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Fano resonances for localized intrinsic defects in finite-sized photonic crystals
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Fano resonance spectroscopy (FRS) is used to investigate the photonic resonance properties of the defect
states in two-dimensional finite-sized photonic crystals (PCs). This study examines the scattering cross-section
spectra by changing the direction of the incident light continuously. The present FRS is applied to the intrinsic
localized defect produced by displacing a single rod atom from its regular site, which creates one defect mode
within the first gap and two defect modes within the second gap simultaneously. The present examination has
made clear the correlation between the asymmetry of the scattering cross-section spectra—characterized by the
so-called Fano q value—and the optical energy flows in the PC, in particular, that the optical incoming flux is
maximized for q−1 = 0. This fact demonstrates the presence of the selective capturing of photons at the defect
state in the incoming process of light; moreover, it can be recognized merely by knowledge of the q values. The
Fano resonances have thus been successfully used to elucidate the resonance nature of the localized defect states
in photonic crystals.
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I. INTRODUCTION

The strong confinement of light in a small region is
one of the primary concerns in recent nano- and micropho-
tonics, because it finds a variety of applications in optical
physics and engineering where it is exploited in low-threshold
lasers [1], nonlinear optical devices [2], and cavity quantum
electrodynamics devices [3]. This is entirely due to the
anticipated enhancement of the interaction between light and
matter systems, which is caused by the elongated dwelling
time of light in that region. Extensive efforts have therefore
been devoted to developing a cavity that can confine light
efficiently—high-quality optical resonators using band-edge
modes in photonic crystals (PCs) [4–10], circulating Bloch
modes in a photonic atoll (a periodic closed chain array of
microstructures) [11,12], whispering gallery modes (WGMs)
in a single microstructure [13–17], and defect modes localized
around a disorder in the PCs [18–21]. The last example
(localized defect) is thought to be especially important because
it provides very-high-quality factors (Q factors) and moreover,
it has an advantage to occupy its part in the PC structure,
which is one of the most promising substrates for the futuristic
optical information processing technology.

The defects in PCs are often understood as the disorders
which cause a significant modification of the optical density of
states—the creation of isolated discrete states—in the photonic
band gap when they are referred to particularly in a theoretical
context. They have been investigated to date using a variety
of theoretical methodologies: the Green’s function method
[22–25], the multiple scattering method [26–29], the supercells
method [30,31], and the oscillating dipole-moment method
[32,33]. These research results for the PC defects include those,
e.g., for light localization [28,32,34], photon lifetimes or Q

factors of the resonators [29,35–37], the local density of states
[25], and the group-theoretic classifications of the modes [34].
Moreover, we should not forget that the PC defects can also be
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treated in terms of the Koster-Slater model [38] for the impurity
states in semiconductors, as concisely reviewed by Ohtaka
[39]. Despite so many reports published to date, however, it
seems to the authors that few systematic investigations have
been conducted from the physical point of view concerning
the basic properties of these PC defects, e.g., the correlations
among the defect formation processes, mode frequencies,
photon lifetimes, and their resonance properties. Moreover, it
seems to the authors that the interests concerning the disorders
in PCs have been directed solely to the pursuit of defect
structures that possess higher Q factors. Although the research
in this direction is actually indispensable for the development
of high-quality resonators, it appears to be somewhat devoid
of the physical perspective for defects in the PCs.

Defects embedded in the PCs provide an ideal stage of
research for the optical resonance phenomena. They create the
isolated photonic states, i.e., states without the presence of
any adjacent states in the photonic band gap, which would
not require consideration of their interference with other
adjacent states. The defect states in the finite-sized PCs can
be regarded as the discrete states that are coupled to the
continuous states outside the PC. This is exactly an analog
to the electronic phenomena known as the autoionization
for atoms [40], the predissociation for molecules [41], and
the shape resonance (the quasibound state formation by a
thin potential barrier) [42], and so on. The physics that lies
behind all these phenomena could be epitomized as what is
called the Fano resonance [43]. The Fano effects have been
investigated in almost all fields of physics [44,45]; we can find
much literature, especially in the research of semiconductor
nanostructure physics [46–51]. The field of PC research is
not an exception. Several reports have been published, which
include the resonance of guided modes [52], bistability [53],
photoluminescence [54], surface plasmon resonance [55], Mie
and Bragg scatterings [56], and scattering by the nanocavity
[57]. We feel, however, that most of these studies seem to
focus on merely fitting the results with the asymmetric line
shape—characterized by the famous Fano’s q value—and
do not examine the topic in more depth, e.g., to study the
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physical meaning of the q values. In light of the above, we
have investigated the relations between the line shape and
other physical quantities for the isolated defect states and have
reported some preliminary results in a previous letter [58].

In this paper, we first demonstrate the simultaneous forma-
tion of several modes in an intrinsic defect created by simply
displacing a single lattice atom from its regular site. The mode
positions and the photon lifetimes are shown to be tuned in a
wide range by adjusting the atomic displacement. The latter
part of this paper is devoted to the analysis of the scattering
cross section of light scattered by PCs with the above intrinsic
defects. By considering the analogy between the defect states
in a PC and the electronic resonance states in an atom, we
investigated the resonance structures of the defects in detail,
in particular, focusing on the analysis of the asymmetric
Fano-Beutler resonance profile in the angle-resolved scattering
cross-section spectra. This paper presents the correlations
between the so-called q value and the optical energy flux into
the resonance centers. We believe that this kind of examination
from a physical point of view will do much toward a better
understanding of the behavior of light in the localized states,
and will also contribute to the development of high-quality
defect resonators using the PCs.

