-
cle, we introduce efficiency factors Qsca = Wsca/Wbeam and
Qabs = Wabs/Wbeam.

In an experimental situation, usually the transmitted or
the reflected light is detected in a limited solid angle, so we
consider the energy scattered into the forward and backward
hemisphere by introducing the transmission T and reflection
R, which we define as

R = Wsca(π/2,π )

Wbeam
, T = 1 − R − Qabs. (27)

Next, the detectors usually do not collect the power
from the whole hemisphere, but from a given solid angle
defined by their numerical aperture NA = sin θa . Therefore,
we will briefly also consider the fraction of power scat-
tered forwards Q

f
sca(θa) = Wsca(0,θa)/Wbeam and backwards

Qb
sca(θa) = Wsca(π − θa,π )/Wbeam with Wsca(θ1,θ2) defined

as

Wsca(θ1,θ2) = 1

2k2

√
ε

μ

∞∑
ν1,ν2=1

max(ν1,ν2)∑
μ=−min(ν1,ν2)

γμν1γμν2 Re
{
iν2−ν1

[(
αν1Aμν1α

∗
ν2

A∗
μν2

+ βν1Bμν1β
∗
ν2

B∗
μν2

)
�μ

ν1ν2
(θ1,θ2)

+ (
αν1Aμν1β

∗
ν2

B∗
μν2

+ βν1Bμν1α
∗
ν2

A∗
μν2

)
�μ

ν1ν2
(θ1,θ2)

]}
, (28)

where the first term (“dot” term) describes an interference
between two electric (magnetic) multipoles and the second
term (“cross” term) interference between an electric and a
magnetic multipole. For the sake of the brevity we redirect
readers to [35] for the exact expressions of �μ

ν1ν2
(θ1,θ2) and

�μ
ν1ν2

(θ1,θ2).
Before we proceed to the numerical examples, we will

briefly discuss the differences in the scattering of the regular
and irregular beams. The presence of virtual sources in the
model gets important in the scattering process, as they give
rise to infinitely high amplitudes of the higher order multipoles
when kz0 < n. As long as the scattering coefficients αn, βn

vanish at least one order of magnitude faster than the expansion
coefficients A0n, C1n, and D1n, and the ratio Rsp/z0 between
the particle size Rsp and the radius z0 of the virtual sources in
the focal plane is smaller than unity, an irregular solution can
be used along with a regular one without any restrictions.
However, another problem arises for the regular solution.
For infinitely small beam widths, it represents a standing
spherical dipole wave, so the beam power vanishes [23] and
the absorption Qabs and scattering Qsca become infinite in (28).

As an example for our numerical simulations we choose
a spherical gold (ε = −21.17 + 0.73i, [36]) particle with a
radius of Rsp = 75 nm at a wavelength of λ = 780 nm. For the
size parameter kRsp = 0.60 we have truncated the expression
for the scattered field in Eq. (25) at n = 6 [28]. We start with
the dependence of the absorbed and total scattered power on
the Rayleigh length kz0 for five different cases; see Fig. 5(a)
and 5(b). We see that the azimuthally polarized beam UM

interacts much less with the particle than the other beams. This
is no surprise, because the electric field of the azimuthally
polarized beam vanishes in its center, where the particle is
situated. Also, the radially polarized beam UN is absorbed
less than the two “pure”-type linearly polarized beams, if the

diffraction distance is larger than kz0 = 4.08; see Fig. 5(a)–
5(c). Again this is due to vanishing transverse electric field
components on the optical axis. However, for smaller values of
the collimation distance and beam width a strong longitudinal
field starts to build up in the focus of the beam resulting in
a stronger coupling and absorption. Finally, the gold sphere
absorbs the radially polarized radiation even more than that
of the linearly polarized beams. From the two “pure”-type
linearly polarized beams, the “magnetic” beam U(x)

M starts to
absorb less and less than the “electric” one U(x)

N , when the
beam gets smaller.

In Fig. 5(c) the amount of scattered energy in the forward
and backward hemispheres is depicted. As one can see, for
radially and azimuthally polarized beams slightly more light is
scattered into the forward than into the backward direction. For
linearly polarized beams, the opposite holds true. We note that
the difference in the forward and backward scattered energies
is larger for linearly polarized beams than for radially and
azimuthally polarized ones. A particularly interesting situation
is observed, when the values of kz0 are between 2 and 4. Then
the radially polarized beam is scattered more than the linearly
polarized light in forward direction, but less in backward
direction. In general, this observation holds true for small
particles with stronger dipolar than quadrupolar responses or
for highly focused CSBs.