II. THEORY

A. Multiple scattering of light

The analytic multiple-scattering theory is used to evaluate
the behavior of light for the PCs. Since the general theory is
already described in detail in a previous report [6], here we only
briefly outline the framework of the calculation. We consider a
two-dimensional (2D) array consisting of a finite number N of
cylindrical rods with radius a placed at arbitrary points in the
background material (the air in this case). Since the primary
purpose is to investigate the photonic modes in PCs, the rods
are assumed to have no gain and loss. Here, we focus on the
polarization for which the electric field is parallel to the rod
axis (E polarization). Let us assume that a plane light wave is
incident on the rod array. We focus on the light scattering by a
specific rod, e.g., the nth rod. The light wave outside this rod
is, of course, made up of the incident wave and the scattered
wave. This incident wave on this specific nth rod must contain
the waves scattered by all other rods (n′ = 1, 2, . . . , N , but
n′ �= n) as well as the incident light wave sent from the outside
of the PC. The waves scattered by other rods are expressed
in terms of a variety of coordinates particular to the nth rods
(n′ �= n). However, it is inconvenient to treat the wave field
containing various different coordinates, so we transform the
expression of these waves into a representation containing only
the coordinates of the nth rod. The light wave (incident plus
scattered waves) thus obtained outside the nth rod is connected
to the solution inside this rod using the boundary conditions
on the rod surface. The electric field of the total scattered wave
Es(r) can be written as the sum of the scattered wave around
each nth rod over all rods (n = 1, 2, . . . , N):

Es(r) =
N∑

n=1

+∞∑

l=−∞
bnlH

(1)
l (krn)eilθn ≡ b · ϕ(r), (1)

using the l-partial wave expansion, where H
(1)
l (x) is the Hankel

function [59] of the first kind that has the asymptotic form of
the outgoing wave. Here, k = ω/c is the wave number of
light in the background (the air), and bnl are the coefficients
to be determined. The coordinates in Eq. (1) are defined as
follows: r is the generic coordinate, and rn ≡ (rn,θn) ≡ r −
Rn, where Rn indicates the location of the nth lattice point.
Here, the second equality in Eq. (1) implies the inner product
of vectors b = (bnl) and ϕ(r) = [H (1)

l (krn)eilθn ]. Here, vector
b is calculated from the relation b = T −1p, where p is a vector
that is related to the wave number and the incident angle of
the incident wave, and T is a matrix, the (nl,n′l′) elements of
which are defined by

Tnl,n′l′ = δnn′δll′ − (1 − δnn′)ei(l′−l)φn′nH
(1)
l−l′ (kRnn′)sl, (2)

where δ is Kronecker’s delta, Rnn′ is the distance between
the centers of the nth and n′th rods, and φn′n is the angle
that indicates the direction of the n′th rod center as viewed
from the nth rod center. Here, sl is a parameter related to the
boundary conditions at the rod surface: see the Appendix in
the previous report [6] for its details. The scattered-wave field
is thus uniquely determined, provided that we are given the
information of the PC structure and the incident wave.

B. Photonic modes and lifetimes

Let us consider the analogy between the electronic scatter-
ing by an atom and the photonic scattering by a finite-sized PC.
First, we assume that several resonance states are formed in
an atom, e.g., by the thin potential barrier surrounding it. The
wave function of an electron has a large value inside the atom,
and it decays exponentially into the barrier and continues to
the oscillating continuous states outside (the tunneling effect).
This state can be regarded as a quasidiscrete state that resonates
with the continuum and therefore has an energy spectrum of
a finite width. The scattering of an electron by this kind of
atom is known to produce sharp spectral features which can be
assigned as resonance states. The behavior of photons trapped
in a defect in a finite-sized PC is similar to that of electrons
in an atom mentioned above. In a manner similar to the atom,
we assume that several defect states are present in the PC. The
photons are confined around the defect in the PC, because the
defect creates defect modes within the photonic band gap that
never permit the presence of photons. Therefore, the photon
has a larger field near the defect and decays exponentially
toward the periphery of the finite-sized PC. The photonic field
does not vanish even outside the PC, since the lower refractive
index of the surrounding medium (the unity for the air) does
not prohibit the presence of photons. As a result, the photonic
field near the defect inside the PC is coupled to the continuous
photonic field outside. This is an analogy to the electronic
tunneling phenomenon mentioned above. This photonic defect
state may be regarded as a photonic quasibound state and
therefore its spectrum must be broadened in the vicinity of the
resonance frequency. To determine the photon lifetimes for
the defect states in the PC, we assume real dielectric constants
(i.e., no optical gain or loss) for the rods and a complex
photon frequency ω = ω′ − iω′′. According to the resonance
scattering theory, the frequency dependence of the amplitude
of the scattered wave follows the Breit-Wigner formula [60]

063818-2



FANO RESONANCES FOR LOCALIZED INTRINSIC . . . PHYSICAL REVIEW A 85, 063818 (2012)

and the first-order pole of the scattered-wave amplitude gives
the complex frequency ωm = ω′

m − iω′′
m for the resonance

mode. Hereafter, we use the subscript m to indicate the specific
mode obtained. Since the scattering amplitude has to diverge
at ω = ωm irrespective of position r in ϕ(r) in Eq. (1), this
divergence must occur in vector b. This implies the condition
that det(T ) = 0 determines the complex frequency ωm. The
photon lifetime of the relevant mode is given by τm = 1/2ω′′

m

(and the Q factor is given by ω′
mτm, if necessary).

Here, we refer to the physical meaning of the above
method for determining the photon lifetimes. The imaginary
part ω′′

m of the complex frequency thus determined must
be positive since the lifetime is positive. The positive ω′′

m

means that k′′
m is positive due to the relation ωm = ckm in

the air, i.e., ω′
m − iω′′

m = c(k′
m − ik′′

m), where km = k′
m − ik′′

m

is the complex wave number and c is the light velocity (the
positive value). Since the 2D scattered wave behaves like
exp(ikmr)/

√
r = exp(ik′

mr) exp(k′′
mr)/

√
r at large r , we find

that it diverges at the limit of r → ∞ because k′′
m > 0. This

may appear to be unusual, because it is as if light is amplified
despite the absence of optical gain in the present physical
system. Note, however, that this is true. This actually occurs
because the resonance state decays exactly at this resonance
frequency to magnify the light intensity outside the PC (not
due to gain). In this consideration, the temporal variation of the
field should be taken into account at the same time: the light
field decreases with the factor | exp(−iωmt)| = exp(−ω′′

mt)
since ω′′

m > 0. The overall behavior of the light field is
described by the product of the two factors: the increasing
spatial part and the decreasing temporal part. The total light
field is thus known to remain unchanged at the simultaneous
limits of r → ∞ and t → ∞. We find that the light field
energy is conserved during the whole decaying process of the
resonance states. This is in marked contrast to the case where
the PC has optical gain and therefore the light field energy in
the total system is amplified.

C. Fano resonance for the scattering cross-section

The scattered light field given by Eq. (1) has the asymp-
totic form f (θ )exp(ikr)/

√
r at r → ∞. We obtain the total

scattering cross section σ , or the integrated far-field intensity
in the terminology of quantum electronics, by integrating the
scattering amplitude squared over the incident direction:

σ = 4

k

∞∑

l′=−∞

∣∣∣∣∣

∞∑

l=−∞

N∑

n=1

bnle
i(l−l′)χnJl′−l(kRn)

∣∣∣∣∣

2

. (3)

All photonic modes formed in the finite-sized PCs—the
quasicontinuously distributed modes in the photonic bands as
well as the localized defect modes in the band gaps—can be
regarded as resonance states. However, the band modes are so
densely distributed that they cannot be separated from each
other, which makes it difficult for us to clarify their resonance
structures from their σ spectra. In contrast to this, since the
defect modes are isolated in the band gaps, they will provide
an ideal stage for the investigation of the photonic resonance
phenomena. Hereafter, we therefore focus on the isolated
defect states. The cross section of the resonance scattering
by an isolated state can be described using the Fano-Beutler

resonance formula in the vicinity of the isolated resonance
mode ω′

m,

σ = σr

(x + q)2

x2 + 1
+ σb + σcx, (4)

where the mode frequency is normalized by the equation x =
(ω′ − ω′

m)/ω′′
m, and σb + σcx indicates the background scatter-

ing cross section that is approximated as a linear curve near the
resonance frequency. Here q is what we call the q value that
was introduced by Fano [43] as an index that represents the de-
gree of asymmetry of the resonance spectrum; this value ranges
from −∞ to +∞, depending on the spectrum shape. Hereafter,
however, we will use its inverse form q−1 instead of q as a mat-
ter of convenience. It is clear from Eq. (4) that the resonance
spectrum is asymmetric with a peak at the lower ω′ side (x < 0)
when q−1 < 0, symmetric (mountain-shaped) when q−1 = 0,
asymmetric with a peak at the higher ω′ side (x > 0) when
q−1 > 0, and symmetric (valley-shaped) when q−1 = ±∞.
Here, for q−1 = 0 (though σrq

2 is finite), Eq. (4) evidently
corresponds to the Breit-Wigner formula with no interference.

According to the Fano theory, the parameter q−1 can be
regarded as an index that indicates the ratio of the probability
amplitude for the transition from the initial state to the
continuous-states to that to the modified-discrete-states. Here,
the modified-discrete state is a discrete state modified by
an admixture of the continuous states. We simply call it the
resonance state in this paper. It may hence be paraphrased
that the parameter q−1 is the ratio of the probability
amplitude for the excitation to the continuous-states to
that to the resonance-states. By this definition, the relation
q−1 = 0 implies that the resonance scattering is the primary
contribution to the scattering cross section, while the relation
q−1 = ±∞ implies that the direct scattering to the continuous
states is dominant in the σ spectrum. The moderate q−1 values
that are of the order of ±1 suggest a presence of the pronounced
interference between these two kinds of scattered waves. These
q values will be used in Sec. III B to characterize the resonance
structures of intrinsic defect states created in the PCs.

III. RESULTS

In this paper, we used GaAs as the material of rods with the
dielectric constant εa = 13.18 and the air as the background
material (εb = 1.00). The PCs studied are finite-sized crystals
with a hexagonal lattice and symmetric external form, as shown
in the inset of Fig. 1(a). The structural parameters are fixed at
N = 61 for the number of rods and f = 0.3 for their filling
factor. We used typically 27 partial waves (−13 � l � +13)
for the l expansion in Eq. (1), which warranted the sufficient
convergence of the series. In this paper the numerical values
of all physical quantities are represented in the dimensionless
normalized form: the angular frequency ω is normalized in
units of 2πc/L, the photon lifetime τ in units of L/c, and the
atomic displacement d and the scattering cross section σ in
units of L, where L is the lattice constant of the PC.

A. Formation of intrinsic defects

Prior to entering into the description of the defects, we show
in Fig. 1(a) the photonic band diagram of the present PC with
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FIG. 1. (a) Photonic band diagram computed for the PC with an
infinite number of unit cells (the rod filling factor is f = 0.3). Here, ω′

is the real part of the complex angular frequency ω = ω′ − iω′′, which
is normalized in units of 2πc/L (L is the lattice constant). The inset
shows the finite-sized PC consisting of 61 rods without imperfections.
(b) Frequency positions ω′

m and lifetimes τm for the modes around the
first gap of the PC with a defect created by displacing the central rod
by d = 0.42 (see the inset). (c) Similar results for the modes around
the second gap.

no defects, which was calculated by the plane-wave expansion
method assuming the infinite number of rods. Here, ω′ is the
real part of the complex angular frequency ω = ω′ − iω′′. In
this paper, we focus on the frequency regions in which two
band gaps are observed. We created an intrinsic defect by
displacing a rod atom from the regular site (the central lattice
point in the PC) toward the neighboring rod. This defect is
hence composed of a vacancy and an interstitial rod. The
insets in Figs. 1(b) and 1(c) portray the defect of this type
where the central rod is displaced by d from the original
position (the dotted circle). See also the region surrounded
by the dotted line in the inset in Fig. 1(a), which corresponds
to the insets in Figs. 1(b) and 1(c). For the defect in these
figures, we used d = 0.42, the possible largest value that can
avoid intersecting with the neighboring rod. This defect was
found to generate three distinct defect modes, i.e., one in the

first gap and two in the second gap. Figure 1(b) shows the
frequency positions ω′

m and the lifetimes τm for the modes
created around the first gap. We find an isolated defect mode
(ω′

m = 0.226 136) above the top of the first band; let us call it
mode F. In addition, a high-τm mode is detected near the bottom
of the band edge, as shown by an asterisk, which we will refer
to later. We can see a lot of modes densely distributed outside
the gap, which are the Bloch states—discretized due to the
finite size of the PC—in the first and second photonic bands.
Figure 1(c) shows the results around another gap. As clearly
shown in Fig. 1(c), two defect modes are found to be created
within the band gap: one mode is located above the top of the
lower band (ω′

m= 0.436 781) while another mode is below the
bottom of the upper band (ω′

m = 0.522 826). Because of their
frequency positions, we could call them the acceptor (mode A)
and donor (mode D) states, as they are occasionally called in
the body of PC research by analogy with the impurity states in
semiconductors [29,61]. Three different defect states are thus
known to be simultaneously created in a single defect structure.