Next, we model an experimental situation, where the
scattered light is collected by a finite aperture detector. For
small numerical apertures, the amount of scattered energy
collected by a detector decreases faster for radially polarized
light than for linearly polarized light. For angles θa < 45◦,
the radially polarized beam is scattered less than a linearly
polarized beam; see Fig. 5(d).

The scattering and extinction efficiencies Qsca and Qext

approach values larger than unity, if the beam diameter is
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(a) (b)

(c)
(d)

(e) (f)

FIG. 5. (Color online) Dependence of the (a) absorbed, (b) total, and (c) forward and backward scattered energy on the collimation distance
kz0. The radius of the spherical gold particle under consideration is Rsp = 75 nm; the wavelength is λ = 780 nm. (d) Dependence of the
forward and backward scattered energy on the numerical aperture angle θa for a ratio w0/λ = 0.3 (kz0 = 0.18π 2). Dependence of (e) the
reflection R and (f) transmission T on the particle radius Rsp at w0/λ = 0.4. The radially polarized beam is depicted in blue, the azimuthally
polarized beam in green, and the linearly polarized beams U

(x)
M and U

(x)
N in black and red, correspondingly. The dashed line in panels c, d, e,

and f corresponds to backward scattering, the solid line to forward scattering. The particle is centered on the optical axis in the focal plane.

smaller or comparable to the diameter of the particle. This
accounts to the well-known fact that the extinction theorem is
valid only for plane waves (see Refs. [15,37,38] for a detailed
discussion). Therefore, we also investigate how the transmis-
sion and reflection (27) depend on the particle diameter. The
dependencies for a particular collimation distance of w0/λ =
0.4 at λ = 780 nm on the particle radius Rsp are presented
in Figs. 5(e) and 5(f). It can be seen that the azimuthally
polarized light is reflected less than all other polarizations
until the radius of the particle reaches Rsp ≈ 230 nm, when
the magnetic response of the particle starts to dominate over the
electric. The magnetic response of the particle is higher for a

radius up to Rsp ≈ 460 nm. The first maximum in the reflection
of the radially polarized beam corresponds to the first electric
dipole resonance at Rsp ≈ 150 nm. The electric response of
the sphere is minimal at Rsp ≈ 250 nm. The linearly polarized
beams are reflected more than the radially and azimuthally
polarized beams, with the beam of the “magnetic” type E(x)

M

repeating the pattern of the azimuthally polarized beam and
the beam of the “electric” type E(x)

N following the trend of
the radially polarized beam. The multipole responses are
averaged in the “mixed”-type linearly polarized beams, which
can be seen in the rather smooth corresponding curve. The
scattering directivity is investigated further in Fig. 5(e). We
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FIG. 6. (Color online) Modulus of the total (left side) and incident (right side) fields for the linearly polarized CSBs scattered on a gold
sphere. The radius of the sphere is Rsp = 75 nm, the wavelength is λ = 780 nm and kz0 = 1.5. The white arrows depict the direction of the
electric vector E.

see that a polarization dependent scattering directivity is
a typical property of a small particle with a high electric
dipole response. It is clearly demonstrated that the optical
response critically depends on the type of the impinging
beam.

We end this section by showing the absolute value of the
electric field distribution in the longitudinal plane (x,z) for
one particular case (see Figs. 2 and 6). The left-hand side
of the pictures show the total electric field with the particle
being located at the center. The right-hand side of the pictures
present the electric field of the incident beam without a particle
being present. The scattering patterns of the azimuthally and
radially polarized beams together with their linearly polarized
TEM constituents are shown in Fig. 2. The scattering patterns
for three different linearly polarized CSBs are demonstrated
in Fig. 6.

IV. CONCLUSION

In conclusion, we have adopted the regular and irregular
scalar complex source beam model and developed an analytical
expansion of radially, azimuthally and linearly polarized vector
CSBs into VSHs. Along with the highly focused radially and
azimuthally polarized beams we considered also an analytical

expansions of their linearly polarized constituents (beams
after interaction with a nonparaxial linear polarizer). The
differences between regular and irregular vector beams are
diminishing as long as the beam waist and collimation distance
remains large. When the beam waist reaches the size of
the collimation distance, higher order multipoles dominate
in the expansion of regular highly focused radially and
azimuthally polarized beams compared to the expansion of
linearly polarized beams.

An example of the Mie scattering of the considered fields
on a small gold particle was investigated in detail. As a
rule, the linearly and radially or azimuthally polarized beams
have different scattering directivity. The linearly polarized
beams scatter more into backward direction and the radially or
azimuthally polarized ones more into forward direction. For
small particles, radially polarized light usually scatters less
than linearly polarized light under the same conditions.
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