The above results are summarized in Fig. 2, which shows
the variations of the mode frequency ω′

m(closed circles) and
the lifetime τm (open circles) for (a) mode F, (b) mode A,
and (c) mode D as a function of the atomic displacement d.
Figure 2(a) includes the results for the mode shown by the
asterisk in Fig. 1(b) as well, which are displayed using small
closed squares (ω′

m) and small open squares (τm). The d = 0
results are obviously meaningless if they are considered as
the defect mode data, since the PC with no displaced atoms
is perfect: these data were merely taken from the modes
formed at the extreme ends of the photonic bands. Let us
first look at the results in Figs. 2(b) and 2(c) as a matter
of convenience. As clearly seen in these figures, the states
created for d �= 0 appear to converge at the states at d = 0.
It is speculated from this fact that these band-edge states
seen for d = 0 work as the seeds for generating the defect
states. As shown in Fig. 2(b), mode A is leaving the top of the
third photonic band by the atomic displacement and is deeply
driven into the band gap to make a more localized authentic
defect mode (deep acceptor state). The same phenomenon
occurs for mode D, which is leaving the fourth photonic
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FIG. 2. Mode frequency ω′
m and photon lifetime τm for the modes created as a function of the rod displacement d for (a) mode F and

mode ∗ in the first gap, (b) mode A in the second gap, and (c) mode D in the second gap. Here, τm and d are measured in units of L/c and L,
respectively.
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FIG. 3. (Color online) Electric field distributions in the vicinity of the defect (d = 0.42) at each mode frequency ω′
m for (a) mode F,

(b) mode A, and (c) mode D. Here, the PC is irradiated with the plane wave of light sent from the left.

band though its frequency variation is much smaller than that
of mode A for the same displacement. Mode A exhibits a
rapid increase in the photon lifetime [as shown in Fig. 2(b)]
with the increasing atomic displacement, and it reaches the
highest value τm = 1.63 × 104 for the maximally deformed
configuration (d = 0.42). In contrast to this, mode D shows
only a slight enhancement in the lifetime: we thus find that this
donor state is less sensitive to the disorder than the acceptor
state. The variations of ω′

m and τm displayed in Figs. 2(b)
and 2(c) suggest the presence of a systematic correlation
between them. Here, we define �ω′

m and �τm by the deviations
of the values from those at d = 0: �ω′

m ≡ |ω′
m(d) − ω′

m(0)|
and �τm ≡ τm(d) − τm(0), respectively. By the numerical
fitting, we find that the correlations between them are well
expressed by the empirical equations: log10 �τm = 6.81 +
1.87 log10 �ω′

m for mode A, while log10 �τm = 5.23 +
1.42 log10 �ω′

m for mode D. From the fact that the prelog
factor for mode A (1.87) is larger than that for mode D (1.42),
we understand that �τm is a more sensitive function of �ω′

m

for acceptor states. We thus know that these defect states
are simultaneously created and their mode frequencies and
lifetimes are widely tuned merely by displacing a single rod
from the regular position. We next move back to Fig. 2(a),
which depicts the variations of ω′

m and τm for the two modes
near the top of the first band. In contrast to the modes in the
second gap, these modes show somewhat unusual behavior,
as follows. First, mode F is driven into the photonic gap,
leaving the edge of the first band with the increasing atomic
displacement, which is reasonable when we regard it as a defect
mode. However, it has a lifetime (1.2 × 103) at d = 0 which is
very high as the lifetime for the band-edge mode. Compare it to
those for the band-edge modes in Figs. 2(b) and 2(c) (2.0 × 101

for mode A and 5.0 × 101 for mode D). Moreover, we find
that its lifetime remains nearly constant with the change of
the atomic displacement, whereas its mode frequency deeply
penetrates into the band gap. Second, the mode denoted by an
asterisk in Fig. 2(a) does not change its mode frequency as
well as its lifetime by the atomic displacement. This clearly
indicates that it is a band mode, which has been confirmed
by the study of the light-field distributions: light is extended
over the whole PC for all atomic displacements. However, its
lifetime (about 1.5 × 104) is very high; in particular, note that it
is much higher than that for the localized defect mode F (about
1.2 × 103). From these facts, we should not hold back from
concluding that this mode—evidently a band-edge mode—is
superior to the localized defect mode for confining light.

In order to investigate these defect states in more detail,
we calculated the electromagnetic fields around the defect.
Figure 3 displays the distributions of the electric field of
light [the real part of Es(r)] for (a) mode F, (b) mode A,
and (c) mode D, which have been created by the maximal
atomic displacement (d = 0.42). Here, the incident angle is
chosen as 0◦. As shown in the color scale, the field is depicted
using the different scales for each figure. In all figures we
see the concentration of light toward the intrinsic defects.
When we look into them more precisely, we find that the
light localization occurs around the displaced rod for modes
F and A, while it occurs within the vacancy created by the
rod displacement for mode D. Moreover, we find that modes
F and A have stronger localized-field intensities than mode D
by a factor of 25 ( = 52) to 64 ( =82), as known from the color
scale. Light is thus known to be more strongly confined in
acceptor states (modes F and A) than the donor state (mode D).

B. Fano resonance profiles for scattering cross sections

Before displaying the detailed resonance properties of
defect states, here we discuss all the PC modes (the band modes
as well as the defect modes). Figure 4 shows the spectrum of the
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FIG. 4. Spectrum of the total scattering cross-section of light
scattered by the present finite-sized PC with an intrinsic defect formed
by the displacement d = 0.42. Here, the incident angle is θi = 0◦.
The inset shows the spectrum magnified around the second photonic
band gap. The peak in this figure corresponds to mode F, and the tiny
peaks seen in the inset are assigned as modes A and D. The scattering
cross-section σ is normalized by L.
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total scattering cross-section for light scattered by the finite-
sized PC with a defect created by the atomic displacement
d = 0.42. Here, the incident light is sent from the left side
of the PC (θi = 0◦). The light frequency ω′ and the scattering
cross section σ are normalized to 2πc/L and L, respectively.
In the long-wavelength limit (ω′ → 0), the scattering is weak
because the target becomes much smaller than the wavelength
in this ω′ region. When ω′ increases from 0, then σ rapidly
increases and exhibits a complicated spectrum. We see three
plateaus in the σ spectrum. These monotonic σ variations
indicate the occurrence of the scattering by a rigid body that
has no internal states. Moreover, we find that these plateaus
coincide very well with the photonic band gaps computed
for the infinite-sized PC (see Fig. 1). The frequency regions
showing σ plateaus can therefore be regarded as the photonic
band gaps. The numerous peaks seen in the spectrum evidently
come from the band modes that have been discretized due to
the finite size of the PC. As discussed before (Sec. III A),

these modes are also some kind of photonic resonance modes,
but they have relatively short lifetimes because they are the
extended states (the Bloch states) that are coupled less weakly
to the continuous states outside. The minute examination of the
spectrum has isolated one resonance state within the first gap
and two resonance states within the second gap. The latter two
states are more clearly displayed in the inset (the magnified
spectrum near this region). These three resonance states can
be identified as mode F, mode A, and mode D, respectively,
presented in Fig. 1, because their frequency values exactly
coincide with those shown in Fig. 1. From the results displayed
here, we feel certain that the scattering cross-section spectrum
is a useful tool to visualize the presence of photonic modes
(particularly, defect modes) and estimate their locations on the
frequency axis. This is because the scattering cross-section
spectrum requires no time-consuming calculations compared
with those for determining the resonance modes accurately (as
described in Sec. II B). Moreover, as will be clarified in the
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FIG. 5. Total scattering cross-section spectra in the vicinity of the mode frequency for the intrinsic defect formed by the atomic displacement
d = 0.42 for (a)–(c) mode F, (d)–(f) mode A, and (g)–(i) mode D. Here displayed are those for typical incident angles which show a variety
of scattering cross-section spectra. The dotted lines are the as-computed raw data of the scattering cross-section (see the left scale). The solid
lines indicate the spectra normalized by subtracting the background from the raw data, where we used the arbitrary scale for these lines. These
figures also display the q−1 values obtained by fitting the scattering cross-section spectrum to the asymmetric resonance line profile given by
Eq. (4).
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FIG. 6. |q−1| value (solid line) and Pmaxvalue (open circles and dash-dot line) as a function of the incident angle θi determined for mode
F created by the rod displacements of (a) d = 0.20, (b) d = 0.29, and (c) d = 0.42. Here, q is the so-called Fano value that indicates the
asymmetry of the resonance spectrum and Pmax is the maximum value of the time-averaged Poynting vector within the PC.

succeeding paragraphs, it provides us information concerning
the resonance properties of defect states through the analysis
of the scattering cross-section line profiles.

We display in Fig. 5 several examples of the total scattering
cross section σ as a function of the normalized frequency
x, which are magnified in the vicinity of the defect mode:
(a)–(c) for mode F, (d)–(f) for mode A, and (g)–(i) for
mode D under the irradiation of light from several different
directions. All of these figures are for the defect with the atomic
displacement d = 0.42, and the incident directions of light are
so chosen that they provide a variety of σ profiles. Here, x is
the frequency converted by the equation x = (ω′ − ω′

m)/ω′′
m,

where ω′
m and ω′′

m are real and imaginary parts, respectively, of
the complex frequency for the relevant defect mode computed.
See Sec. III A for ω′

m values. The broadening factors are
computed to be ω′′

m = 0.0 000 992 696 for mode F, ω′′
m =

0.00 000 489 646 for mode A, and ω′′
m = 0.000 305 834 for

mode D. While the broadening factor thus depends strongly
on the mode under consideration, all the spectra in Fig. 5 are so
displayed that they have the same broadening as a result of the
conversion of the abscissa mentioned above. The dotted lines
are the scattering cross-section spectra that have the values
measured by the scale in the ordinate. The solid lines indicate
the spectra obtained by subtracting the background from the
scattering cross-section spectra (dotted lines), and they are
displayed in the arbitrary units. The dash-dot lines are the zero
levels of the spectra shown by solid lines. These spectra have
thus been found to have distinct asymmetric Lorentz resonance
profiles, although they emerged at first as the tiny modulations
of the gap-related plateaus (Fig. 4). As displayed in Fig. 5, these
defect states exhibit line profiles, the forms of which are very
different depending on the incident direction. These forms may
be grouped into four classes: (1) symmetric normal resonance,
(2) symmetric antiresonance, (3) asymmetric resonance with
a peak at higher x, and (4) asymmetric resonance with a peak
at lower x. For modes F and A, we notice that the resonance
profiles exhibit a drastic change according to the incident light
direction. On the other hand, mode D hardly shows any change
in its profile for the wide variation of the incident direction.
These profiles have been successfully fitted to Eq. (4) by using

appropriate q values with very small relative σ errors of the
order of 10−4 at every x point; the q−1 value is indicated in
each figure.

Let us next make a systematic study of the q values for a
variety of σ profiles. Figure 6 shows the absolute q−1 value
(|q−1|, shown by solid lines) as a function of the incident angle
θi for mode F created by displacing the rod by (a) d = 0.20,
(b) d = 0.29, and (c) d = 0.42. We do not mention here the
results shown by open circles and the dash-dot line in this figure
and keep them for the later discussions (Sec. IV B). In Fig. 6,
the q−1 sign changes at every angle at which |q−1| vanishes
or diverges. Since all the σ spectra for mode F have positive
q−1 values at θi = 0◦ (e.g., q−1 = +0.235 for d = 0.42), we
can know their signs at every incident angle starting from
θi = 0◦. However, we ought to note here that it hardly gives
us any important information whether the sign of the q value
is positive or negative: at least, we should say that its physical
meaning is not understood at the current stage of the research
of the Fano resonance. Hence, we consider only the absolute
values of q−1. As shown in Fig. 6, the |q−1| value exhibits
a somewhat complicated and rapid variation with the change
in the incident direction of light. While it falls suddenly to
tiny values at several specific angles, it rises sharply to nearly
infinite values at other angles. The extreme sensitivity of q−1

to the incident angle suggests the presence of the incident-
direction-dependent, optical-resonance processes. Although
any decisive differences can barely be found in the |q−1| varia-
tion between Figs. 6(b) and 6(c), we notice that it comes to have
fine structures for the decreased rod displacement. These |q−1|
variations in Fig. 6 appear to be symmetric around the angle
of 90◦. The detailed study, however, shows that it is slightly
asymmetric (with a relative error of 10−2 ) between 0◦ and
180◦. This is evidently caused by the asymmetry—though it is
a small contribution to the whole PC—of the defect structure
with respect to the mirror reflection at the vertical line passing
the center of the PC. Actually, the degree of the asymmetry in
the |q−1| variation is found to be reduced as the defect becomes
more symmetric by decreasing the rod displacement.

The |q−1|-θi relations for mode A are displayed in Fig. 7
for (a) d = 0.20, (b) d = 0.29, and (c) d = 0.42. Here,
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again, we discuss the other data (open circles and dash-dot
line) later (Sec. IV B). As we can see in Fig. 7, we hardly
find any differences in the |q−1| variations at lower angles
(0◦ < θi < 60◦) as well as higher angles (120◦ < θi < 180◦)
between different atomic displacements. In the intermediate
region (60◦ < θi < 120◦), however, we find that this variation
exhibits remarkable transformations. Despite its complicated
behavior, however, we can clearly recognize a reasonable |q−1|
metamorphosis associated with the atomic displacement. It
would enable us to understand its variation more easily to
start the consideration from the structure with the interme-
diate displacement, i.e., d = 0.29. First, let us look at the
|q−1| transformation by increasing d from 0.29 to 0.42. By
increasing d, the angles 60◦ and 120◦—geometrically critical
angles—emerge as the singular points in Fig. 7(c), which
make the |q−1| value diverge to infinity. This singularity has
been hidden as a result of being softened due to the small
displacements for the defects with d = 0.20 and 0.29. In the
intermediate region (70◦ < θi < 110◦), we find no significant
difference in the |q−1| variation between Figs. 7(b) and 7(c),
except for the difference in the q−1 sign. Next, we examine the
transformation by decreasing d from 0.29 to 0.20. The notable
phenomenon that occurs by decreasing d is the appearance

of the singularity near the angles of 83◦ and 97◦. Other
features appear to remain unchanged: the small peak near 70◦
for d = 0.29 still exists for d = 0.20 and the negative q−1

value at 90◦ is still negative for d = 0.20. This complicated
behavior, compared with the relatively simple one for mode
D (as will be mentioned later), is supposed to arise from the
complicated wave function of mode A, which is characterized
by several nodes and loops and the wave form elongated along
the horizontal axis [see Fig. 3(b)]. Due to this asymmetric wave
function, mode A can be regarded as possessing nonvanishing
angular momentum. This property of mode A will undoubtedly
make its coupling to the directly scattered waves intricate
and hence the angle dependence of σ complicated. In other
words, this acceptor state appears to work as an active center,
which would cause a pronounced interference with the directly
scattered waves. The angle-resolved q value for this state is
thus known to be very sensitive to the atomic displacement.
From the above results, we believe that the measurement of
the q values would be a useful tool for elucidating the relation
between the defect structure and the resonance properties.

Similar studies have been conducted for the |q−1|-θi

relations for mode D, as shown in Fig. 8. As seen in Fig. 8,
the |q−1| value oscillates with the incident angle, indicating
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the periodic variation of the interference between mode D and
the background waves. We note, however, that its variation is
similar to each other between the samples with different atomic
displacements, which could be displayed more distinctly by
using the linear scale for |q−1|. The only difference is that,
as the rod atom is displaced further, i.e., the defect disorder
is increased, the q−1 value shifts to the negative side and its
oscillation amplitude is magnified. All the q−1 values in Fig. 8
remain in a small-|q−1| range (−0.2 < q−1 < +0.5). This
appears to come from the fact that this state has a less deformed
field distribution—an approximately spherically symmetric
state with null angular momentum—around the defect [see
Fig. 3(c)].

IV. DISCUSSION

A. Characteristics of intrinsic defects

The photon lifetimes of modes A and D shown in Figs. 2(b)
and 2(c) are well correlated with the mode frequency positions
in the band gap. Actually, the photon lifetime is magnified
due to the attenuated coupling of the defect states with the
outer continuous states, which occurs as the defect states get
separated further from the Bloch states (the extended states
in the bands) and driven toward the midgap more deeply.
The photon lifetime for mode A reaches the maximum value
that is a 103 order of magnitude longer than those for the
band-edge modes (d = 0). However, this value is shorter than
those obtained in more sophisticated structures of similar sizes,
such as circulating Bloch modes in a photonic atoll [11,12]
and WGMs in a single microstructure [13–17]. From the
results in Figs. 2(b) and 2(c), we expect that the d increase
toward d > 0.42 will bring a further enhancement in the
photon lifetime. At the current stage, the method described in
Sec. II unfortunately is unable to calculate the d region where
the displaced rod merges into the neighboring rod. However,
the extreme case (d = 1) can be calculated, for which the
displaced and neighboring rods overlap each other completely
and as a result, a rod vacancy is created at the central site
of the PC with the reduced number of rods (N = 60). In
this case, we observe the creation of a single mode with
ω′

m= 0.475 615 and τm = 9.49 × 103. This τm value is of
the order of half the highest value obtained for the defect
mode formed by the atomic displacement. These results are
consistent with the field distributions shown in Figs. 3(b)
and 3(c). The interesting point here is the region around which
light is concentrated. We recognize that mode D is localized
in the vacancy (the air) produced by the atomic displacement,
while mode A is localized mostly within the rods (the dielectric
material). These results are reasonably understood as follows.
Mode A (acceptor)—occupying a lower energy level in the
photonic band gap—comes to possess this lower photonic
energy as a consequence of the confinement of light in the
materials with higher dielectric constant, because the higher
dielectric constant permits light to stay there in an energetically
more stable manner. In contrast to this, the opposite is true
for mode D (donor) that occupies a higher energy level,
because light is confined in the vacancy (air) which gives an
energetically unstable environment to light. Note for reference
that the mode, the only mode,in the vacancy defect formed

by eliminating the central rod atom (N = 60), as mentioned
before, has a light distribution concentrated on the vacancy
itself. It is speculated from this fact that the simultaneous
formation of donor and acceptor states may be caused by
a relatively complicated defect like this, which causes the
localization of light either in the displaced rod or in the
vacancy.

We next move on to the discussion of the unusual behavior
of the modes shown in Fig. 2(a). Speaking of the very high τm

values for the band-edge mode (asterisk), we suppose that it
is closely related to the outer form of the PC. In fact, we have
found the same indication as the above in the previous paper
[6]; the symmetric PC with N = 37 had a τm value (6.5 × 102)
higher than that (4.3 × 102) for the asymmetric PC with N =
53 at the band edge. There is a general rule which mentions
that band-edge modes have higher lifetimes for the PCs with
more rods, because more rods enhance the multiple scattering
of light and hence allow light to stay in the PC for a longer time.
The discrepancy between this rule and the results mentioned
above is evidently caused by the difference in their outer PC
forms. We speculate about it as follows. The symmetric PC
gives rise to the Fabry-Pérot (FP)-type confinement because
of the parallel sides in such a PC. This additional confinement
effect is thought to strengthen the light confinement, which
occurs in the present symmetric PC with N = 61 as well
as the symmetric PC with N = 37 in the previous paper. In
contrast to this, the asymmetric PC does not produce the FP
confinement because of the unparallel sides in such a PC,
which does not intensify the light confinement, as shown for
the asymmetric PC with N = 53 in the previous paper. Another
unusual variation (i.e., for mode F) can be explained as follows,
by taking into account the intrinsic nature for the band-edge
modes in the present symmetric PC as mentioned above.
The band-edge modes including mode F at d = 0 already
have the FP-assisted long lifetimes. The increasing atomic
displacement drives one of the band-edge modes—for which
mode F is chosen accidentally—into the photonic gap to form
a localized defect mode. This is confirmed by the light-field
distributions: light for this mode comes to be more localized
for larger atomic displacements [see Fig. 3(a)]. However,
this localization does not increase the lifetime because it is
already sufficiently long, even at d = 0. For small atomic
displacements (0 < d < 0.3), the lifetime for mode F displays
the same variation as that for the true band-edge mode [small
open squares in Fig. 2(a)]. Noteworthy, here, is that for d >

0.3, the lifetime for mode F is slightly augmented while the true
band edge mode is not. This slight increase of τm is evidently
caused by the lifetime as a localized defect, which has come
to the surface because of the large atomic displacements.
This kind of phenomenon does not occur for the modes
in the second gap, possibly because the higher-order Bragg
reflections would complicate the processes of the lifetime
enhancement.

B. Resonance structures of intrinsic defects

First, we mention the results shown by open circles and
the dash-dot line in Figs. 6–8, which we did not refer to in
Sec. III B. On the basis of the studies conducted before [58], we
presumed that the resonance structures characterized by the q
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values may be closely linked with the influx of light energy into
the localized states. The minute examination has been carried
out for the distributions of the optical energy flow in the PCs at
the defect mode frequency. The open circles and dash-dot line
in these figures indicate the Pmax values—the maximum values
of the time-averaged Poynting vector within the PC—under
the irradiation with the incident angle θi . In what follows, we
discuss the correlations among the q values, the Pmax values,
and the resonance processes for each defect state.

In Fig. 6 for mode F, we find a pronounced dependence
of the Pmax value upon the incident direction. First, we note
that the cycle of the Pmax variation is similar to that of the
|q−1| variation, which suggests the presence of a correlation
between the resonance property of the defect and the energy
flux of light. Noteworthy here is that not all but many of
the Pmax peak positions approximately fall on the incident
angles at which the |q−1| value vanishes. For example, the
maximum Pmax occurs at θi = 20◦ for (a), θi = 57◦ for (b),
and θi = 166◦ for (c), which nearly coincide with the angles
that cause |q−1| ≈ 0, i.e., θi = 21◦ for (a), θi = 50◦ for (b),
and θi = 164◦ for (c), respectively. Other extrema points also
coincide with each other with an error of about 10◦, which
should be regarded as good agreement when these angles are
considered in the whole wide range 0◦−180◦. Let us hereafter
call them the |q−1|-extrema angles. From the investigation of
the Poynting vector distributions in the PC, we have learned
that the most rapid streams, i.e., those giving the greatest Pmax,
are created by light coming into the defect. In other words,
under the irradiation from these |q−1|-extrema directions, the
localized defect state strongly couples to the outer states in the
incoming process and as a result, permits itself to be excited
more efficiently to capture more photons. The strengthened
coupling may mostly be caused by the matched symmetry
of the wave functions between the defect state and the outer
continuous states incident from these directions. Since the
Pmax − θi relation is determined by the coupling between
these two states, the defect structure and its resulting wave
function would have an important role. It is hence natural that
the Pmax − θi relation is asymmetric across the line θi = 90◦
because of the same asymmetry of the defect structure. The
defect state is thus densely populated with photons because
of the noticeable flows under the irradiation from these
directions. The subsequent process, i.e., the relaxation of
photons from the defect, therefore occurs remarkably. For this
reason, the scattering process for the photons via the defect
state (indirect scattering) comes to have a more significant
role than the potential scattering process (direct scattering).
This would make the indirect process, i.e., the resonance
process, more prominent and subsequently the interference
between them weak. The correlations between the Pmax

maximization and the vanishing |q−1| values can thus be
reasonably understood.

Let us next move on to the results for mode A shown in
Fig. 7. We find for this mode A as well that several Pmax-peak
positions approximately fall on the incident angles at which
the |q−1| value vanishes. However, since we find only a few
angles of this kind for mode A, we should veer the discussion
from a point to a region, as follows. We observe the broad
spectra with high Pmax values for the angle regions 0◦ < θi <

60◦ and 120◦ < θi < 180◦. These angle regions coincide well
with those which give small |q−1| (i.e., |q−1| � 1) for every
atomic displacement. In addition to the above, the specific
angles at which |q−1| vanish in these regions are found to fall
on those close to the angles, with an error of about 10◦, at
which the Pmax value reaches a maximum. Moreover, we find
that the Pmax value in these regions comes to be increased by
reducing the atomic displacement; this correlates very well
with the decreasing |q−1| value in the same angle regions.
These correlations again confirm the conclusion drawn for
mode F that the optical energy flux comes to be maximized
in the environments where |q−1| vanishes, i.e., the resonance
process exceeds the direct process.

As for mode D in Fig. 8, we focus on the discussion for
the wide-angle region. We mentioned in Sec. III B that the q−1

value in Fig. 8 remains in a small-|q−1| range (i.e., |q−1| � 1)
throughout the incident angle for all atomic displacements.
This fact indicates that there occurs no pronounced interfer-
ence between direct and resonant waves and therefore the pure
resonance processes are dominant (|q−1| ≈ 0). In other words,
this defect mode tends to capture most all of the photons
coming from any direction of the incident light beam. This
fact corresponds very well to the Pmax results shown by open
circles in Fig. 8: Pmax retains certain large values (note that
the Pmax axis does not begin at zero). It never falls to values
smaller than 17 for all incident angles, and we here should
stress in particular that it does not vanish at any angles. The
above results clearly indicate the presence of the pronounced
optical energy flux around the localized defect mode, which
corresponds to |q−1| � 1.

From the discussions concerning modes F, A, and D, we
have derived a conclusion that the optical energy flux comes
to be maximized in the environments where |q−1| vanishes,
i.e., the resonance process exceeds the direct process. This
conclusion holds for all of three defect states. However, we
feel that it applies to mode F more precisely than modes A and
D. This is, we speculate, because mode F is created in the first
gap while modes A and D are created in the second gap. The
band gaps with higher indices are generated by the higher-order
Bragg-reflection, the interference in which ought to be more
complicated than that in the lowest gap. This undoubtedly
would make it more difficult to understand modes A and D
than mode F.

To conclude the discussion, we would like to mention the
following two points. The first point is concerning |q−1| = ∞.
The correlations between the Pmax maximization and the
vanishing |q−1| values have been reasonably understood in
the preceding paragraphs. However, little is understood at the
current stage of investigation as to the angles at which the |q−1|
value diverges (antiresonance), which we have disregarded in
this paper as a result of focusing on q−1 = 0. Some elaborate
considerations will be needed, for example, based on the
analogy with the similar phenomena, e.g., in the electric LCR
parallel circuits (which consist of inductance L, capacitance
C, and resistance R), in order to physically understand the
antiresonance phenomena in the optical Fano effects. The
second is about the structure of the defect. In this paper
we have studied a single defect that is of a relatively simple
structure. The Fano resonance for more complicated defects
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will become another interesting research field. In particular,
the coupled two identical defects embedded in the PCs will
form an optical molecule that has the states similar to the
electronic bonding and antibonding states. The study of Fano
effects for this artificial molecule may provide the BIC (the
bound state in the continuum) [62] for the antibonding state,
i.e., the state with the infinite lifetime. This state is sufficiently
isolated from the environment and therefore it will make a
high-quality optical resonator with very long lifetime.

V. SUMMARY AND CONCLUSION

Theoretical investigations have been carried out for the
intrinsic point defects created by displacing a single rod
atom from its regular site in the two-dimensional finite-sized
photonic crystals with the hexagonal lattice. This paper focuses
on the formation processes and the resonance properties of
the defects thus created. First, the mere displacement of a
single rod atom was found to create simultaneously a defect
mode within the first gap and two defect modes within the
second gap. The two defect states in the second gap were
called acceptor and donor states by analogy with the impurity
states in semiconductors, because they emerged in the photonic
gap above the top of the lower band and below the bottom of
the upper band, respectively. The lifetimes of light trapped
at these defect states can be tuned in a wide range (on the
order of 103) by adjusting the position of the displaced rod
appropriately. These light-confinement phenomena have been
reasonably explained in terms of the stability of light. On the
other hand, the defect in the first gap showed an anomalous
behavior: it exhibited a long lifetime even for its seed state
at the band edge, i.e., the state with no atomic displacement,
and its lifetime remained nearly constant by increasing the
atomic displacement. This behavior was plausibly explained
by taking into consideration the Fabry-Pérot confinement due

to the symmetric external form of the present photonic crystals.
The present method for tuning lifetimes has an advantage
over the other methods, e.g., inserting an extrinsic rod atom,
because the former requires only the lithographical technique
for the same dielectric materials while the latter needs to
handle other materials in addition. We therefore believe that the
reconfiguration of the intrinsic atoms reported here will prove
to be a useful method for simply and widely tuning the lifetimes
of light. Second, we observed asymmetric resonance profiles,
which we occasionally call the Fano profiles, in the scattering
cross-section spectra for the localized defect states created by
the above method. These resonance profiles exhibited a variety
of remarkable variations for their line shapes as a function of
the incident direction of light. The present examination has
made clear the correlations between the asymmetry of the
spectra characterized by the so-called Fano’s q value and the
optical energy flows in the PC, in particular, that the optical
incoming flux is maximized for q−1 = 0. This correlation is
detected distinctly for the defect mode in the first gap, while it
is observed in a certain frequency range for the defect modes
in the second gap. The above fact demonstrates the presence
of the selective photon capturing in the incoming processes
of light and moreover, that it can be found out merely by
the knowledge of the q value. This kind of approach will
become an effective and convenient tool to clarify the intrinsic
nature of the defect states introduced into the PCs: it suffices
to measure the scattered-light intensity spectrum with high
resolution. The present study may also be valid to evaluate
the fluctuation of the lattice atoms in the regular PCs. We
believe that this method will make a still more attractive tool
for the analysis of the resonance states when it is extended to
include a tomographic representation—what could be called
Fano Resonance Tomography—that maps the q value for the
differential scattering cross-section spectrum as a function of
the scattering angle (θs) as well as the incident angle (θi).
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